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Abstract-The eigenvalue problem for the mattix of a generalized linear operator is considered. In the 
case of irreducible mattices, the problem is reduced to the analysis of an idempotent analogue of the 
charactetistic polynomial of the mattix. The eigenvectors are obtained as solutions to a homogeneous 
equation. The results are then extended to cover the case of an arbitrary mattix. It is shown how to build 
a basis of the eigensubspace of a mattix. In conclusion, an inequality for matlix powers and eigenvalues 
is presented, and some extremal properties of eigenvalues are considered. 

1. INTRODUCTION 

In many applied problems of analysis of engineering, economical, and industrial systems based on 
models and methods of idempotent algebras [ 1-5], eigenvalues and eigenvectors of the matrix of a gen­
eralized linear operator should be determined. As usually, by an eigenvalue of a square matrix A, we mean 
any number A for which a nonzero (in the sense of the idempotent algebra) vector x exists such that the 
equality 

A®x=A®x 

holds, where the 0 symbol denotes the multiplication operation in the algebra. 

As the underlying object of an idempotent algebra, one uses to take a commutative semiring endowed 
with a certain idempotent addition, zero, and unity. At the same time, in applied problems we often deal with 
an idempotent semiring such that its every nonzero element has an inverse one with respect to the multipli­
cation. Taking into account the group properties of the multiplication, such a semiring is sometimes referred 
to as an idempotent semifield [ 4]. 

It should be noted that, as a rule, the methods available in the literature for solving the eigenvalue prob­
lem in an idempotent algebra are applicable only to idempotent semifields rather than to the general case of 
an idempotent semiring. Moreover, as a rule, these methods are different from the classical approach based, 
to a certain degree, on analysis of the characteristic polynomial of the matrix. 

The eigenvalue problem for semifields was solved for the first time in papers [1, 6, 7], where the eigen­
values and eigenvectors were found immediately from the equation A 0 x =A® x by using methods of graph 
theory. Similar solutions that additionally use the properties of the power series I EE> A EE> A 2 EE> ••• have been 
obtained in [2-4]. In a rather general form, the eigenvalue problem has been solved in papers [5, 8]. In par­
ticular, it is shown there how a solution obtained for semifields can be extended to the case of an arbitrary 
idempotent semiring [8]. 

In this paper, we propose a new approach to solving the eigenvalue problem in the case of an idempo­
tent semifield. This approach is based on employment of certain idempotent analogues of determinants 
[9] and characteristic polynomials of matrices. Just as in ordinary algebra, in the case of irreducible matri­
ces, this allows one to reduce the existence problem for an eigenvalue to the problem of determination of 
roots of the characteristic polynomial. In idempotent algebras, this problem can be solved easily enough. 
This approach allows one to derive readily the well-known expression for the eigenvalue of an irreducible 
matrix by solving the characteristic equation without a cumbersome proof. It happens that in this case the 
eigenvectors of the matrix can be found by solving a certain homogeneous equation by methods proposed 
in [9]. 

In the paper, we, first, briefly introduce basic concepts of idempotent algebras, present some auxiliary 
results, including the general solution to a homogeneous linear equation. Then, we consider the problems 
of existence and uniqueness of an eigenvalue of an irreducible matrix and determine a general expression 
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for determining this value, as well as the general form of an eigenvector. Then, these results are generalized 
to the case of an arbitrary (decomposable) matrix and the problem of determination of a basis of the eigen­
subspace is discussed. In conclusion, we derive a useful inequality for powers of the matrix and its eigen­
value and consider some extremal properties of eigenvalues and eigenvectors of the matrix. 

2. IDEMPOTENT ALGEBRA 

Let X be a numeric set endowed with two operations, namely, those of addition Et> and multiplication®. 
We assume that (X, Et>, @)is an idempotent semifield, i.e., a commutative semiring with zero and unity such 
that the addition is idempotent and, for any nonzero element, there exists its inverse with respect to the mul­
tiplication. 

Denote the zero and unit elements of the semiring (X, Et>, ®) by symbols 0 and 1, respectively. Let X+ = 
X\ { 0}. Then, for any x E X+, there exists an inverse element x-1• Moreover, we assume that o-1 = 0. 

