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Abstract

A stochastic dynamical system represented through a linear vec-
tor equation in idempotent algebra is considered. We propose simple
bounds on the mean growth rate of the system state vector, and give
an analysis of absolute error of a bound. As an illustration, numerical
results of evaluation of the bounds for a test system are also presented.
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1 Introduction

The evolution of actual systems encountered in economics, management, and en-
gineering can frequently be represented as stochastic linear dynamic equations in
idempotent algebra [1, 2]. In many cases, analysis of the system can involve evalu-
ation of the asymptotic growth rate of the system state vector. However, the exact
evaluation of the growth rate normally appears to be a hard problem. The exact
solution is known only for systems with 2-dimensional state space [1], systems with
a triangular state transition matrix [7], and some others.

In this paper, we propose simple bounds on the asymptotic (mean) growth rate,
which can be considered as a generalization for bounds in [6]. We start with a brief
overview of related algebraic results including some matrix inequalities. Based on
these inequalities, both upper and low bounds are derived, and an analysis of the
absolute error of an upper bound is given. As an illustration, numerical results of
evaluation of the bounds for a test system are also presented.
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2 Idempotent Algebra and Related Results

We consider an idempotent algebra (idempotent semifield with a null element)
with addition x⊕ y = max(x, y) and multiplication x⊗ y = x + y defined for all
x and y from the extended set of real numbers Rε = R ∪ {ε}, where ε = −∞.

Clearly, the numbers ε and 0 present null and identity elements of the algebra.
For any x ∈ R, one can define its inverse x−1 that is equal to −x in conventional
algebra, and the power xa, which corresponds to arithmetic product ax for all
a ∈ R. In the case that x = ε, it is convenient to set x−1 = ε.

The matrix operations ⊕ and ⊗ are introduced in the usual way through their
scalar counterparts. The matrix E involving only ε presents the null matrix, and
E = diag(0, . . . , 0) with all off-diagonal entries being equal to ε is the identity.

Any nonnegative integer power of a square matrix A is determined by the
relations: A0 = E and Al ⊗ Am = Al+m for all integers l,m ≥ 1. In what
follows, the exponential notations will be used only in the sense of idempotent
algebra. However, for simplicity sake, we will sometimes represent the power of a
number in the form of its equivalent arithmetic product.

For any matrix A = (aij), we introduce the matrix A− with entries a−ij = a−1
ji .

Similarly, for any vector x = (x1, . . . , xn)T , we have x− = (x−1
1 , . . . , x−1

n ).
The operation ⊗ is monotonic; that is, from the inequalities A ≤ C and

B ≤ D, it follows that A⊗B ≤ C ⊗D.
For any matrices A ∈ Rn×n

ε and B ∈ Rn×n, and 0 = (0, . . . , 0)T , it holds

A⊗B ≥ A⊗ 0⊗ (B− ⊗ 0)−. (1)

Consider a matrix A = (aij) ∈ Rn×n
ε , and introduce the symbols:

‖A‖ =
⊕

1≤i,j≤n

aij , tr(A) =
n⊕

i=1

aii.

For any A,B ∈ Rn×n
ε , if A ≤ B then ‖A‖ ≤ ‖B‖. Furthermore, it holds that

‖A⊗B‖ ≤ ‖A‖ ⊗ ‖B‖, ‖c⊗A‖ = c⊗ ‖A‖ for all c ∈ Rε.

If A ∈ Rn×n
ε and B ∈ Rn×n, we also have

‖A⊗B‖ ≥ ‖A‖ ⊗ ‖B−‖−1.

The key result of the spectral theory in idempotent algebra is as follows [3, 4]:
for any matrix A ∈ Rn×n

ε , it holds that

lim
k→∞

‖Ak‖1/k = ρ(A) =
n⊕

m=1

tr1/m(Am), (2)

where ρ(A) is the spectral radius of A.
Let us now consider random matrices taking their values in Rn×n

ε . For any
random matrix A, we use the symbol E[A] to denote the matrix obtained from
A by replacing all its entries with their expected values, provided that E[ε] = ε.
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For any random matrices A and B, it holds that

E‖A‖ ≥ ‖E[A]‖, E[A⊗B] ≥ E[A]⊗ E[B].

