
MAX-PLUS ALGEBRA MODELS OF QUEUEING NETWORKS

Nikolai K. Krivulin

Faculty of Mathematics and Mechanics, St.Petersburg State University, Bibliotechnaya Sq.2, Petrodvorets,
St.Petersburg, 198904 Russia, E-mail: krivulin@niimm.spb.su

Keywords
Max-plus algebra, Dynamic state equation, Fork-join
queueing networks, Finite buffers, Blocking of servers

Abstract

A class of queueing networks which may have an arbi-
trary topology, and consist of single-server fork-join
nodes with both infinite and finite buffers is exam-
ined to derive a representation of the network dy-
namics in terms of max-plus algebra. For the net-
works, we present a common dynamic state equation
which relates the departure epochs of customers from
the network nodes in an explicit vector form deter-
mined by a state transition matrix. It is shown how
the matrices inherent in particular networks may
be calculated from the service times of customers.
Since, in general, an explicit dynamic equation may
not exist for a network, related existence conditions
are established in terms of the network topology.

1 Introduction

We consider a class of queueing networks with single-
server nodes and customers of a single class. In the
networks, the server at each node is supplied with a
buffer which may have both infinite and finite capac-
ity. There is, in general, no restriction on the net-
work topology; in particular, both open and closed
queueing networks may be included in the class.

In addition to the ordinary service procedure,
specific fork-join operations [1, 2] may be performed
in each node of the networks. In fact, these oper-
ations allow customers (jobs, tasks) to be split into
parts, and to be merged into one, when circulating
through the network. The fork-join formalism proves
to be useful in the description of dynamical processes
in a variety of actual systems, including production
processes in manufacturing, transmission of messages
in communication networks, and parallel data pro-
cessing in multi-processor systems [1]. As an exam-
ple, one can consider the splitting of a message into
packets, and the merging of the packets to restore
the message, inherent in communication systems.

In this paper, the networks are examined so as to

represent their dynamics in terms of max-plus alge-
bra [3, 4, 5]. The max-plus algebra approach actually
offers a quite compact and unified way of describing
system dynamics, which may provide a useful frame-
work for analytical study and computer simulation of
discrete event systems including systems of queues.

It has been shown in [6, 7] that the evolution of
both open and closed tandem queueing systems may
be described by the linear algebraic equation

d(k) = T (k)⊗ d(k − 1), (1)

where d(k) is a vector of departure epochs from
the queues, T (k) is a matrix calculated from ser-
vice times of customers, and ⊗ is an operator which
determines the matrix-vector multiplication in the
max-plus algebra. In fact, this equation quite fre-
quently occurs in discrete event system analysis and
simulation which are based on the max-plus algebra
approach. One can find a variety of related examples
in [3, 8, 9, 5].

The purpose of this paper is to show that the
dynamics of the networks under examination also al-
lows of representation through dynamic state equa-
tion (1). We start with preliminary max-plus algebra
definitions and related results in Section 2. Further-
more, Section 3 gives a general description of the net-
work model, and shows how the dynamics of nodes
may be described through scalar equations in terms
of max-plus algebra. In Section 4, the scalar equa-
tions are extended to produce a vector representa-
tion of the dynamics of the entire network. Finally,
in Section 5, explicit dynamic state equations are
derived in the form of (1). Since an explicit state
dynamic equation does not have to exist for an arbi-
trary network, related existence conditions in terms
of network topology are also included in Section 5.

2 Preliminary definitions and results

We start with a brief overview of basic algebraic facts
and their graph interpretation which we will exploit
in the development of max-plus algebra models of
queueing networks. A detailed analysis of the max-
plus algebra and related algebraic systems, as well as
their applications can be found in [3, 8, 4, 9, 10, 5].