For any x E X and y E X+, we introduce the power xY in the standard way. As usually, we set x0 = 1, 
ov = 0. In what follows, all powers are considered only in the sense of the idempotent algebra. However, for 
simplicity, we use conventional arithmetic operations when writing expressions in exponents. 

Since the addition is idempotent, a relation :::; of linear order is defined on X by the following rule: x:::; y 
if and only if x Et> y = y. Below, the relation signs are treated only in the sense of this linear order. Note that, 
in accordance with this order, x ~ 0 for any x E X. 

Examples of semirings of this type are (!R u { -oo}, max, + ), (IR u { +oo}, min, + ), (IR+, max, x), and 
(IR+ u { +oo}, min, x), where IR is the set of all real numbers and IR+ is the set of nonnegative real numbers. 

In particular, in the semiring (IR u { -oo}, max, + ), the zero is -oo and the unit is the number 0. For any 
x E IR, the inverse element x-1 is defined which is equal to-xin the usual arithmetic. For any x, y E IR, the 
power xY is defined whose value corresponds to the arithmetic product xy. The relation of order is defined in 
the ordinary sense. 

In the semiring (!R+ u { +oo}, min, x), the zero is +oo and the unit is the number 1. The inverse element 
and the power are defined in the usual sense. The relation :::; specifies the order that is reverse for the con­
ventional linear order on IR+. 

3. DEFINITIONS AND AUXILIARY RESULTS 

3.1. Matrix Algebra 

For any matrices A, B E X"' x" and C E X" x 
1 and for any number x E X, the operations of matrix addition 

and multiplication, as well as the product of a matrix by a number are defined in the usual way, i.e., for any 
i,j, we have 

11 

k =I 

Matrix operations Et> and @ possess the monotonicity property; i.e., for any matrices A, B, C, and D of 
appropriate size, the inequalities A:::; C and B:::; Dimply the inequalities A EBB:::; C EB D and A® B:::; C@ D. 

As usually, a square matrix is called diagonal if all nondiagonal entries are equal to zero and is triangular 
if all entries above (below) the diagonal are equal to zero. A matrix whose all entries are equal to zero are 
referred to as a zero matrix and is denoted by the symbol 0. The matrix 1 = diag(l, ... , 1) is the identity 
matrix. 

I JO • • If A B ~11 
X 

111 h h A matrix A- is pseudoinverse [1] for matrix A if {A-}u = {A})i 10r any l,J. , E A.+ , t en t e 

inequality A :::; B obviously implies A- ~ [j, 
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A square matrix is called decomposable if it can be transformed into a block-triangular matlix by inter­
changing its rows and colunms in the same way. Otherwise, the matlix is irreducible. 

3.2. Linear Vector Space 

For any two vectors a, bE X", where a= (ab ... , a11 l and b = (b1, ... , b11 )T, and any number x E X, the 
following operations are defined: 

a EBb = (a 1 EB b 1, ... , 0 11 EB b11{, 

The zero vector is the vector 0 = (0, ... , Ol. 
The set of vectors X" endowed with the operations EB and ® is referred to as a generalized linear vector 

space (or simply, a linear vector space). 

We say that a vector b is linearly dependent of vectors a 1, ••• , a 111 if b is a linear combination of these 
vectors; i.e., b = x 1 ® a 1 EB ... EB X 111 ®am, where x1- ... , xm E X. 

The zero vector linearly depends on any system of vectors. 

Two systems of vectors a1- ... , am and b1- ... , bk are equivalent if each vector of one system linearly 
depends on vectors of the other system. 

A system of vectors a 1, ... , am is called linearly dependent if at least one its vector linearly depends on 
the other vectors; otherwise, it is linearly independent. 

Consider a system of nonzero vectors a~> ... , a111 and denote the matrix with columns a 1, ... , a 111 by A. For 

any vector a"' k = 1, ... , m, we define the set of indices of its zero entries Ik. Let a~ be the vector obtained 

from ak by deleting all such coordinates and A;k) be the matrix obtained from A by deleting the colunm ak, 
all rows with indices i E h, and each colunm with indexj such that au-:;= 0 for at least one i E h· 

The following propositions hold [9] (also see [2]). 

Lemma 1. A system of vectors a~> ... , a171 E X"\{0} is linearly independent if and only if (A;;> ®(a;- ® 

A;;> n- ®a; -:;= 1 for any i = 1, ... , m. 

