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In the the case of finite matrices in idempotent algebra the inequalities, joining 
certain numerical functions and the eigenvalues of dimensionality of matrix, are 
obtained. These inequalities are used for proving a convergence theorem in 
studying the asymptotic behavior of dimensionality of matrix. It is shown that 
a general formula for the evaluation of eigenvalue can be obtained as a certain 
corollary of this theorem. 

1. Introductions. One of the basic results of the spectral theory of matrices in the idempotent algebra 
is a convergence theorem, which establishes that for any matrix A the relation holds 

n 

lim IJAkiJlfk = ffi[tr(Am)Ffm, 
k-+oo \II m=l 

(1) 

where n is a dimensionality of matrix. This result was first obtained in the works [1, 2] in connection with 
the study of the asymptotic properties of solutions of the dynamic programming problem. The other proofs 
(1), which follows from the analysis of cyclic paths in the graph corresponding to matrix A, can be found 
in (3, 4, 5]. 

At the same time in the works (6, 7, 8] it was established that the value 
n 

p = E9(tr(Am)]lfm, (2) 
m=l 

is a unique single eigenvalue in the case of nonnegative matrix A, which satisfies the equation 

A®x = p®x. (3) 

This result was generalized then in the works (3, 5, 9, 10] on the case of arbitrary matrices, which some 
eigenvalues can exist for. In this case (2) corresponds to the largest eigenvalue of the matrix A. Note that 
the convergence theorem turns out to be a direct analog of a classical result on the spectral radius of bounded 
linear operator. 

The existence conditions of a unique single eigenvalue are considered in the works (5, 9, 10]. It was shown 
that if the matrix is nonanalyzable, then it has a unique single eigenvalue. In the most general form this 
result was obtained in (9] due to the developed in this works theory of the endomorphisms of semimodules 
under idempotent semirings and that in (10], using the Frobenius-Perron theorem on the eigenvalue of 
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nonnegative matrix. The proof, given in [5], makes use of the analysis of cycles in the corresponding graph. 
In this work it is also shown that for nonanalyzable matrix the elements of any eigenvector are finite. 

Note that the distinction of present approaches to the study of the asymptotic behavior of dimensionalities 
of matrix is the partition of the common problem into two parts: on the one hand the convergence of the 
sequence IIAkll 1/k to the value (2) is proved and on the other hand it is established that (2) is eigenvalue. 
In this case for both proofs, in some way or other, the interpretation of the problem in terms of the theory 
of graphs is required, which somewhat complicates the reasonings and makes them less rigorous. 

In the present work a simple proof is given for the theorem on the convergence as k ---+ oo of the values 

IIAklll/k, [tr(Ak)jl/k 

to the eigenvalue of the matrix A in the case when all elements of matrix are finite. The proof suggested is 
based on a number of general inequalities, obtained for the eigenvalues and dimensionalities of matrix and it 
does not use relation (2) for eigenvalue in explicit form. At the same time it is shown that general formula 
(2) can be constructed by the proved convergence theorem as a certain corollary of it. 

The proof has an algebraic nature and, which essentially does not require the analysis of paths in the 
graph corresponding to the matrix. 

2. Idempotent algebra. Denote by lRe: a set of real numbers, extended by the addition element 
E: = -oo, and give the following operation 

x EB y = max(x, y), 

for any x, y E lRe: under the condition x Q9 E: = E: Q9 x = E:. 

The set lRe: with the operations EB and Q9 is a commutative semiring with idempotent summation, the 
zero and unit elements of which are E: and 0, respectively. Such semiring are usually called an idempotent 
algebra [10] or (max,+ )-algebra [3, 5]. 

In this algebra for any x E lR it is defined the invertible element x-1 under the operation @, which is 
-x in usual arithmetic. For any x E lR and rational q the dimensionality xq can usually be defined, which 
is obviously equal to qx in standard representation. Below the notation of dimensionality will be use only 
in the sense of idempotent algebra. However, for simplicity the dimensionality of number will sometimes be 
changed by arithmetical multiplication. 

We can easily check that for any x 1 , ..• ,xk E lRe: the following inequality (analog of the inequality for 
geometric and arithmetical means) 

is valid. 

k 

10\x. < \C:I • -
i=l 

(4) 

The idempotent algebra of (n x n)-matrices on the set JR~xn can be introduced in the following way. For 
any two matrices A, B E JR~xn we put 

n 

{A EB B}iJ = {A}iJ EB {B}iJ, 
k=l 

Clearly, the matrix £, all components of which are equal to E:, has the properties of zero element. The 
matrix E = diag(O, ... , 0) with the nondiagonal elements equal to E:, play the role of the unit matrix. 