Furthermore, let the matrices A and B be independent. Then we have

E‖A⊗B‖ ≥ E‖A⊗ E[B]‖.

If, in addition, the entries of B are finite with probability 1 (w.p. 1), then

E‖A⊗B‖ ≥ E‖A‖ ⊗ ‖E(B ⊗ 0)−‖−1 ≥ E‖A‖ ⊗ ‖E[B−]‖−1. (3)

3 Stochastic Dynamical Systems

Consider a dynamical system governed by the equation

x(k) = AT (k)⊗ x(k − 1), (4)

where x(k) is a state vector, A(k) is a random state transition matrix.
We assume that the matrices A(k), k = 1, 2, . . . , are independent and identi-

cally distributed, and that the mean value E‖A(1)‖ is finite.
Let us define the mean (asymptotic) growth rate of the system state vector as

λ = lim
k→∞

‖x(k)‖1/k.

Assuming the entries of the initial vector x(0) to be finite w.p. 1, one can
represent λ in the form

λ = lim
k→∞

‖Ak‖1/k,

where
Ak = A(1)⊗ · · · ⊗A(k).

It can be shown (e.g., with the ergodic theorem in [5]) that for the system
under consideration, the above limit exists w.p. 1. Moreover, there exists the limit

lim
k→∞

E‖Ak‖1/k = λ.

The last result will be used in subsequent sections to derive bounds on λ.
As an example, we consider a test system (4) with random (2×2)-matrix A(k)

with independent entries, each having the exponential probability distribution of
mean 1. It is known (see, e.g. [1]) that for the system, λ = 407/228 ≈ 1.7851.

To illustrate the bounds presented bellow, we need to know the means of the
entries (Am)ij , row maxima (Am ⊗ 0)i, and the overall maximum ‖Am‖ of the
matrix Am. Evaluation of the means for m = 1, 2, 3, gives us the following results

E[(A1)ij ] = 1, E[(A1 ⊗ 0)i] = 1.5, E‖A1‖ =
25
12

≈ 2.0833,

E[(A2)ij ] = 2.75, E[(A2 ⊗ 0)i] =
119
36

≈ 3.3056, E‖A2‖ =
833
216

≈ 3.8565,

E[(A3)ij ] =
245
54

≈ 4.5370, E[(A3 ⊗ 0)i] =
1649
324

≈ 5.0895,

E‖A3‖ =
21937
3888

≈ 5.6422.
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Note that it is easy to get the means when m ≤ 2. However, the evaluation
rapidly grows in computational complexity as m becomes greater than 2.

4 Straightforward Low and Upper Bounds

We start with simple low and upper bounds which are valid for systems with any
matrix A1 having a finite mean value E‖A1‖.
Lemma 1. For any integer m ≥ 1, it holds

ρ1/m(E[Am]) ≤ λ ≤ E‖Am‖1/m. (5)

Proof. In order to verify (5), let us first put m = 1, and note that

‖(E[A1])k‖ =

∥∥∥∥∥
k⊗

i=1

E[A(i)]

∥∥∥∥∥ ≤ E‖Ak‖ ≤ E

[
k⊗

i=1

‖A(i)‖

]
= E‖A1‖k.

It remains to divide the above double inequality by k, and proceed to get
limits. With (2) applied to the left side, we immediately arrive at

ρ(E[A1]) ≤ λ ≤ E‖A1‖.

The case of arbitrary m > 1 can be considered in a similar way. �
Table 1 presents results of evaluating the bounds for the test problem.

Bounds m
(5) 1 2 3

Upper 2.0833 1.9282 1.8807
Low 1.0000 1.3750 1.5123

Table 1. Bounds evaluated according to (5).

5 Low Bounds for Finite Matrices

Suppose now that all the entries of the matrix A1 are greater than ε w.p. 1.