Proc. Intern. Workshop WODES’96, Univ. of Edinburgh, UK, Aug. 19-21, 1996, IEE: London, 1996, 76-81

Max-plus algebra is normally defined (see, e.g.,
[5]) as the system 〈R,⊕,⊗〉, where R = R ∪ {ε}
is the set of real numbers with ε = −∞ adjoined,
and the symbols ⊕ and ⊗ present binary operations
determined for any x, y ∈ R respectively as

x⊕ y = max(x, y), x⊗ y = x + y.

As one can verify [3, 4], most of the properties
of the ordinary addition and multiplication, includ-
ing their associativity and commutativity, as well as
distributivity of multiplication over addition, are ex-
tended to the operations ⊕ and ⊗. These properties
allow usual algebraic manipulations in the max-plus
algebra to be performed under the standard conven-
tions regarding brackets and precedence of multipli-
cation over addition. Note that, in contrast to the
conventional algebra, the operation ⊕ is idempo-
tent; that is, for any x ∈ R, we have x⊕ x = x.

There are the null and identity elements in the
max-plus algebra, namely ε and e = 0, to satisfy the
conditions x⊕ ε = ε⊕x = x, and x⊗ e = e⊗x = x,
for any x ∈ R. The absorption rule which involves
x⊗ ε = ε⊗ x = ε is also true in this algebra.

The max-plus algebra of matrices is introduced in
the regular way [3, 8, 4]. Specifically, for any (n×n)-
matrices X = (xij) and Y = (yij), the entries of
U = X ⊕ Y and V = X ⊗ Y are calculated as

uij = xij ⊕ yij , and vij =
n∑
⊕

k=1

xik ⊗ ykj ,

where the symbol
∑
⊕ denotes the iterated opera-

tion ⊕. As the null element, the matrix E with all
its entries equal to ε is taken in this algebra, while
the matrix E = diag(e, . . . , e) with the off-diagonal
entries equal to ε presents the identity element.

In perfect analogy to the conventional matrix al-
gebra, one can define for any square matrix X,

X0 = E, Xq = X ⊗ · · · ⊗X︸ ︷︷ ︸
q times

for q = 1, 2, . . .

Note, however, that idempotency in the max-plus
algebra leads, in particular, to the identity [3]

(E ⊕X)q = E ⊕X ⊕ · · · ⊕Xq.

Many phenomena inherent in the matrix max-
plus algebra appear to be well explained in terms of
their graph interpretations [3, 8, 10, 5]. To illustrate,
we can consider an (n×n)-matrix X with its entries
xij ∈ R, and note that it can be treated as the ad-
jacency matrix of an oriented graph with n nodes,
provided each entry xij 6= ε implies the existence of
the arc (i, j) in the graph, whereas xij = ε does
the lack of the arc. The graph is then said to be
associated with the matrix X.

Let us calculate the matrix X2 = X ⊗ X, and
denote its entries by x

(2)
ij . Clearly, we have x

(2)
ij 6= ε

if and only if there exists at least one path from node
i to node j in the graph, which consists of two arcs.
Moreover, for any positive integer q, the matrix Xq

has the entry x
(q)
ij 6= ε only when there exists a path

with the length q from i to j.

Suppose that the graph associated with the ma-
trix X is acyclic. It is clear that we will have
Xq = E for all q > p, where p is the length of the
longest path in the graph. Assume now the graph
not to be acyclic, and then consider any one of its
circuits. Since it is possible to construct a cyclic
path of any length, which lies along the circuit, we
conclude that Xq 6= E for all q = 1, 2, . . .

Finally, we consider the implicit equation in the
unknown vector x = (x1, . . . , xn)T ,

x = U ⊗ x⊕ v, (2)

where U = (uij) and v = (v1, . . . , vn)T are respec-
tively given (n×n)-matrix and n-vector. This equa-
tion actually plays a large role in max-plus algebra
representations of dynamical systems including sys-
tems of queues [8, 5, 7]. The next lemma offers par-
ticular conditions for (2) to be solvable, and shows
how the solution may be calculated. One can find a
detailed analysis of (2) in the general case in [4].

