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A generalized linear dynamical system with triangular random matrix is con­
sidered. By assumption, the random elements of matrix have the arbitrary 
probability distributions with a finite mean and variance and do not have to be 
independent. It is shown that under rather general conditions, the mean growth 
rate of the state vector of the system is determined only by the mean values of 
diagonal elements of the matrix. 

1. Introduction. For analyzing the technical, economical, production and other systems one often 
applies a generalized linear dynamical model of the following form 

x(k) = AT(k) ® x(k -1), 

where A(k) is a random matrix system, x(k) is a state vector of system, ® is an operation of multiplication 
of matrices, given in a certain idempotent algebra [1]. Such models turn out, in particular, to be highly 
convenient tools for description and consideration of certain classes of systems and queueing networks [2]. 

In studying real systems we often need to determine the mean growth rate of a state vector of system: 

"Y = lim -k1 11x(k)ll, 
k-+oo 

where II · II is a certain idempotent analog of usual vector norm. For analyzing stochastic models, in which 
the matrix of system is random, the exact solution of the above-mentioned problem often turns out rather 
hard [3]. The results obtained are restricted, in essence, to the case of the systems with a matrix of low 
dimension, the elements of which are independent and * identically distributed by exponential or normal 
law, and also the systems with matrices of special form. In particular, in the works [4, 5] it is shown how 
the mean growth rate of state vector can be computed for the system of arbitrary dimension with a triangle 
matrix of special form, which occurs in the description of the dynamics of a class of queueing networks. 

In the present work a generalized linear dynamical system with arbitrary triangle random matrix is 
considered. It is shown that for rather general conditions the mean growth rate of a state vector of system 
is determined by the mean values of diagonal elements of matrix only. In this case it is required that the 
random elements of matrix have the probability distributions with bounded mean values and variance but 
their independence is unnecessary. 

The given work is partly supported by the RFBR (Project No. 04-01-00840). 

©2006 by Allerton Press, Inc. 
Authorization to photocopy individual items for internal or personal use, or the internal or personal use of specific clients, is granted by Allerton Press, Inc. for 
libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of 550 per copy is paid 
directly to CCC. 222 Rosewood Drive, Danvers, MA 01923. 

25 



Vestnik St. Petersburg University 
Mathematics 

Vol. 38, No.1 

2. Idempotent algebra. By the idempotent algebra we usually mean a certain semiring with idempotent 
summation [1]. We shall consider a semiring with operations of summation and multiplication, namely 

x EB y = max(x, y), X i8) y =X+ y, 

which are given on an extended set of real numbers JR., = lR U {e}, where e = -oo. However, it should 
be noted that the results, represented below, can easily be reformulated for other types of semirings, for 
example, for the semirings with the operations x EB y = min(x, y) and x l8l y = x + y, which are defined for 
any x, y E lR U { +oo }. 

In the idempotent algebra of matrices the matrix operations EB and l8l are defined by means of their scalar 
analogs by the usual rules. For the solution of a number of practical problems it turns out to be useful to 
extend the available family of matrix operations. In particular, an approach was suggested which is based on 
the completion of the above-mentioned family on account of the addition operation of a standard arithmetical 
summation of matrices, which is related with the operations EB and l8l by the following inequalities: 

(A+ B) EB (C +D):::; A EB C + B EB D, (1) 

where A, B, C, and Dare any matrices of suitable size [4, 5]. 
We shall call any matrix with the elements 0 or e a support matrix. It is clear that to any matrix 

A = (aiJ) can assign the certain support matrix G with the elements 9iJ = 0 if aij > e, and 9iJ = e 
otherwise. It is easily seen that the inequality A:::; IIAIIIZl G, where 

II All = EB aij 
i,j 

is always satisfied. 
We shall say that a square matrix is diagonal if all its nondiagonal elements are equal to e or are triangle 

if all elements below or above a diagonal are equal to e . Note that in the idempotent algebra the matrix 
E = diag(O, ... , 0) plays the role of unit matrix and the matrix £, all elements of which are equal to e, is 
zeroth. 

