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ESTIMATES FOR A MEAN TIME
OF TROUBLE-FREE WORK

FOR ONE QUEUING NETWORK CLASS*

N.K.KRIVULIN AND D.C.MILOV

The problem of estimation of the mean of process time for networks with queues
and with synchronization of service requirements in nodes is considered. Tl1e ap-
paratus of the idempotent algebra is used which admits to describe the dynamics
of system by the stochastic generalized difference equations. For the cases that
the network topology is described by an acyclic graph, the upper and lower
estimates of mean time of work are obtained.

In the present work the problem of estimating a mean time of the trouble-free work for queuing networks

with the synchronization of requirements in nodes is considered. The apparatus of idempotent algebra is

used which permits us to describe the system’s dynamics by the generalized stochastic difference equations.

For the case that the net topology is described by an acyclic graph, the upper and lower estimates of a mean
time of trouble-free work are obtained.

1. Idempotent algebra. Consider the set of real numbers E, extended by adding one element 5 = -oo,
with the defined in it operations 69 and ®, whose definitions for any sv, y G E are the following:

:v€l9y=max(:z:,y), :1:®y=a:+y,

and at QD 5 = 5.

The set `R§ with the operations EB and ® is a commutative semiring with the idempotent addition, whose

zero and unit elements are the numbers 5 and O respectively. Semirings with the described properties are

usually called idempotent algebras (see, e.g., [1, 2]).

The idempotent algebra (semiring) of real matrices is introduced by the usual way: for any two matrices

A = (aij) and B = (bij) of size n. x n operations G9 and ® are performed by the formulas
Tl

{/1 G9 B}¢j =' Clrj 69 bij and {A ® B}¢j = ®a¢/t G9 bkj~

k=1

A matrix 8, whose elements are all equal to 5, is a neutral element with respect to the operation 69.

The matrix E with zeros on the main diagonal and 5 out of it represents the unit matrix.
Obviously, the operations 69 and ® have the property of monotony, i. e., the inequalities A S C' and B S D

imply the inequalities A GB B S C GED and A ® B S C' ® D.
Let A 96 5 be a square matrix. As usually, we put A0 = E and Ak = A ® A'°"1 = A'°'1 ® A for any integer

k 2 1.
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Consider an arbitrary matrix A = (aw) and introduce the following magnitudes: I QE Gftj, ri(/1)=11};11{<11¢j|<1?;j $5 5}
M

under the condition that ,u(<S`) = 5.

It is obvious that if A S B, then  S  and ,n(A) S /i(B). Besides, for any number c > O the
equalities ||cA|| -= c||A|| and ,rr(cA) = c/r(A) are true.

It is easy to check that for any matrices A and B such that an expression A ® B is meaningful, the
following inequality holds

HA ® BII S IIAII ® IIBII-

If A = D is a diagonal matrix (with non-diagonal elements equal to e), then the inequality holds:

IID ® BII 2 MD) ® IIB!!-

2. Systems with synchronous service. Consider a network consisting of zz nodes, each node having

a service device and a queue. The network topology is described by an oriented acyclic graph Q = (N, A),
where N = (1 ,..., n} is the set of graph nodes, corresponding to the network’s nodes, and A =  j)} C

N >< N is a set of graph’s edges, which define the paths of requirements motion.
For any node 11 6 N, define two sets of nodes

P(i)={i|(J,1l)€A}» SU) = {J|(i,J) Al-
Each node fi, for which P(i) = (ll, is considered as a source of the infinite flow of requirements, entering the
system. Requirements are deleted from the system after their service in the nodes i for which S(i) = (tl. At
the initial time all the service devices of the network are free, the queue of requirements in each source-node
has infinite length, the queues of all other nodes do not contain requirements.