Lemma 1 Suppose that the entries of the matrix U
and the vector v are either positive or equal to ε.
Then equation (2) has the unique bounded solution x
if and only if the graph associated with U is acyclic.
Provided that the solution exists, it is given by

x = (E ⊕ U)p ⊗ v,

where p is the length of the longest path in the graph.

To prove the lemma, first note that recurrent sub-
stitution of x from equation (2) into its right-hand
side, made q times, and trivial manipulations give

x = Uq+1 ⊗ x⊕ (E ⊕ U ⊕ · · · ⊕ Uq)⊗ v.

The rest of the proof may be readily furnished
based on the above graph interpretation as well as
on the idempotency of the operation ⊕.

3 The network model

In this section, we present a network model which
may be considered as an extension of acyclic fork-
join queueing networks investigated in [1, 2]. In fact,
we do not restrict ourselves on acyclic networks, but
assume the networks to have an arbitrary topology.
Moreover, we examine not only the networks with
the infinite capacity of buffers in their nodes, but
also those with finite buffers and blocking of servers.

Proc. Intern. Workshop WODES’96, Univ. of Edinburgh, UK, Aug. 19-21, 1996, IEE: London, 1996, 76-81

3.1 A general description of the model

We consider a queueing network consisting of n
single-server nodes, with customers of a single class,
which circulate through the network. An example of
the network under study is shown in Fig. 1.

1

r1 = ∞
s1 = ∞

h -
2

r2, s2

h�
�
��

@
@
@R

3

r3, s3

h -
@

@
@

@
@@R

4

r4, s4

h
@

@R

5

r5, s5

h -
6

r6, s6

h -

Figure 1: A queueing network with n = 6 nodes.

The topology of the network is described by an
oriented graph G = (N,A) which, in general, does
not have to be acyclic. In the graph G, the set
N = {1, . . . , n} represents the nodes of the network,
and the set A = {(i, j)} ⊂ N × N consists of arcs
determining the transition routes of customers. For
any i, j ∈ N, the arc (i, j) belongs to A if and only
if the ith node passes customers directly to node j.

For every node i ∈ N, we introduce the set of its
predecessors P(i) = {j| (j, i) ∈ A} and the set of its
successors S(i) = {j| (i, j) ∈ A}. We suppose that,
in specific cases, there may be one of the conditions
P(i) = ∅ and S(i) = ∅ encountered. Each node i
with P(i) = ∅ is assumed to represent an infinite
external arrival stream of customers. Provided that
S(i) = ∅, the node is considered as an output node
intended to release customers from the network.

Each node i ∈ N includes a server and its buffer
which together present a single-server queue operat-
ing under the first-come, first-served (FCFS) queue-
ing discipline. The buffer at the server in node i
may have either finite or infinite capacity si; that is,
0 ≤ si ≤ ∞. At the initial time, the server at each
node i is assumed to be free of customers, whereas
in its buffer, there may be ri, 0 ≤ ri ≤ si, cus-
tomers waiting for service. It is thought that the
values si = ri = ∞ are set for every node i with
P(i) = ∅, representing an external arrival stream
of customers. We consider the numbers ri and si,
i = 1, . . . , n, as initial conditions in the model.

To describe the dynamics of the queue in node i,
we use the following symbols:

ai(k), the kth arrival epoch to the queue;

bi(k), the kth service initiation time;

ci(k), the kth service completion time;

di(k), the kth departure epoch from the queue.

Furthermore, the service time of the kth customer at
server i is denoted by τik, τik > 0. We assume that
τik are given parameters for all i = 1, . . . , n, and
k = 1, 2, . . ., while ai(k), bi(k), ci(k), and di(k) are
considered as unknown state variables. In addition,
with the condition that the network starts operating
at time zero, it is convenient to set di(0) ≡ e, and
di(k) ≡ ε for all k < 0, i = 1, . . . , n.

As one can see, relations between the state vari-
ables, which are actually determined by the network
topology, initial conditions, and special features in-
herent in node operation, just represent the dynam-
ics of the network. We will describe the network
dynamics in more detail and give related algebraic
representations in the subsequent sections.

