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Abstract

We consider (max,+)-algebra products of random matrices, which
arise from performance evaluation of acyclic fork-join queueing net-
works. A new algebraic technique to examine properties of the product
and investigate its limiting behaviour is proposed based on an exten-
sion of the standard matrix (max,+)-algebra by endowing it with the
ordinary matrix addition as an external operation. As an application,
we derive bounds on the (max,+)-algebra maximal Lyapunov exponent
which can be considered as the cycle time of the networks.
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1 Introduction

We consider (max,+)-algebra products of random matrices arising from perfor-
mance evaluation of acyclic fork-join queueing networks. The problem is to exam-
ine limiting behaviour of the product so as to evaluate its limiting matrix and the
maximal Lyapunov exponent normally referred to as the system cycle time.

In order to investigate the products, we develop a pure algebraic technique
similar to those involved in the conventional linear algebra. The technique is based
on an extension of the standard matrix (max,+)-algebra [8, 2, 1, 7] by endowing it
with the ordinary matrix addition as an external operation. New properties of the
extended algebra are then established in the form of inequalities, which may find
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their applications beyond of the scope of the current topic. We conclude the paper
with an example of application of the proposed technique to establish bounds on
the cycle time and on its related limiting matrix in fork-join queueing networks.

In fact, there exist similar results on evaluation of the Lyapunov exponent
(see, e.g., [1] and references therein). However, they are essentially based on the
description of system dynamics and related proofs made in terms of either Petri
nets or stochastic events graphs. On the contrary, we exploit a different approach
(see [6] for farther details) based on pure algebraic techniques. It allows one to
write and handle the dynamic equations directly without having recourse to an
intermediate description in the Petri nets or in another tedious language.

2 Motivating Example and Algebraic Model

Consider a network of n nodes, with its topology described by an oriented acyclic
graph. The nodes that have no predecessors are assumed to represent an infinite
external arrival stream of customers. Each node without successors is considered
as an output node which releases customers from the network.

Each node has a server and infinite buffer operating as a single-server queue
under the first-come, first-served discipline. At the initial time, the servers and
their buffers are assumed to be free of customers, except for the buffers in nodes
with no predecessors, each assumed to have an infinite number of customers.

The operation of each node can include join and fork operations which are
performed respectively before and after service. The join operation is actually
thought to cause each customer which comes into a node not to enter the queue
but to wait until at least one customer from all preceding nodes arrives. Upon
arrival, these customers are replaced by a new customer which joins the queue.

The fork operation at a node is initiated every time the service of a customer
is completed. It consists in replacing the customer by several new customers, each
intended to go to one of the subsequent nodes.

For the queue at node i, we denote the kth departure epochs by xi(k), and
the kth service time by τik. We assume τik to be a given nonnegative random
variable (r.v.) for all i = 1, . . . , n, and k = 1, 2, . . .

We are interested in evaluating the limit

γ = lim
k→∞

1
k

max
i

xi(k),

which is normally referred to as the cycle time of the network.
In order to represent the network dynamics in a form suitable for further anal-

ysis, we exploit the idempotent (max,+)-algebra based approach developed in [6].
The (max,+)-algebra [8, 2, 1] presents a triple 〈Rε,⊕,⊗〉 with Rε = R∪{ε},

ε = −∞, and operations ⊕ and ⊗ defined for all x, y ∈ Rε as

x⊕ y = max(x, y), x⊗ y = x + y.

The (max,+)-algebra of matrices is introduced in the ordinary way. The square
matrix E with all its elements equal ε presents the null matrix, whereas the matrix
E = diag(0, . . . , 0) with ε as its off-diagonal elements is the identity.
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Let us denote the vector of the kth customer departures from the network nodes
by x(k) = (x1(k), . . . , xn(k))T , and introduce the matrix Tk = diag(τ1k, . . . , τnk)
with all its off-diagonal elements equal ε.

As it has been shown in [6], the dynamics of acyclic fork-join networks can be
described by the stochastic difference equation

x(k) = A(k)⊗ x(k − 1), A(k) =
p⊕

j=0

(Tk ⊗GT )j ⊗ Tk, (1)

where G is a matrix with the elements

gij =
{

0, if there exists arc (i, j) in the network graph,
ε, otherwise,

and p is the length of the longest path in the graph.
The matrix G is normally referred to as the support matrix of the network.