Corollary 1. To construct a linearly independent subsystem equivalent to a system a 1, ••• , a,m it is suffi­

cient to remove successively each vector a;, i = 1, ... , m, from this system such that (A;;l ®(a;- ®A;;> n- ® 

a; = 1, where matrix A;;> is composed of the colunms of A;i) that are not deleted at this time. 

3.3. Polynomials 

By a polynomial in one variable x, we mean an expression 

11 

P(x) = a0 EB ffi am® xm, 

m= 1 

where numbers a0 , ... , a11 E X are coefficients of the polynomial. 

Lemma 2. If a0 < 1 and am-:;= 0 for at least one m > 0, then the equation P(x) = 1 has a unique solution 

( 

11 J-1 = ffi lim 
X \J:lam 

m=l 

Proof. It is clear that function P(x) is continuous and takes values both greater than unity and less than 
unity. Hence, a solution to the equation P(x) = 1 exists. Taking into account that P(x) is a monotone function, 
we can easily verify that the solution is unique. 

Let x be the solution to the equation P(x) = 1. Then, for any m = 1, ... , n, the inequality am ® :i" ::; 1 holds. 

This inequality is equivalent to the inequality x-1 2 a,~:~~~ . Summing these inequalities and taking into account 
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that, for at least one m, we have the equality x-1 = a,
1
/

111
, we obtain x-1 = a 1 ED ... ED a/,

1
". This implies the 

required solution. 

3.4. Square Matrices 

Let A = (aij) E X" x 
11 be an arbitrary square matrix. An integer nonnegative power of matrix A is defined 

in the usual way, i.e., A0 = E, Ak+ 1 =Ak@ A1 for any k, I= 0, 1, 2, .... 
A number "A is an eigenvalue of matrix A if there exists a vector x * 0 such that 

A ®x ="A® x. (1) 

Any vector x * 0 satisfying this equation is referred to as an eigenvector of A corresponding to the eigen­
value "A. 

The set of all eigenvectors of matrix A, which correspond to the same eigenvalue "A, together with the 
zero vector is a linear subspace. This subspace is referred to as the eigensubspace associated with the eigen­
value "A. 

For any matrix A, we define the following functions of its entries: 

n n 

trA = ffia;;. TrA = EB trA
111

• 

i= I m =I 

It is clear that, for any matrices A and B and any number x, we have 

tr(A EBB) = trA EB trB, tr(x@ A) = x ® trA. 

In studying linear equations in idempotent algebra, the function TrA plays the role of the determinant of 
the matrix in the sense that its value may be used in order to answer the question whether a homogeneous 
linear equation has only a trivial solution or it has other solutions as well [9]. 

4. HOMOGENEOUS LINEAR EQUATION 

Let a matrix A E X" x 
11 be given. The equation 

A®x=x 

is referred to as a homogeneous equation with respect to the unknown vector x E X". 
The solution x = 0 to this equation is called trivial. 
It is clear that all solutions to a homogeneous equation form a linear space. 

(2) 

To describe the solutions to Eq. (2), we introduce the following notation [3, 4, 9]. First, for any matrix 
A, we define the matrix 

For any i = 1, ... , n, we denote the ith column of matrix A+ by a: and the diagonal element in the ithrow 

of matrix A"' by a7; . 
Let TrA = 1. By A* we denote the matrix with the columns 

a;:' = {a:, if a7; = 1 for some m = 
0, otherwise, 

for any i = 1, ... , n. We assume that A*= 0 ifTrA * 1. 

4.1. Irreducible Matrices 

1, ... , n, 

One can readily show (see, e.g., [9]) that any vector x that is a nontrivial solution to the homogeneous 
equation (2) with an irreducible matrix A has no zero entries. 

Moreover, the following result is valid [9]. 
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Lemma 3. Let x be the general solution to the homogeneous equation (2) with an ineducible matrix A. 
Then, the following assertions hold: 

(1) ifTrA = 1, then x =N' ® v for any v E X": 

(2) ifTrA ;;t. 1, then there is no solution other than the trivial one. 

Note that, defining A':' = 0 in the case TrA ;;t. 1. we can always write the general solution in the form x = 
A':' ® v regardless of the value of TrA. 