3.2 The dynamics of nodes

We suppose that, in addition to the usual service
procedure, special join and fork operations are per-
formed in the nodes, respectively before and after
service [1]. With the condition that all buffers at
servers in a network have infinite capacity, the fork-
join mechanism may be described as follows.

The join operation is actually thought to cause
each customer which comes into node i, not to enter
the buffer at the server but to wait until at least one
customer from every node j ∈ P(i) arrives. As soon
as these customers arrive, they, taken one from each
preceding node, are united to be treated as being one
customer which then enters the buffer to become a
new member of the queue. Note that only the cus-
tomers who are waiting for service may be placed
into the buffer at the node. Those customers which
are ready to be joined, but, in the absence of all
required customers, have not been joined yet, are as-
sumed to reside in another place, say in an auxiliary
buffer available at the node. It is suggested that the
auxiliary buffers invariably have infinite capacity.

The fork operation at node i is initiated every
time a customer releases the server after completion
of his service; it consists in giving rise to several new
customers to substitute for the former one. As many
new customers appear in node i as there are succeed-
ing nodes in the set S(i). The customers simultane-
ously depart the node, each going to separate node
j ∈ S(i). Finally, we assume that the execution of
the fork-join operations when appropriate customers
are available, as well as the transition of customers
within and between nodes require no time.

It is easy to see that, assuming the sets P(i)
and S(i) to include no more than one node for each
i ∈ N, one can arrive at a queueing system in which
essentially no fork-join operations are performed. As
examples, both open and closed tandem systems may
be considered [6, 7], which actually present queueing
networks with the simplest topology.

Proc. Intern. Workshop WODES’96, Univ. of Edinburgh, UK, Aug. 19-21, 1996, IEE: London, 1996, 76-81

In order to set up the equations which represent
the dynamics of nodes, let us first consider a net-
work with infinite buffers. It follows from the above
description of the fork-join mechanism that the time
of the kth arrival into the queue at node i, which
actually coincides with that of the completion of the
kth join operation, may be represented as [1, 2]

ai(k) =

∑

⊕

j∈P(i)

dj(k − ri), if P(i) 6= ∅,

ε, if P(i) = ∅,
(3)

whereas the equations which determine the other
state variables are readily written in the form

bi(k) = ai(k)⊕ di(k − 1), (4)
ci(k) = τik ⊗ bi(k), (5)
di(k) = ci(k). (6)

Suppose now that the buffers at servers in the
network may have limited capacity. In such systems,
servers may be blocked according to some blocking
mechanism [2, 11]. The rest of the section shows
how to represent the dynamics of nodes operating un-
der the manufacturing and communication blocking
rules, both being commonly encountered in practice.

Let us first assume the network operation to fol-
low the manufacturing blocking rule. Application of
this type of blocking implies that, upon completion
of his service at node i, a customer cannot release
the server at the node if there is at least one succeed-
ing node j ∈ S(i) in which the buffer is full. As soon
as all nodes included in S(i) regain an empty buffer
space, the customer leaves the server to produce new
customers which have to depart node i immediately.

The inclusion of manufacturing blocking leads us
to the new equation representing departure times,
which is to substitute for (6),

di(k) = ci(k)⊕Di(k), (7)

where

Di(k) =

∑

⊕

j∈S(i)

dj(k − sj − 1), if S(i) 6= ∅,

ε, if S(i) = ∅.

Clearly, equations (3–5) remain unchanged.