Note that since the network graph is acyclic, we have Gq = E for all q > p.
Consider the service cycle time γ. Now we can represent it as

γ = lim
k→∞

1
k
‖x(k)‖,

where ‖x(k)‖ = maxi xi(k).
In order to get information about the growth rate of x(k), we will examine the

limiting behaviour of the matrix

Ak = A(k)⊗ · · · ⊗A(1) =
k⊗

i=1

p⊕
j=0

(Tk ⊗GT )j ⊗ Tk.

3 Distributivity Properties and Matrix Products

Let Aij be (n× n)-matrices for all i = 1, . . . , k and j = 1, . . . ,m. Distributivity
of the operation ⊗ over ⊕ immediately gives the equality

k⊗
i=1

m⊕
j=1

Aij =
⊕

1≤j1,...,jk≤m

A1j1 ⊗ · · · ⊗Akjk
, (2)

which leads, in particular, to the inequality
k⊗

i=1

m⊕
j=1

Aij ≥
m⊕

j=1

k⊗
i=1

Aij . (3)

We consider the ordinary matrix addition + as an external operation, and
assume ⊗ and ⊕ to take precedence over +. In a similar way as above, we have

k∑
i=1

m⊕
j=1

Aij =
⊕

1≤j1,...,jk≤m

(A1j1 + · · ·+ Akjk
), (4)

k∑
i=1

m⊕
j=1

Aij ≥
m⊕

j=1

k∑
i=1

Aij . (5)
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Let G1 and G2 be support matrices. For any matrices A and B, we have

G1 ⊗ (A + B)⊗G2 ≤ G1 ⊗A⊗G2 + G1 ⊗B ⊗G2. (6)

Assume D1 and D2 to be diagonal matrices with all off-diagonal elements
equal ε. Then for any matrices A and B, it holds

D1⊗(A+B)⊗D2 = D1⊗A⊗D2 +B = D1⊗A+B⊗D2 = A+D1⊗B⊗D2. (7)

Now we examine products of alternating diagonal and support matrices denoted
respectively by D and G, which take the form

D ⊗ (G⊗D)⊗ · · · ⊗ (G⊗D)︸ ︷︷ ︸
m times

= D ⊗ (G⊗D)m.

In order to simplify further formulas, we introduce the following notations

Φj(D) = D ⊗ (G⊗D)j , Ψj
i (D) = Gi ⊗D ⊗Gj .

First assume the diagonal matrices to have both positive and negative entries
on the diagonal. The next lemma can be proved using (6) and induction on m.

Lemma 1. It holds that

Φm(D) ≤
m∑

j=0

Ψm−j
j (D).

Furthermore, assuming Di, i = 1, . . . , k, to be diagonal matrices, one can
obtain the next result based on Lemma 1 and inequality (6).

Lemma 2. Let m1, . . . ,mk be integers, and m = m1 + · · ·+ mk. Then it holds

k⊗
i=1

Φmi
(Di) ≤

k∑
i=1

Mi∑
j=Mi−1

Ψm−j
j (Di)

with M0 = 0, Mi = m1 + · · ·+ mi, i = 1, . . . , k.

Let the matrices D1, . . . , Dk have only nonnegative elements on the diagonal.
With (7) and (6), one can prove the next lemma.

Lemma 3. Suppose that m1 + · · ·+ mr = mr+1 + · · ·+ mk = m with m−mr ≤
mr+1 for some r. Then for any integer s such that m−mr ≤ s ≤ mr+1, it holds

r⊗
i=1

Φmi
(Di) +

k⊗
i=r+1

Φmi
(Di) ≥

k⊗
i=1

Φsi
(Di)

with s1 + · · ·+ sk = m, and

si =


mi, if 1 ≤ i < r,
s−m + mr, if i = r,
mr+1 − s, if i = r + 1,
mi, if r + 1 < i ≤ k.
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4 Subadditivity Property and Algebraic Bounds

Consider the family {AT
lk|l, k = 0, 1, . . . ; l < k} of matrices

AT
lk = AT (l + 1)⊗ · · · ⊗AT (k), AT

0k = AT
k .