4.2. Decomposable Matrices 

Suppose that matrix A is decomposable. Making a permutation of rows together with the same permuta­
tion of columns, we can reduce this matrix to the block-triangular normal form 

A 11 0 0 

A= 
0 (3) 

where A;; is either a decomposable matrix or the zero matrix of size n; x n; and Aij is an arbitrary matrix of 
size 11; x nj for any j < i, i = 1, ... , s, under the condition that n1 + ... + n5 = n. 

Suppose that matrix A is reduced to the normal form (3). The totality ofrows (columns) of the matrix A 
conesponding to each diagonal block A;; will be refened to as a horizontal (vertical) line. Note that TrA = 
TrA 11 E9 ... EB TrAss· 

By /0 we denote the set of indices i such that the equality TrA;; = 1 holds, and by / 1 we denote the set of 
indices such that TrA;; > 1. 

First, suppose that / 1 = ~. It is clear that any matrix A can be represented in the form A = T E9 D, where 
Tis a block strictly triangular matrix and D be a block-diagonal matrix, i.e., 

T= 
[ 

0 ··· OJ lA A . . II 
21 ·. : D _ 

' -. . . 
: ·. : 0 

As I •• • As.s-1 0 
:J 

We define the following auxiliary matrices: 

D+ = diag(A;1, ••• , A;5 ), C = D+ ® T, D* = diag(Ai~, ... , A;~). 

It is easy to verify that c+ =I EB C EB ... EB CS- 1. Moreover, matrix c+ is of the lower block-triangular 

form such that the size of its blocks C~ coincides with the size of the conesponding blocks Aij of matrix A. 

If / 1 = ~ , then we consider the matrix A obtained by replacing all blocks of columns i E / 1 of matrix A 

with zero columns. We denote the blocks of matrix A by Aij. 

Represent matrix A in the form A = T EB l5, where T is a block strictly triangular matrix and l5 is a 
block-diagonal matrix. We denote 

l5+ = diag(A;~, ... , A;s), c = l5+ ® T, D* = diag(Di~, ... , l5;~), 

where the diagonal blocks of the matrix D* are defined for any j = 1, ... , s as follows: 

fj*. = {0, if j E Ia and C~ ;;t. 0 for at least one i E / 1, 
JJ - ••• 

A Jj, otherwise. 

All solutions to the homogeneous equation can be found in the following way [9]. 
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Lemma 4. Let x be the general solution to the homogeneous equation (2) with a matrix A presented in 
fonn (3). Then, the following assertions are valid: 

( 1) if TrA < 1, then the equation has only the trivial solution x = 0; 
(2) ifTrA = 1, then X= c+@ D':'@ v for any v E X"; 

(3) ifTrA > 1, then x = C+ @ D* @ v for any v E X"; moreover, the equation has only the trivial solution 

x = 0 if/0 = ~. 
One can easily see that the general solution to (2) may be represented in the form X= c+ @ D* @ v 

regardless of the value of TrA. 

Taking into account Lemma 4, one can easily verify that the following propositions hold. 

Corollary 2. Equation (2) has a nontrivial solution only if /0 =t: ~, i.e., if TrA;; = 1 for at least one 
i = 1, ... , s. 

Corollary 3. Equation (2) has a nontrivial solution if and only if D':' =t: 0, i.e., if l5;7 =t: 0 for at least one 
i = 1, ... , s. 

Corollary 4. IfTrA = 1, then Eq. (2) has a nontrivial solution. 

4.3. Space of Solutions 

Since the general solution to the homogeneous equation has the form x = B @ v, where B E X" x" is a 

matrix and v E X" is a general vector, the space of solutions to the equation obviously coincides with the 
linear hull of columns of the matrix B. However, these columns are not necessarily linear independent. 

To construct a linear independent system of vectors whose linear hull coincides with the space of 
solutions to the equation (i.e., a basis of the solution space), it is sufficient to apply a procedure based on 
Lemma 1 and its corollary. 

5. EIGENVALUES AND EIGENVECTORS OF A MATRIX 

We show how, starting from the solution to the homogeneous equation, we can find all eigenvalues and 
eigenvectors of the matrix. 