If the elements of the diagonal matrix D, situated on the diagonal, are greater than e, then there exists 
the inverse matrix D-1 such that D l8l D-1 = D-1 l8l D = E. In addition, for any diagonal matrices D 1 
and D2 the following relation D1 l8l D2 = D1 + D2 is satisfied. 

For any matrix A =f.£ and integer k, l :?: 0 we assume that Ak l8l A1 = Ak+l and A0 =E. Below, the 
denotation of degree will be used in the sense of idempotent algebra only. The matrix A is called nilpotent 
if there exists p such that AP = £. An example of a nilpotent matrix is an upper (lower) strictly triangular 
matrix such that all their elements, situated on a diagonal and below (above) it, are equal to e. 

3. Preliminary results. Suppose that D(O), D(1), ... , D(m) are diagonal matrices, G is a support 
matrix. In works [4, 5] the following inequality was obtained: 

m m 

D(O) l8l Q$)( G l8l D(j)) :::; L cJ l8l D(j) l8l cm-j. (2) 
j=1 j=O 

We make use of inequality (2) for the estimation of the products of the matrices A(i), i = 1, ... , k, of 
the form 

A(i) = D(i) EB T(i), 

where the matrices D(1), ... , D(k) are assumed to be diagonal and the matrices T(1), ... , T(k) to be 
nilpotent of the index p with the common support matrix G. 

We introduce the following denotation: 

Ak = A(1) 18l· · ·18l A(k), Dk = D(1) 18l· · ·18l D(k), 

and also D(l, m) = D(l + 1) 18l· · ·18l D(m) if m >land D(l, m) = E otherwise. 
Lemma 1. The following inequality 

Dk :::; Ak :::; tk l8l Bk 

is satisfied. Here tk = ( EB:=1 IIT(i)ll EB 0 r-1' Bk = EB!:..-lo E;:o QJ l8l ( ffio~r<s~k D(r, s)) l8l cm-j. 
Proof. The left-hand inequality results directly from the obvious relation A(i) = D(i) EB T(i) :?: D(i) for 

all i = 1, ... ,k. 
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Ak = Q9A(i) = Q9(D(i) ffi T(i)). 
i=l i=l 
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We transform the relation for Ak by making use of the distributive property of 0 with respect to ffi. 
With provision for the nilpotent property of the matrices T(i), assuming that lo = 0, lm+l = k + 1, we 
obtain 

m 

D(lo, l1 -1) 0 Q9(T(lj) 0 D(lj, l1+1- 1)) 
j=l 

m 

D(lo, h -1) 0 Q9(G 0 D(lj,lj+l -1)). 
j=l 

Applying ineqlialities (2), (1), and the distributive law, we obtain 

m 

EB D(lo, l1 -1) 0 Q9(G 0 D(lj, lJ+l- 1)) 
I ::;It <···<l.,:=;k j=l 

:::; EB f QJ 0 D(lj, lJ+l -1) 0 cm-j:::; f QJ 0 ( EB D(r, s)) 0 cm-j. 
1:=:;11 <···<l.,:=;k j=O j=O o::;r<s::;k 

This implies the inequality Ak :::; tk 0 Bk. 0 
4. Generalized linear dynamical system. Suppose that A(k) is a random (n x n)-matrix, x(k) is 

an n-dimension vector of states. Consider a system, the dynamics of which is described by the equation 

x(k) = AT(k) 0 x(k- 1). 

We also assume that the matrices A(k), k = 1, 2, ... , are identically distributed and independent, the 
mathematical expectation IEIIA(1)11 and the variance ][ll11A(1)11 are finite and the coordinates of the initial 
vector x(O) are bounded with probability one. 