Lemma 2. For any integer m ≥ 1, it holds

λ ≥ ‖E(Am ⊗ 0)−‖−1/m. (6)

Proof. In the case that m = 1, we apply (3) to write

E‖Ak‖ ≥ E‖A1‖ ⊗ ‖E(A1 ⊗ 0)−‖−(k−1),

and then get the inequality

λ ≥ ‖E(A1 ⊗ 0)−‖−1,

which can easily be extended to arbitrary integer m ≥ 1 in the form of (6). �
Evaluation of the bounds for m = 1, 2, 3, gives us: 1.5000, 1.6528, and 1.6965.
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Lemma 3. For any integers l,m ≥ 1, it holds

λ ≥ E‖(E[A−l ]⊗ 0)− ⊗Am‖1/(l+m). (7)

Proof. Let us prove the inequality for l = m = 1. Setting k = 2s, one can
apply (1) to get

E‖Ak‖ ≥ E

∥∥∥∥∥
s⊗

i=1

A(2i− 1)⊗ 0⊗ (E[A−(2i)]⊗ 0)−
∥∥∥∥∥

= E‖A(1)⊗0‖⊗E

[
s−1⊗
i=1

(E[A−(2i)]⊗ 0)− ⊗ (A(2i + 1)⊗ 0)

]
⊗‖(E[A−(k)]⊗0)−‖

= E‖A1 ⊗ 0‖ ⊗ E[(E[A−1 ]⊗ 0)− ⊗A1 ⊗ 0]s−1 ⊗ ‖(E[A−1 ]⊗ 0)−‖.

The last inequality leads us to

λ ≥ E[(E[A−1 ]⊗ 0)− ⊗A1 ⊗ 0]1/2 = E‖(E[A−1 ]⊗ 0)− ⊗A1‖1/2.

In a similar manner, inequality (7) can be derived for arbitrary l,m ≥ 1. �
Examples related to evaluation of the low bound are presented in Table 2.

Low Bound m
(7) 1 2 3

1 1.5417 1.6188 1.6606
l 2 1.6111 1.6516 1.6784

3 1.6551 1.6787 1.6965

Table 2. Examples of low bounds (7).

As one can see, the accuracy of bounds (6) when m = 1, 2, 3, are quite com-
parable to that of bounds (7). Note, however, that in order to achieve the same
accuracy, the first bound involves less computational efforts than the second.

We conclude this section with a result to be used in the error analysis below.

Corollary 1. For any integer m ≥ 1, it holds

λ ≥ (‖E[A−1 ]‖−1 ⊗ E‖Am−1‖)1/m. (8)

Proof. In order to verify inequality (8) for m = 1, first note that

E‖Ak‖ ≥ ‖(E[A1])k‖ ≥ ‖E[A−1 ]‖−k,

and therefore, λ ≥ ‖E[A−1 ]‖−1 = ‖E[A−1 ]‖−1 ⊗ E‖A0‖, where A0 = E.
For any m > 1, the inequality results from (7):

λ ≥ E‖(E[A−1 ]⊗ 0)− ⊗Am−1‖1/m ≥ (‖E[A−1 ]‖−1 ⊗ E‖Am−1‖)1/m. �
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6 An Error Analysis

Consider the absolute error

em =
1
m

E‖Am‖ − λ,

which represents the difference between λ and its approximation E‖Am‖1/m.
Assuming the entries of A1 to be finite w.p. 1, we have the following result.

Lemma 4. For each m ≥ 1, it holds

em ≤ 1
m

C,

where C = E‖A1‖+ ‖E[A−1 ]‖ = E‖A1‖ ⊗ ‖E[A−1 ]‖.
Proof. By applying the obvious inequality: E‖Am‖ ≤ E‖A1‖ ⊗ E‖Am−1‖,

combined with (8), we have

em ≤ 1
m

(E‖A1‖+ E‖Am−1‖)−
1
m

(‖E[A−1 ]‖−1 + E‖Am−1‖)

=
1
m

(E‖A1‖+ ‖E[A−1 ]‖) =
1
m

(E‖A1‖ ⊗ ‖E[A−1 ]‖). �

Let us compute the constant C for the test problem. Since E‖A1‖ = 25/12,
‖E[A−1 ]‖ = −1, we have C = 13/12 ≈ 1.0833.

As it is easy to see, in the test example, the above error bound considerably
overestimates the actual error at least for m = 1, 2, 3.
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