
Bounds on the Mean Working Time

for Queueing Networks with Random Topology∗

N.K. Krivulin, D.S. Milov
St. Petersburg State University

We consider a fork-join queueing network [1] with n nodes and customers of a single
class. Each node of the network includes a server and a buffer which has infinite capacity.
The evolution of a network presents a sequence of service cycles: the 1st cycle starts at
the initial time, and it is completed as soon as the servers in all nodes of the network
complete their 1st service of customers, the 2nd cycle is completed as soon as the servers
complete their 2nd service, and so on.

The network topology is assumed to vary from one cycle to another at random. It is
also assumed that with positive probability a topology may occur in each cycle k, which
gives no way for the cycle to be completed. Suppose that for a network, the cycles from
1 to k were successfully completed, while cycle k + 1 cannot be completed because of
network topology. The completion time of the kth cycle is then said to be working time
of the network.

Our main problem of interest is to derive bounds on the mean working time of a network
under some given conditions on random service times at the network nodes as well as on
the random network topology. We start with a representation of network dynamics based
on the (max,+)-algebra approach [2, 7] which has proved to be quite useful in describing
queueing systems (see, e.g. [3, 4]).

Let τik be a random variable which describes the kth service time in node i. We intro-
duce the diagonal matrix Tk = diag(τ1k, . . . , τnk) with −∞ as the off-diagonal elements,
and the vector x = (x1(k), . . . , xn(k))T where xi(k) denotes the kth service completion
time in node i. We suppose that the random matrices T1, T2, . . ., are independent and
identically distributed.

It is shown in [5, 6] that the dynamics of a network can be described by the implicit
equation in x(k)

x(k) = Tk ⊗ Γ T
k ⊗ x(k)⊕ Tk ⊗ x(k − 1), (1)

where Γk denotes a random adjacency matrix of the graph describing the network topol-
ogy for the kth cycle, ⊕ and ⊗ denotes the (max,+)-algebra addition and multiplication,
respectively. The random matrices Γ1, Γ2, . . ., are assumed to be independent and identi-
cally distributed. We also suppose that these matrices are independent of T1, T2, . . ..

We consider that the kth cycle can be completed if and only if the above implicit
equation can be solved to produce the equation

x(k) = A(k)⊗ x(k − 1) (2)

with the matrix A(k) = A(Tk, Γk) = (E⊕Tk ⊗Γ T
k )⊗ηk ⊗Tk, where ηk denotes the length

of the longest path in the graph associated with the matrix Γk, and E = diag(0, . . . , 0)
with the off-diagonal elements equal to −∞.

∗This work was supported in part by the Program ”Russian Universities”, Grant #4233

1



Proc. 3rd St.Petersburg Workshop on Simulation, St.Petersburg, Russia, 1998, 331-337

Let G = {G} be the set of all deterministic adjacency matrices which allow for solving
equation (1) in the explicit form of (2). With the symbol Y denoting the random working
time of the network, we can represent the mean working time as

E[Y] = P{Γ /∈ G}
∞∑

k=1

∑
G1,...,Gk∈G

E‖A(Tk, Gk)⊗ · · · ⊗A(T1, G1)‖⊕
k∏

i=1

P{Γi = Gi},

where ‖ · ‖⊕ denotes the (max,+)-algebra norm (for any matrix X = (xij), its norm is
defined as ‖X‖⊕ = max

i,j
xij).

It is shown that the next double inequality is valid

y1 ≤ E[Y] ≤ y2,

where

y1 = P{Γ /∈ G}E [‖A(T , Γ )‖⊕|Γ ∈ G] +
P2{Γ ∈ G} (1 + P{Γ /∈ G}) ‖E [T ] ‖⊕

P{Γ /∈ G}
,

y2 =
E [‖A(T , Γ )‖⊕|Γ ∈ G]

P{Γ /∈ G}
.

We present results of calculating the bounds together with related results obtained
through computer simulation for some stochastic network models. The behaviour of the
bounds with respect to parameters of the models is also discussed.
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