The operations EB and Q9 have an obvious property of monotonicity: the componentwise inequalities 
A~ C and B ~ D yield the inequalities A EBB~ C EB D and A Q9 B ~ C Q9 D. 

Let be A=/=-£ and put A0 = E and Ak Q9 A1 = Ak+l for any integer k, l 2:: 0. 
For any matrix A= (aij) E JR~xn we can define the following values 

n 

IIAII = EB aij, tr(A) = ffiaii. 
l:s;;;i,j:s;;;n i=l 

It is easily seen that the inequality A ~ B implies IIAII ~ IIBII and tr(A) ~ tr(B). 
For any A, BE JR~xn and c E lRe: the following relations 

are valid. 

lie Q9 All = c Q9 II All, 
tr(c Q9 A) = c Q9 tr(A), 
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Consider the arbitrary matrix A and denote the i-th column of matrix by ai and the j-th row by ai. 

For any A, B E JR.~ x n we have 
n 

IIA 0 Bll = ffillaill0llbill-
i=1 

3. Matrices with finite elements. Consider the matrix A = (aij) E lRnxn. All elements of such 
matrix satisfy the condition a;j > e, i.e. they are finite. 

Define the matrix A- = ( aij) with elements aij = aj/ for all i, j = 1, ... , n. Then 

min aiJ=IIA-II- 1 • 
1~•,J~n 

It is easy to check that for any A, B E JR.nxn the following inequality 

tr(A0B);::: IIA-II- 1 0IIBII 

is satisfied. 
As in the case of matrices, for any vector x = (x1, ... , Xn)T E JR.n we can introduce the vector x 

( -1 -1) 
x1 ' ... ,xn . 

By the obvious relation x 0 x- ;::: E for any A E JR~xn and x E JR.n we have 

A~ A0x0x-, 

A~ X0X- 0A. 

Finally, we can show that for any A E JR.nxn and x E JR.n the following inequalities 

II(A0x)-ll ~ llxll- 1 0IIA-II, 

II(A 0 x)- 0 All~ llxll- 1 0IIA- 0 All 

are valid. 

(5) 

(6) 

(7) 

(8) 

(9) 

4. Inequalities for dimensionalities of matrix. Suppose, the matrix A E JR~xn is nonanalyzable 
(i.e. it cannot be reduced to the block-triangle form by the interchange of like rows and columns). As is 
known (see, for example, [5]), for any nonanalyzable matrix there exists the unique single eigenvalue p > e 
and also, at least, the one eigenvector x E JR.n, which satisfy equation (3). Note that any matrix, all elements 
of which are finite, is the special case of nonanalyzable matrix. 

Lemma 1. For any nonanalyzable matrix A E JR~xn and integer k > 0 the two-sided inequality holds 

(10) 

Proof Let x be an eigenvector of the matrix A, corresponding to p. Then the right-hand inequality 
results from equation (3), namely 

/0llxll = 11/0 xll = IIAk 0 xll ~ IIAkll0llxll· 

(obviously, the inequality is valid for any matrix A E JR~xn.) 
Now we write inequality (6) in the form 

Ak ~ Ak 0 x 0 x- = /0 x 0 x-. 

Taking into account that x- 0 x = 0, we obtain the following left-hand inequality 

tr(Ak) ~ tr(/0 x 0 x-) = pk 0 tr(x- 0 x) = /. 

Lemma 2. For any matrix A E JR.nxn and integer k > 0 the following inequalities hold 

Proof We prove inequality (11). By (6) 

IIAkll ~ l+l 0IIA-II, 

IIAkll ~ pk 0IIA- 0 All, 

IIAkll ~ tr(Ak+l) 0IIA-II· 

Ak ~ (x- 0A0x)k- 1 0A0x0x-. 
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Let x be the eigenvector of the matrix A, corresponding to p. Then the inequality can be represented as 

Ak :::;/- 1 ®A®x®x- =pk+l®x®(p®x)- =/+l®x®(A®x)-, 

which by (8) gives 

IIAkll:::; /+1 ®llx ®(A® x)-11 = pk+1 ®llxll ®II(A ® x)-11:::; /+1 ®IIA-11· 

For proving (12) we make use of inequality (7): 

Ak :::; (x- Q9 A Q9 x)k- 1 Q9 x Q9 x- Q9 A. 