Finally, we suppose that the network operates un-
der communication blocking. This blocking rule re-
quires the server in node i not to initiate service of a
customer until there is an empty space in the buffer
in each node j ∈ S(i). To represent the dynam-
ics of node i, one may take equations (3), (5), and
(6) respectively for ai(k), ci(k), and di(k). With
the symbol Di(k) introduced above, an appropriate
equation for bi(k) is now written as

bi(k) = ai(k)⊕ di(k − 1)⊕Di(k). (8)

4 A vector representation

We now turn to the algebraic representation of the
dynamics of the entire network. To describe the dy-
namics in a compact form, we introduce the vectors

a(k) = (a1(k), . . . , an(k))T ,

b(k) = (b1(k), . . . , bn(k))T ,

c(k) = (c1(k), . . . , cn(k))T ,

d(k) = (d1(k), . . . , dn(k))T ,

and the diagonal matrix

Tk =

 τ1k ε
. . .

ε τnk

 .

4.1 Networks with infinite buffers

We start with the derivation of a vector representa-
tion relevant to equations (3–6) set up for networks
with infinite buffers. First note that vector equations
associated with (4–6) may be written immediately.

To get equation (3) in a vector form, we define
Mr = max{ri| ri < ∞, i = 1, . . . , n}. It is easy to
see that we may now represent (3) as

ai(k) =
Mr∑

⊕

m=0

n∑
⊕

j=1

gm
ji ⊗ dj(k −m),

where the numbers gm
ij are determined using the

topology of the network by the condition

gm
ij =

{
e, if i ∈ P(j) and m = rj ,
ε, otherwise.

Furthermore, we introduce the matrices Gm =
(
gm

ij

)
for each m = 0, 1, . . . ,Mr, and then bring the above
equation into its associated vector form

a(k) =
Mr∑

⊕

m=0

GT
m ⊗ d(k −m),

where GT
m denotes the transpose of the matrix Gm.

Note that each matrix Gm presents an adjacency
matrix of the partial graph Gm = (N,Am) with
Am = {(i, j)| i ∈ P(j), rj = m}.

We are now in a position to describe the network
dynamics in vector terms. By replacing equations
(3–6) with their vector representations, we obtain

a(k) =
Mr∑

⊕

m=0

GT
m ⊗ d(k −m),

b(k) = a(k)⊕ d(k − 1),
c(k) = Tk ⊗ b(k),
d(k) = c(k).

Proc. Intern. Workshop WODES’96, Univ. of Edinburgh, UK, Aug. 19-21, 1996, IEE: London, 1996, 76-81

Clearly, these equations can be reduced to an equa-
tion in one vector variable, say d(k). In that case,
appropriate substitutions will lead us to the equation

d(k) = Tk ⊗GT
0 ⊗ d(k)⊕ Tk ⊗ d(k − 1)

⊕ Tk ⊗
Mr∑

⊕

m=1

GT
m ⊗ d(k −m). (9)

4.2 Networks with finite buffers

Consider a network with finite buffers, and assume
that it operates under the manufacturing blocking
rule. With Ms = max{si + 1| si < ∞, i = 1, . . . , n},
equation (7) may be put in the form

di(k) = ci(k)⊕
Ms∑

⊕

m=1

n∑
⊕

j=1

hm
ij ⊗ dj(k −m),

where

hm
ij =

{
e, if j ∈ S(i) and m = sj + 1,
ε, otherwise. (10)

In a similar way as in Section 4.1, one can introduce
the matrices Hm =

(
hm

ij

)
, m = 1, . . . ,Ms, and then

rewrite (7) so as to get a representation for d(k).

Taking into account that the equations set up
previously to represent the vectors a(k), b(k), and
c(k) remain valid, we arrive at the set of equations

a(k) =
Mr∑

⊕

m=0

GT
m ⊗ d(k −m),

b(k) = a(k)⊕ d(k − 1),
c(k) = Tk ⊗ b(k),

d(k) = c(k)⊕
Ms∑

⊕

m=1

Hm ⊗ d(k −m).

Without loss of generality, we consider that
Mr = Ms = M . If it actually holds that Mr < Ms

(the inequality Mr > Ms is contradictory to the
initial conditions), one may set M = Ms, and then
define Gm = E for all m = Mr + 1,Mr + 2, . . . ,Ms.
With this assumption, we may drop the subscripts
so as to write M instead of both Mr and Ms.