For any matrix A, the function Tr(A-1 @ A) of the numerical parameter A will be referred to as the char­
acteristic polynomial of the matrix A and the equation 

Tr(A-1
@ A) = 1 

is the characteristic equation of this matrix. 

5.1. Irreducible Matrices 

For any matrix A and any number A, we introduce the notation At.= A -I @A and A~ = (At.)*. 

(4) 

Theorem 1. A number A is an eigenvalue of an irreducible matrix A if and only if this number is a root 
of the characteristic equation (4). 

Proof. Represent (1) as the equation At.@ x = x. By virtue of Lemma 3, this equation has a solution x =t: 0 
if and only if TrAt. = Tr(A -I @A) = 1; i.e., if A is a root of the characteristic equation of the matrix A. 

Corollary 5. For any irreducible matrix A, there exists a unique eigenvalue 

n 

(5) 
m=l 

Proof. Consider the characteristic polynomial of matrix A. We represent it in the form 

ll 11 

m~l m= I 

Now, we make use of Lemma 2. 
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Corollary 6. Any eigenvector of an irreducible matrix A, which is associated with an eigenvalue A, has 

the form x = Af ® v, where v E x:. 
Proof. Taking into account that the eigenvector of the matrix A satisfies the equationAA ® x = x, by vi11ue 

of Lemma 3, we obtain the required result. 

5.2. Decomposable Matrices 

Suppose that A is a decomposable matrix of form (3), 'A is a number, and AA = A-1 ®A. Just as when 

studying the homogeneous equation, we introduce a matrix AA and represent it in the form ih = 't A E8 Ih, 

where 't A is a block strictly triangular matrix and DA is a block-diagonal matrix. Next, we define matrices 

D~ , C\ , and D~ . 
Theorem 2. Suppose that a matrix A is represented in form (3) and 'Ai is an eigenvalue of the matrix Au, 

i = 1, ... , s. Then, the following assertions are valid: 

(1) all eigenvalues of the matrix A are among the numbers A~o ... , \; 

(2) a number A is an eigenvalue of the matrix A if and only if D~' ::t 0; 

(3) the matrix A has at least one eigenvalue A = /...1 EB ... E8 A5 • 

Proof. We represent ( 1) in the form of the equation AA ® x = x. By virtue of Corollary 2, the equation 
has a nontrivial solution only if Tr(A.-1 ® A1,.) = 1 for some i. By Theorem 1, this means that A= 'Ai is an 
eigenvalue of Aii· 

The other two assertions immediately follow from Corollaries 3 and 4. 

Corollary 7. Any eigenvector of matrix A associated with an eigenvalue A has the form X= c~ ® Jj~' ® 

v, where v E x: . 
Proof. The result immediately follows from Theorem 2 and Lemma 4. 

5.3. Eigensubspace of the Matrix 

As has been established above, the eigensubspace of a matrix, which corresponds to an eigenvalue of this 
matrix, consists of the vectors of the form x = B ® v, where v is an arbitrary vector. To find all linearly inde­
pendent eigenvectors, it is sufficient to consider the columns of the matrix B and apply a procedure similar 
to the procedure for determination of a basis of the space of solutions of a homogeneous equation. 

6. INEQUALITIES FOR POWERS OF A MATRIX 

In paper [9], the following result is obtained and used for analysis of solutions to linear equations. 
Lemma 5. If TrA > 0, then, for any integer k ~ 0, we have 
(1) ifTrA::; 1, thenAk::; (TrA)Ik+ 1>1n-l ®A+; 

(2) ifTrA > 1, thenAk::; (TrA)k ®A+. 
We show that, actually, a more exact inequality holds. 

Lemma 6. For any matrix A and any integer k ~ 0, the following inequality holds: 

n-1 

Ak::; Ef>A.k-t ®A', 

1=0 

where number 'A is determined by formula (5). 

Proof. One can easily verify that the inequality holds for k < 11. 

(6) 

Let k ~ 11. We show that the inequality holds for each entry a~ of matrix Ak. We represent a~ in the form 

11 11 
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Consider an arbitrary product Sij = aii, ® ai,i, ® ... ® ai,_,j. If zero is present among the factors aii,, 

ai,i,, ... , ai,_,J, then Sij = 0. Obviously, in this case, Sij::::; )}- 1 ®a;;. 