If x is the eigenvector, corresponding to p, then we have 

Ak :::; /- 1 Q9 x Q9 x- Q9 A= pk Q9 x Q9 (A Q9 x)- Q9 A, 

and, therefore, 
IIAkll :::; l ®llx ®(A® x)- ®All= l ®llxll ®II(A ® x)- ®All· 

Taking into account (9), we get inequality (12). 
Finally, applying (5), we can easily check that inequality (13) holds 

tr(Ak+1) = tr(A Q9 Ak) ~ IIA-II- 1 ®IIAkll· 

5. Convergence theorem. The asymptotic behavior of the dimensionalities of matrix with finite 
elements is described by the following 

Theorem 1. For any matrix A E JR.nxn tbe relations bold 

1 
lim 11Akll 11k = lim -k IIAkll = p, 

k--+oo k--+oo 

1 
lim [tr(Ak)] 1fk = lim -k tr(Ak) = p, 

k--+oo k--+oo 

where pis an eigenvalue of matrix. 
Proof Applying (10) and (12), we obtain the following inequality 

l:::; IIAkll :::; l ®IIA- Q9 All· 

By the denotation .6.1 = IIA- Q9 All it can be represented as 

1 k 1 
P:::; 'kiiA II :::; P + 'k-6.1. 

Since the value .6.1 under the condition A E JR.nxn is bounded, the last inequality yields (14). 
By inequalities (10) and (13) we have 

Pk ®IIAII- 1 ®IIA-II-1 :::; tr(Ak):::; pk. 

Denoting .6.2 = IIAII ®IIA-11 < oo, we obtain the following inequality 

1 1 k 
p- k-6.2:::; ktr(A):::; p, 

which results in (15). 

Lemma 3. For any matrix A E JR.nxn tbe following relation holds 

k k 1 
lim ffi[tr(Am)F/m = lim ffi -tr(Am) = p. 

k--+ooQ7 k--+ooQ7m 
m=1 m=1 

The proof is by the same reasoning as in proving Theorem 1. 

(14) 

(15) 

6. Evaluation of eigenvalue. We shall show how the general formula (2) for eigenvalue can be obtained 
on the basis of the Lemma 3. 

Theorem 2. For any matrix A E JR.nxn tbe relation holds 
n n 1 

p = EB [tr(Am)Ffm = E9 - tr(Am), 
m=1 m=1 m 

where n is a dimension of A. 
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Proof Taking into account Lemma 3, we can check that for all integer k > 0 the following inequality 

1 n 1 
k tr(Ak) :::::; E9 m tr(Am) (16) 

m=l 
is satisfied. 

Obviously, (16) is valid for all k :::::; n. We shall show, that this inequality is also valid for k > n. 
Note first that for any k the relation holds 

We introduce 
S(i1, ... , ik) = ai1i2 ® ai2i3 ® · · · ® aiki1· 

By (17) for any set of indices i1. ... , ik we have 

S(i1, ... , ik) :::::; tr(Ak). (18) 

If k > n, then in the sequence of indices i1, ... , ik there exist repeating values. In addition any continuous 
segment of the sequence, in which repetitions are lacking, consists of no more than n indices. 

It is clear that in this case S(i1, ... , ik) can be represented as 

S(i1, • • · , ik) = S(j1, · • • ,jm1) ® S(jm1+b • • • ,jm2) ® · · · ® S(jmr-1+1' • • • ,jmJ, 

where r, mi are certain integer numbers such that 1 :::::; m1 < · · · < mr = k, r > 1, m1 :::::; n and also 
mi+ 1 - mi :::::; n for all i = 1, . . . , r - 1. 

By (18) we have S(i1, ... , ik) ::=; tr(Am1) ® tr(Am2-m1) ® · · · ® tr(Amr-mr-1 ). After grouping the terms 
in the right-hand sides it can be represented as 

n 

m=l 
where am are certain nonnegative integer numbers for all m = 1, ... , nand a1 + 2a2 +···+nan = k. 

Put a~ = mam , and note that a~ + · · · + a~ = k. By ( 4) we have 
n n 1 n l 

S(i1, ... , ik) :::::; Q9 am tr(Am) = Q9 am tr(Am) :::::; k E9- tr(Am). 
m=l m=l m m=l m 

Taking into account that this inequality is valid, for any choice of the indices i1, ... , ik we can estimate 
the right-hand side of (17), namely 

n n n n l 
tr(Ak) = E9 E9 · · · E9 S(i1, ... , ik) :::::; k E9 - tr(Am). 

i1=1 i2=1 ik=l m=l m 

The last inequality is equal to inequality (16), which together with Lemma 3 proves theorem. 
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