Proceeding to an equation in d(k), we get

d(k) = Tk ⊗GT
0 ⊗ d(k)⊕ Tk ⊗ d(k − 1)

⊕
M∑

⊕

m=1

(Tk ⊗GT
m ⊕Hm)⊗ d(k −m). (11)

Let us now assume the network to follow the
communication blocking rule. In the same way as
for manufacturing blocking, one may define matrices
H1, . . . ,HM through (10), and represent equation

(8) in its vector form. The set of vector equations
describing the network dynamics then becomes

a(k) =
M∑

⊕

m=0

GT
m ⊗ d(k −m),

b(k) = a(k)⊕ d(k − 1)⊕
M∑

⊕

m=1

Hm ⊗ d(k −m),

c(k) = Tk ⊗ b(k),
d(k) = c(k).

Finally, by combining these equations, we have

d(k) = Tk ⊗GT
0 ⊗ d(k)⊕ Tk ⊗ d(k − 1)

⊕ Tk ⊗
M∑

⊕

m=1

(GT
m ⊕Hm)⊗ d(k −m). (12)

5 The explicit state equation

Let us consider equations (9), (11), and (12) derived
above, and note that they actually present implicit
equations in the system state variable d(k). In this
section, we show how these equations may be put in
their associated explicit forms which are normally
more suitable for analytical treatments and com-
puter simulation of the network dynamics. Since, in
general, the implicit equations do not have to be ex-
plicitly solvable, the conditions for an explicit state
equation to exist are also established.

In order to examine the implicit equations, we
first note that they all take the form of (2) with
U = Tk ⊗GT

0 . Since the matrix Tk is diagonal, each
graph associated with the matrix GT

0 will be likewise
associated with U . In addition, the graph associated
with the matrix G0 and that with its transpose are
both acyclic or not at once. Finally, both graphs
have a common length p of their longest paths.

Now it is not difficult to apply Lemma 1 so as to
prove the following statement.

Theorem 1 Suppose that in the network model with
infinite buffers, the graph G0 associated with the ma-
trix G0 is acyclic. Then equation (9) can be solved
to produce the explicit state dynamic equation

d(k) =
M∑

⊕

m=1

Tm(k)⊗ d(k −m), (13)

with the state transition matrices

T1(k) = (E ⊕ Tk ⊗GT
0)p ⊗ Tk ⊗ (E ⊕GT

1),
Tm(k) = (E ⊕ Tk ⊗GT

0)p ⊗ Tk ⊗GT
m,

m = 2, . . . ,M,

where p is the length of the longest path in G0.

Proc. Intern. Workshop WODES’96, Univ. of Edinburgh, UK, Aug. 19-21, 1996, IEE: London, 1996, 76-81

As one can see, the matrix coefficient at d(k) on
the right-hand side of both equation (11) and (12),
which is just responsible for explicit representation
(13) to exist, remains the same as in equation (9)
set up for the network with infinite buffers. We may
therefore conclude that entering finite buffers into
the network model has no effect on the existence of
its associated explicit dynamic state equation.

Now one can reformulate Theorem 1 to extend it
to the networks with finite buffers. In short, under
the same conditions as in the theorem, equations (11)
and (12) may be put in the form of (13), with the
state transition matrices defined respectively as

T1(k) = (E ⊕ Tk ⊗GT
0)p ⊗ (Tk ⊕ Tk ⊗GT

1 ⊕H1),
Tm(k) = (E ⊕ Tk ⊗GT

0)p ⊗ (Tk ⊗GT
m ⊕Hm),

m = 2, . . . ,M,

and

T1(k) = (E ⊕ Tk ⊗GT
0)p ⊗ Tk ⊗ (E ⊕GT

1 ⊕H1),
Tm(k) = (E ⊕ Tk ⊗GT

0)p ⊗ Tk ⊗ (GT
m ⊕Hm),

m = 2, . . . ,M.

