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Abstract

The problem of exact evaluation of the mean customers interdepar-
ture time in tandem systems of single-server queues with both infinite
and finite buffers is considered. We give some general conditions for
the interdeparture time to exist, and show how it can be calculated.
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1 Introduction

We consider tandem systems of single-server queues with both infinite and finite
buffers. The interarrival and service times of customers are assumed to form
two sequences of independent and identically distributed (i.i.d.) random variables
(r.v.’s). Given the mean values of interarrival and service times, we are interested
in evaluating the mean interdeparture time of customers from the system as the
number of customers tends to infinity.

In this paper, we give general conditions for the mean interdeparture time
in tandem queueing systems to exist, and show how it can be calculated. In
Section 2, we introduce some notations, and consider recursive equations describing
the dynamics of tandem queueing systems with infinite buffers. Section 3 presents
preliminary results including an existence theorem and some inequalities. Our
main result which provides general existence conditions and a simple expression
for calculating the mean interdeparture time is included in Section 4. Finally, in
Section 5, we consider evaluation of the mean interdeparture time for particular
tandem systems with finite buffers.
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2 Tandem Queues with Infinite Buffers

We consider a series of M queues with infinite buffers. Each customer arriving
into the system is placed in the buffer at the 1st server and then has to pass
through all the queues one after the other. Upon completion of his service at
server i, the customer goes to queue i + 1, i = 1, . . . ,M − 1, and occupies the
(i+ 1)st server provided that it is free. If the customer finds this server busy, he
enters the buffer so as to wait until the service of all his predecessors is completed.

Denote the random time between the arrivals of the nth customer and his
predecessor by τ0n, and the random service time of the nth customer at server i

by τin, i = 1, . . . ,M , n = 1, 2, . . .. Furthermore, let D0(n) be the nth arrival

epoch to the system, and Di(n) be the nth departure epoch from the ith server.
With the natural condition Di(0) = 0 for all i = 0, . . . ,M , the recursive

equations representing the system dynamics can be written for all n = 1, 2, . . . as

D0(n) = D0(n− 1) + τ0n,

Dm(n) = max(Dm−1(n), Dm(n− 1)) + τmn, m = 1, . . . ,M.

The above recursions can be resolved for each m = 1, . . . ,M, to get

Dm(n) = max
1≤k1≤···≤km≤n


k1∑
j=1

τ0j +

k2∑
j=k1

τ1j + · · ·+
n∑

j=km

τmj

 . (1)

We are interested in evaluating the mean interdeparture time of customers from
the system, which can be defined as

γ = lim
n→∞

1

n
DM (n). (2)

3 Preliminary Results

In order to examine the existence of the mean interdeparture time for the tandem
system, we will apply the next classical theorem which has been proved in [3].

Theorem 1. Let {ζln| l, n = 0, 1, . . . ; l < n} be a family of r.v.’s, such that
1) ζln ≤ ζlk + ζkn for all l < k < n;
2) the joint distributions are the same for both families {ζln|l < n} and

{ζl+1,n+1|l < n};
3) for all n = 1, 2, . . ., there exists E[ζ0n] ≥ −cn for some constant c > 0.
Then there exists a constant γ, such that with probability one (w.p.1),

lim
n→∞

ζ0n/n = γ, and lim
n→∞

E[ζ0n]/n = γ.

Let us now consider some useful inequalities. In what follows, we assume
ξ1, . . . , ξn to be independent r.v.’s. We start with a classical result presented in
[4], which provides an upper bound on the mean value of the maximum of sums

ζk = ξ1 + · · ·+ ξk

of independent r.v.’s with zero means.
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Lemma 1. If E[ξk] = 0, and E|ξk|p <∞ for some p > 1, k = 1, . . . , n, then it
holds

E

[
max

1≤k≤n
|ζk|
]p
≤ 2

(
p

p− 1

)p

E|ζn|p.