Let Si; > 0. We regroup the factors in the product Sij as follows. First, we collect all cyclic products that 
consist of m = 1 factor. Let a 1 2 0 be the number of such products. Among the other factors, we take the 
cyclic products consisting of m = 2 factors and denote their number by a 2• We continue this procedure fur­
ther for allm ::::; n. 

Taking into account that any cyclic product of m factors does not exceed the value trA 111
, we obtain the 

inequality 

II 

where s;i is a product that contains no cycles and consists of a number I of factors, 0::::; I< n. Obviously, 
a 1 + 2a2 + ... + n<X11 + I= k. 

One can easily see that I= 0 if and only if i = j. Then, setting s;i = 1 if I= 0, we arrive at the inequality 

S' I 
ij ::::; aiJ · 

Denote ~111 = m<X111 • Taking into account that ~ 1 + ... + ~~~ = k -l, we obtain 
11 

11 ( 11 ]~,+ ... +~ .. 
= ® tl",lm(Am)::::; EB tr1/m(Am) = 

m = 1 m= 1 

O.m>O 

Thus, we have the inequality Sij::::; ).}-I® a;J. This implies that, for any i,j = 1, ... , n, we have 

11 11 11-1 

Corollary 8. For any integer k 2 0, the following inequality holds: 

trAt: ::;At:. 

Proof. One can easily see that, for A = 0, the inequality becomes an equality. Suppose that A > 0. 

(7) 

It follows from (5) that inequality (7), hence, the inequality A -1: ® trAk::::; 1 hold if 0::::; k < n. Then, taking 
into account (6), we have for all k 2 n 

11-1 

trAI:::::; AI:@ EBA-I@ trA1
::::; AI:. 

I= 0 

To prove the next proposition, we make use of inequality (7). 
Lemma 7. Let A be a matrix in the normal form (3 ), A1, ••• , A5 be eigenvalues of its diagonal blocks, and 

A= A1 Et> ... Et> ).... Then, the value of A is determined by expression (5). 
Proof. By virtue of inequality (7), taking into account that any integer power m 2 0 of matrix A has the 

lower block-triangular form, we obtain 

i=1 i=lm=l i=lm=1 m=1 
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On the basis of the proven proposition and Theorem 2, we may conclude that any matrix A, decompos­
able or ineducible, has the eigenvalue A dete1mined by formula (5). 

7. EXTREMAL PROPERTIES OF EIGENVALUES 

One extremal property of eigenvalues of an irreducible matrix was established by using the explicit 
form (5) of the eigenvalues in paper [10]. Now, we are going to derive this property, as well as other similar 
results applicable, for instance, in solving the problems of approximation of matrices [10], by a more gen­
eral approach without using (5). 

First, note that, for any vectors x, y E x: , the following inequality holds: 

- - -1 
x®y ~(x ®y) ®I. (8) 

Indeed, since x- ® y = x~1 ® y1 EB ... EB x~ 1 ® Y11 ~ x7
1 ® Yi for any i = 1, ... , n, we have 

x ® y- ~ diag(x 1 ® y~ 1 
• ... , X 11 ® y~ 1 ) ~ (x- ® yf

1 
®I. 

The following propositions hold, where the symbol min is considered in the sense of the relation ~ on 
X, which is induced by the idempotent addition. 

7.1. Irreducible Matrices 

Lemma 8. Let A be an irreducible matrix and A its eigenvalue. Then, the following equalities hold: 

minx-®A ®x =A, 
XE x: 

min(A®xf®x = A-1. 
XE x: 

Moreover, the minimum is attained on any eigenvector of matrix A. 

(9) 

(10) 

Proof. Let x0 be an eigenvector of matrix A associated with the eigenvalue A. First, we prove (9). Using 
inequality (8), we obtain 

x-®A®x = x-®A®x®x~®x0 ~x-®A®x0 ®(x-®x0f
1 

=A. 

It remains to verify that x- ®A ® x = A for x = x0• 

To prove ( 10), we apply inequality (8) in the form x ® x- ~I. We have 

(A® xf ®X~ (A® Xo ®X~® xf ®X = (x~ ® xf
1 
®(A® Xof ®X = A-

1
. 

Taking into account that (A ® x0)- ® x0 = A -I, we obtain the required result. 