Finally, with the extended state vector

d̂(k) =

d(k)
d(k − 1)
...
d(k −M + 1)

 ,

we may bring (13) into the form of (1):

d̂(k) = T̂ (k)⊗ d̂(k − 1),

where the new state transition matrix is defined as

T̂ (k) =

T1(k) T2(k) · · · · · · TM (k)
E E · · · · · · E

.
...

.
...

E E E

 .

In conclusion, let us assume that for a network,
the partial graph G0 has a circuit. We may consider
the network depicted in Fig. 1 as an appropriate il-
lustration if we put r2 = r3 = r4 = 0. In that case,
there is the circuit in the graph G0, including nodes
2, 3, and 4. Then, as it follows from Lemma 1, the
implicit dynamic equation associated with the net-
work cannot be solved in an explicit form.

One can see, however, that it is easy to make the
equation solvable only by setting new initial condi-
tions, without changing the network topology. Since
G0 = (N,A0), where A0 = {(i, j)| i ∈ P(j), rj = 0},
we may eliminate arcs from the graph G0 by substi-
tuting nonzero values for some parameters ri set ini-
tially to 0. One can compare the network in Fig. 1,
under the conditions r2 = r3 = r4 = 0, with that
subject to r2 = r4 = 0, and r3 = 1, as an example.

References

[1] François Baccelli and Armand M. Makowski,
“Queueing models for systems with synchro-
nization constraints”, Proceedings of the IEEE,
vol. 77, no. 1, pp. 138–160, 1989.

[2] Albert G. Greenberg, Boris D. Lubachevsky,
and Isi Mitrani, “Algorithms for unboundedly
parallel simulations”, ACM Transactions on
Computer Systems, vol. 9, no. 3, pp. 201–221,
1991.

[3] Raymond Cuninghame-Green, Minimax Alge-
bra, vol. 166 of Lecture Notes in Economics and
Mathematical Systems, Springer-Verlag, Berlin,
1979.

[4] Guy Cohen, Pierre Moller, Jean-Pierre
Quadrat, and Michel Viot, “Algebraic tools for
the performance evaluation of discrete event sys-
tems”, Proceedings of the IEEE, vol. 77, no. 1,
pp. 39–58, 1989.

[5] Christos G. Cassandras, Stéphane Lafortune,
and Geert Jan Olsder, “Introduction to the
modelling, control and optimization of discrete
event systems”, Tech. Rep. 95–92, Faculty of
Technical Mathematics and Informatics, Delft
University of Technology, 1995.

[6] Nikolai K. Krivulin, “Using max-algebra lin-
ear models in the representation of queueing
systems”, in (Proceedings of the 5th SIAM
Conference on Applied Linear Algebra,June 15–
18, 1994, Snowbird, UT), John G. Lewis, Ed.,
Philadelphia, PA, 1994, SIAM, pp. 155–160.

[7] Nikolai K. Krivulin, “A max-algebra approach
to modeling and simulation of tandem queueing
systems”, Mathematical and Computer Mod-
elling, vol. 22, no. 3, pp. 25–37, 1995.

[8] Guy Cohen, Didier Dubois, Jean-Pierre
Quadrat, and Michel Viot, “A linear-system-
theoretic view of discrete-event processes and its
use for performance evaluation in manufactur-
ing”, IEEE Transactions on Automatic Control,
vol. AC-30, no. 3, pp. 210–220, 1985.

[9] François Baccelli and Miguel Canales, “Parallel
simulation of stochastic petri nets using recur-
rence equations”, ACM Transactions on Model-
ing and Computer Simulation, vol. 3, no. 1, pp.
20–41, 1993.

[10] Victor P. Maslov and Vasiliy N. Kolokoltsov,
Idempotent Analysis and Its Applications to Op-
timal Control Theory, Nauka, Moscow, 1994, (in
Russian).

[11] Dinah W. Cheng, “On the design of a tandem
queue with blocking: Modeling, analysis, and
gradient estimation”, Naval Research Logistics,
vol. 41, pp. 759–770, 1994.