The next inequality has been derived in [5] under somewhat weaker conditions
than that of independence between the r.v.’s ξ1, . . . , ξn.

Lemma 2. If E[ξk] = 0, and E|ξk|p <∞ for some p, 1 ≤ p ≤ 2, k = 1, . . . , n,
then it holds

E |ζn|p ≤
(

2− 1

n

) n∑
k=1

E|ξk|p.

With Lemmas 1 and 2, one can prove the next result.

Lemma 3. If E[ξk] = 0, and E[ξ2k] <∞, k = 1, . . . , n, then it holds

E

[
max

1≤k≤n
ζk

]
≤ 2

√
2(2n− 1)

n

(
n∑

k=1

E[ξ2k]

)1/2

.

Now assume ξ1, . . . , ξn to be i.i.d. r.v.’s. The above inequality takes the form

E

[
max

1≤k≤n
ζk

]
≤ 2
√

2(2n− 1)E[ξ21 ].

The next result has been obtained in [1, 2].

Lemma 4. If E[ξ1] <∞ and D[ξ1] <∞, then it holds

E

[
max

1≤k≤n
ξk

]
≤ E[ξ1] +

n− 1√
2n− 1

√
D[ξ1].

Assuming ξ1, . . . , ξn to be i.i.d. r.v.’s, let us introduce the notation

ζlk = ξl + ξl+1 + · · ·+ ξk

with 1 ≤ l ≤ k ≤ n. It is not difficult to verify the following statement.

Lemma 5. If E[ξ1] = a ≤ 0, and D[ξ1] <∞, then it holds

E

[
max

1≤l≤k≤n
ζlk

]
≤ E[ξ1] +

(
4
√

2(2n− 1) +
n− 1√
2n− 1

)√
D[ξ1].

4 Evaluation of the Mean Interdeparture Time

We are now in a position to prove the next theorem.

Theorem 2. Suppose that {τin| n = 1, 2, . . .}, i = 0, 1, . . . ,M, are mutually
independent sequences of i.i.d. r.v.’s with 0 ≤ E[τi1] <∞.

Then the limit at (2) exists w.p.1, and if D[τi1] <∞, it is given by

γ = max
0≤i≤M

E[τi1]. (3)
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Proof. In order to verify the existance of the limit at (2), let us denote

ζln = max
l<k1≤···≤kM≤n


k1∑

j=l+1

τ0j +

k2∑
j=k1

τ2j + · · ·+
n∑

j=kM

τMj

 (4)

for each l, n, 0 ≤ l < n, and note that we can now write DM (n) = ζ0n.
Clearly, the family {ζln| l < n} defined by (4) satisfies the conditions of

Theorem 1. Therefore, the limit at (2) exists w.p.1, and it can be calculated as

γ = lim
n→∞

1

n
E[DM (n)].

Suppose that the maximum at (3) is achieved at some i = m. Consider the
completion time DM (n) and represent it in the form

DM (n) = max
1≤k1≤···≤kM≤n


k1∑
j=1

τ0j +

k2∑
j=k1

τ1j + · · ·+
n∑

j=kM

τMj

 =

n∑
j=1

τmj + µ,

where

µ = max
1≤k1≤···≤kM≤n

{
k1∑
j=1

(τ0j − τmj) +

k2∑
j=k1

(τ1j − τmj) + · · ·+
n∑

j=kM

(τMj − τmj)

+ τmk1 + · · ·+ τmkM

}
. (5)

Now we can write

1

n
E[DM (n)] = E[τm1] +

1

n
E[µ].

Let us examine the expected value E[µ]. With k1 = · · · = km = 1, and
km+1 = · · · = kM = n, we have from (5)

µ ≥ τ01 + τ11 + · · ·+ τm−1,1 + τm+1,n + · · ·+ τMn ≥ 0,

and so E[µ] ≥ 0. On the other hand, we have

µ ≤ M max (τm1, . . . , τmn) + max
1≤k1≤n

k1∑
j=1

(τ0j − τmj)

+ max
1≤k1≤k2≤n

k2∑
j=k1

(τ1j − τmj) + · · ·+ max
1≤kM≤n

n∑
j=kM

(τMj − τmj).