The mean growth rate 'Y of the state vector x(k) can be determined in the following way: 

'Y = lim -k1 11x(k)ll = lim -k1 11Akll, 
k-+oo k-+oo 

where Ak = A(1) 0 · · · 0 A(k). 
In the case when the matrix A(1) is diagonal the obtaining of the quantity 'Y is a totally simple problem. 

In fact, in the considered case we have, as above, the following 

k k 

Ak = Q9A(i) = LA(i), 
i=l i=l 

'Y = limk-+oo IIAkll/k = IIIE[A(1)]11· Here IE[A(l)] is a matrix, obtained from A(1) by means of the change of 
its elements to their mathematical expectation under the condition IE[e] =e. 

5. The case of system triangular matrix. Consider a system, for which the matrices A(1), A(2), ... 
are triangular. For each i = 1, 2, ... , we determine the diagonal matrix D(i), the elements of which, situated 
on diagonal, coincide with the corresponding elements of the matrix A( i). We also assume that T( i) denotes 
a strictly triangular matrix, obtained from A(i) by the change of all its diagonal elements to e. It is clear 
that A(i) = D(i) ffi T(i). 

Suppose that with probability one the support matrices for D(1) and T(1) are equal to E and G =/= £, 
respectively, where G is a certain strictly triangular support matrix, which is obviously nilpotent with the 
index p :::; n. 

We assume first that all the diagonal elements of the matrix A(1) have a zero mean value, i.e., in other 
words, the following relation IE[D(1)] = E is satisfied. 

Lemma 2. If the condition IE[D(1)] = E is satisfied, then 'Y = 0 with probability one. 
Proof By Lemma 1 we have 
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where Dk, tk and Bk are defined just in the same way as in the above-mentioned lemma. 
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Since limk--.oo IIDkll/k = lllE[D(1)JII = IIEII = 0, then the left-hand inequality implies "'( ~ 0. Now it 
remains to check the validity of opposite inequality. 

Consider the quantity tk. Note that IIT(i)ll, i = 1, 2, ... , are the independent identically distributed 
random values with a finite mean value and variance. With increasing k their maximum increases not faster 
than Vk (see [6, 7]). Therefore we obtain 

lim -k1 tk = lim (-k1 th IIT(i)ll EB o)p-1 
= 0. 

k--.oo k--.oo W 
i=1 

In addition, as was shown in [4, 8], for the independent and identically distributed diagonal matrices 
D(i), i = 1, 2, ... , such that JE[D(1)] = E the following relation 

l. 1 ffi 
1m- w 

k--.oo k 
1~r<s~k 

is satisfied. This implies that 

D(r, s) = E with probability one 

p-1 m ( ) p-1 
lim -k1 Bk = lim E9 L Gi 0 -k1 E9 D(r, s) 0 cm-j = E9 em 

k-+<XJ k-+oo 
with probability one. 

m=O j=O O~r<s~k m=O 

Taking into account that in this case with probability one we have 

Thus, we arrive at the inequality "Y ~ 0 with probability one. 0 
Finally, we consider the general case. Introduce the following denotation: D = lE[D(1)]. 
Theorem 1. For a system with the triangular matrix A(1) with probability one the following relation 

"'f=IIDII 

is satisfied. 
Proof. In the same way as in Lemma 2, we can easily show that "'( ~ IIDII· 
To check the opposite inequality we determine for all i = 1, 2, ... the following relations: 

A'(i) = D'(i) EB T'(i), D'(i) = tJ- 1 0 D(i), T'(i) = D-1 0 T(i). 

Further we assume that A~= A'(1) 0 · · · 0 A'(k) and also "'(1 = limk--.oo IIA~II/k. 
Note that the following inequality 

Ak ~ liD Ilk 0 A~ 
is satisfied. It follows that IIAkll/k ~ IIDII0IIA~II/k and, therefore, "'( ~ IIDII0 "'(1• 

Since by Lemma 2 with probability one the relation "'(1 = 0 is satisfied, the inequality 
with probability one. This implies the assertion of theorem. 
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