7.2. Decomposable Matrices 

We are going to extend the results of Lemma 8 to the case of decomposable matrices. First, consider 
assertion (9). 

Let a matrix A be of form (3 ). Introduce a block-triangular matrix A with blocks Aij = A71 ® Aij for any 
i = 1, ... , s, j = 1, ... , i, where Ai is an eigenvalue of matrix Aii. Assign A = A1 EB ... EB As. 

Just as above, we represent A in the form A = T EB b and define matrices 

A + A+ A+ A A + A A A -.1~ A ,,,.. 

D = diag(Au, ... , Ass), C = D ® T, D* = diag(Ai"1, ... , A;~). 

Lemma 9. LetA be a matrix represented in form (3) and\> 0 for any i = 1, ... , s. Then, the equality 

minx-®A®x =A 

holds and the minimum is attained at X= c+ ® D"-' ® v for all v E x:. 
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Proof. Let x,. :;t: 0 denote a vector of size n,., i = 1, ... , s. By virtue of (9), for any vector x = ( x;, ... , x; l. 
we have the inequalities 

i = 1j = 1 i= 1 i= 1 

Suppose that vector x E x: is a nontrivial solution to the homogeneous equation A ® x = x. We show 
that, for this choice of vector x, both sides of the inequality are equal to each other. 

Consider the equation corresponding to the ith horizontal line of matrix A 

j = 1 j = 1 

Multiplying both sides of this equation by A,. ® x7 from the left, we obtain 

EBx7 ® A,..i ® x.i = 'A,. . 
.i = 1 

This implies that 

i = 1j = 1 i = 1 

Applying Lemma 4 to the equation A ® x = x and taking into account that Tr A = 1, we obtain a solution 

to the equation in the form x = C+ ® D* ® v for a general v E x:. 
In conclusion, consider assertion ( 1 0). For matrix A in form (3 ), by I we denote the set of indices i such 

that Aii = 0 for any j = 1, ... , i - 1. We assume that the set I contains index 1. 

Denoting the eigenvalue of matrix A;; by A; for any i = 1, ... , s, we define the quantity 

i E I 

- -
We introduce a lower block-triangular matrix A in the following way. For any i = 1, ... , s, we set A;.i = 

5:_-1 
®A.. if].< i and 

1] 

A- .. - {"-71 
®A;;. if i E I, 

ll -

0, if i ri I. 

- - - -
We represent the matrix A in the form A = T EE> D and define matrices 

iJ+ = diag(A;1, ... , A.;,), c = iJ+ ® f, D* = diag(A~~ •... , A.;~). 

Lemma 10. LetA be a matrix represented in form (3) and A;> 0 for any i = 1, ... , s. Then, the equality 

min (A® xf ®X = 5:_-1 

XE X~ 

holds and the minimum is attained at X= c+ ® D* ® v for all v E x:. 
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Proof. It is clear that, for any vector x E X~, by virtue of ( 1 0), we have 

We show that, if vector x ::f. 0 satisfies the homogeneous equation A ® x = x, then the equality (A ® xt ® 
--1 

x =A holds. 

Indeed, for any i E /, the equation A ® x = x implies the equality 

X; = Ef>Aij ® xj = A~1 
®A;;® X;. 

j= 1 

Taking pseudoinverses of all parts of the equality and multiplying the results by A~ 1 
®X; from the right, 

we arrive at the equality 

[$A,1 ®x1J ®x, ~ (A,®x,f ®x, 
J =I 

In the case i (l /, we have 

i-1 

~ -:-1 
""' . 

- --1 --1 
X;= ffiA;j®Xj =A ®Ef)A;j®xj::;:;A ®ffiA;j®xj. 

j=1 j =I j =I 

This implies the inequality 

[$A,1®xJ ®x,:O:~-·. 
J =I 

Then, for the vector x considered, we have the inequality 

(A®xf®x ~ ®[ $A,1®xJ ®x,<ll ®( El,Au®xJ ®x,:O:~-'. 
iel j=l iel j=l 

Since the opposite inequality is always valid, we conclude that (A® xt ® x = 5:_-I. 
- -

It is clear that Tr A = 1. Hence, by Lemma 4, the homogeneous equation A ® x = x has a solution x = 

c+ @ D* @ v for all v E X~. 
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