With the condition that E(τi1−τm1) ≤ 0 for all i = 0, 1, . . . ,M , one can apply
Lemma 5 to the first M + 1 terms on the right-hand side, and then Lemma 4 to
the last one so as to get an upper bound:

E[µ] ≤
M∑
i=0
i6=m

E[τi1] +O(
√
n).
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Finally, we have the double inequality

E[τm1] ≤ 1

n
E[DM (n)] ≤ E[τm1] +

1

n

M∑
i=0
i6=m

E[τi1] +
O(
√
n)

n
,

and with n→∞, immediately arrive at (5).

5 Tandem Queues with Finite Buffers

In this section, we show how the above approach can be applied to the analysis
of tandem systems which include queues with finite buffers. Because of limited
buffer capacity, servers in the systems may be blocked according to a blocking
rule. Below we present examples of systems with manufacturing blocking and
communication blocking which are most commonly encountered in practice.

Let us consider a system which consists of two queues in tandem, and suppose
that the buffer at the first server is infinite, while that at the second server is finite.

First we assume the system to operate under the manufacturing blocking rule.
With this type of blocking, if upon completion of a service, the first server sees
the buffer of the second server full, it has to remain busy until the second server
completes its current service to provide a free space in its buffer.

Let the finite buffer have capacity 0. With the notations introduced above,
one can represent the dynamics of the system by the equations

D0(n) = D0(n− 1) + τ0n,

D1(n) = max(max(D0(n), D1(n− 1)) + τ1n, D2(n− 1)), (6)

D2(n) = max(D1(n), D2(n− 1)) + τ2n.

Note that from the second equation, we have D1(n) ≥ D2(n − 1). Therefore,
the third equation can be reduced to

D2(n) = D1(n) + τ2n,

and both E[D1(n)]/n and E[D2(n)]/n have a common limit γ as n→∞.
By resolving the recursive equations, we get

D1(n) = max
1≤k≤n


k∑

j=1

τ0j + τ1k +

n−1∑
j=k

max(τ1,j+1, τ2j)

 .

As it is easy to verify, D1(n) satisfies the double inequality

L(n)−max(τ1,n+1, τ2n) ≤ D1(n) ≤ U(n), (7)

where

L(n) = max
1≤k≤n


k∑

j=1

τ0j +

n∑
j=k

max(τ1,j+1, τ2j)

 ,
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U(n) = max
1≤k≤n


k∑

j=1

τ0j +

n∑
j=k

max(τ1j , τ2,j−1)

 .

Taking into account that both L(n) and U(n) actually have the form of (1),
one can see that, under the same conditions as in Theorem 2, it holds

lim
n→∞

1

n
E[L(n)] = lim

n→∞

1

n
E[U(n)] = max(E[τ01], Emax(τ11, τ21)).

Finally, proceeding to mean value in both sides of (7), divided by n, we con-
clude that the mean interdeparture time is given by

γ = max(E[τ01], Emax(τ11, τ21)).

Let us assume the system to follow the communication blocking rule. This
type of blocking requires a server not to initiate service of a customer if the buffer
of the next server is full. With the finite buffer having capacity 0, we have the
same recursions as above, except for equation (6) which now takes the form

D1(n) = max(D0(n), D1(n− 1), D2(n− 1)) + τ1n.

Resolving the recursive equations leads us to the expression

D2(n) = max
1≤k≤n


k∑

j=1

τ0j +

n∑
j=k

(τ1j + τ2j)

 .

Under the same conditions as in Theorem 2, we get

γ = max(E[τ01], E[τ11] + E[τ21]).
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