The next lemma states that the family {AT
lk} possesses subadditivity property.

Lemma 4. For all l < r < k, it holds

AT
lk ≤ AT

lr + AT
rk.

Proof: By applying (2) and (4), and then Lemma 3, we have

AT
lr + AT

rk =
r⊗

i=l+1

p⊕
j=0

Φj(Ti) +
k⊗

i=r+1

p⊕
j=0

Φj(Ti) ≥
p⊕

m=0

⊕
sl+1+···+sk=m

k⊗
i=l+1

Φsi(Ti).

Finally, since Gm = E for all m > p, we get

AT
lr + AT

rk ≥
⊕

0≤sl+1,...,sk≤p

k⊗
i=l+1

Φsi(Ti) =
k⊗

i=l+1

p⊕
j=0

Φj(Ti) = AT
lk.

The next lemma offers bounds on AT
k .

Lemma 5. It holds that
bp/kc⊕
r=0

k⊗
i=1

Φr(Ti) ≤ AT
k ≤

∥∥∥ k⊕
i=1

Ti

∥∥∥⊗ p⊕
r=1

Gr +
k∑

i=1

⊕
0≤r+s≤p

Ψs
r(Ti),

where brc denotes the greatest integer equal to or less than r.

Proof: The lower bound is an immediate consequence from (3), and the condition
that Gm = E if m = kr > p.

In order to derive the upper bound, we first apply (2) to write

AT
k =

⊕
0≤m1,...,mk≤p

k⊗
i=1

Φmi
(Ti).

Application of Lemma 2 gives

k⊗
i=1

Φmi
(Ti) ≤

k∑
i=1

Mi∑
j=Mi−1

Ψm−j
j (Ti) =

k∑
i=1

Mi∑
j=Mi−1+1

Ψm−j
j (Ti) +

k∑
i=1

Ψm−Mi−1
Mi−1

(Ti).

With (5), we further obtain

AT
k ≤

⊕
0≤m1,...,mk≤p

k∑
i=1

Mi∑
j=Mi−1+1

Ψm−j
j (Ti) +

⊕
0≤m1,...,mk≤p

k∑
i=1

Ψm−Mi−1
Mi−1

(Ti).

It remains to replace the first sum with its obvious upper bound, and then
apply (4) and (5) to the second sum so as to get the desired result.
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5 Evaluation of Bounds on the Cycle Time

The next statement follows from the classical result in [5], combined with Lemma 4.

Theorem 1. If τi1, τi2, . . ., are i.i.d. r.v.’s with E[τi1] < ∞ for each i = 1, . . . , n,
then there exists a fixed matrix A such that with probability 1,

lim
k→∞

AT
k /k = AT , and lim

k→∞
E[AT

k ]/k = AT .

Furthermore, application of Lemma 5 together with asymptotic results in [3, 4]
gives us the next theorem.

Theorem 2. If in addition to the conditions of Theorem 1, D[τi1] < ∞ for each
i = 1, . . . , n, then it holds

E[T1] ≤ AT ≤ E

[ ⊕
0≤r+s≤p

Gr ⊗ T1 ⊗Gs

]
. (8)

As a consequence, we have the next lemma.

Lemma 6. Under the conditions of Theorem 2, for any finite vector x(0), it holds

‖E[T1]‖ ≤ γ ≤

∥∥∥∥∥E

[ ⊕
0≤r+s≤p

Gr ⊗ T1 ⊗Gs

]∥∥∥∥∥.
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Eds.), Birkhäuser, Boston, 2000, pp.63-81.

7. V.P. Maslov and V.N. Kolokoltsov, Idempotent Analysis and Its Applications
to Optimal Control Theory, Nauka, 1994. (in Russian)

8. N.N. Vorobjev, Extremal Algebra of Positive Matrices, Elektronische Informa-
tionsverarbeitung und Kybernetik, Vol.3, No.1, 1967, pp.39-71. (in Russian)

309