We assume that the processes of servicing of the requirements of the network nodes satisfy some restraints on
synchronization  Mechanisms of synchronization are realized by auxiliary operations “uniting” (join) and
“disjunction” (f`ork), which are performed in each node respectively before and after that requirement is

serviced. The performance of the operation “uniting” in node i is as follows: a requirement does not enter
the queue until the node obtains one requirement from each node j E  These requirements are united
into one requirement, which then enters the queue of requirements waiting for service in the node t.

The operation “disjunction” in node i is performed each time the service of some requirement is

ended. In this case the requirement is replaced by new requirements, whose number is equal to the number of
nodes in S(i). Then these new requirements simultaneously leave node i and are directed to each of the nodes
j E S(i). It is assumed that operations “uniting” and “disjunction”, and also the movements of requirements
between nodes are performed instantly.

Denote by nk the duration and by a:,(k) the time of ending of the kth service in the node 11. We assume
that nk are given by the nonnegative stochastic variables and lE[T¢;,] < oo for all i = 1 ,..., n, and If = 1, 2 ,...
Under the condition that the system begins to work at the zero time, put a:¢(O) = O and az, (lc) = e for all If < 0,

t = 1 ,..., n. Introduce a vector :1:(k) = (:c1(k), _ _ . ,:1:,,(k))T, and also a matrix 72 : diag(r1k, ..., Tnk), whose
nondiagonal elements are equal to e. Then the dynamics of the system may be described by the equation [4]

a:(k) = A(k) ® :1:(k - 1) (1)

with the matrix
A(/f) = (Ee77. ®G”`)"®77., (2)

where G = (gij) is a matrix, whose elements are defined in the following way

'__ 0, if i€P(j),
gl] _ 5 in other cases,

1* is the length of the longest path in the network graph Q.
As an example, consider a net with n = 4 nodes, which together with the corresponding matrix G is

shown in the figure:
2

1 :IO 4 e 0 0 e
f: e e O30 3 :l0___> G: e 5 e 0

:IO e e e e
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Since for the net graph the maximal path length is r = 2, the matrix (2) in the equation (1) has the form

Tlk E E E

Q?) TQ); T2/Q 6 6
A If = Ee7'.®GT 2®T. = T”

( ) ( " ) " nt ® T3/Q fr Tai. S

T1k®(T2/¢€i3T3k)®T4k T21¢®T4/Q T3/»®T4/f T4/1

Note that for the matrix A(k)
IIA(/f)|| = Tit Q?) (Tm G9 Tak) ® 'Dm-

Mean time of trouble-free work. We consider the evolution of the system as a sequence of service

cycles. The first cycle begins at time zero and goes along until in each net node, one requirement will be

serviced. The second cycle is accomplished when in each node two requirements are serviced and so on. It is

obvious that with taking into account the condition :1:(O) : O the time of accomplishment of the /sth cycle

can be found as follows:

||=1>(/<)||= ll/1/f||» Ar == A(/f) ® ® A(1)-

Let there exist the probability of appearance of some condition, which prohibits the performance of

the current cycle and further work of the system (probability of refusal). Introduce a random magnitude
1' being the number of the last successful cycle of service after which the refusal of the system occur and suppose

that lE[1/] < OO. Then the mean time of the system work until the instant of refusal can be defined as a mathematical

expectation, namely,
OO

113l|/1,/II = 1El11‘3||/1). III” = /fl = Z 1E||A/1 ||11"(1/ = /f}~

k=1

We assume that for any k the probability of the successful completion of the kth service cycle does not

depend on k. Denoting this probability by p, we obtain

EIIAVII = (1 -12)21E|IArIIP'°- (3)
k=1

4. Evaluation of the mean time of the network. To construct these estimates, we use the following auxiliary

results. Note at first that for any k we have

f1(k) --€l9(7Z®GT)T®7i¢?7i¢-
Besides, for diagonal matrices 7] ,..., 71, the obvious identity holds 7E <29 . . _ ® 72 == 7E + . . . + 72.

Let the elements of the matrix A = (a,;j) be certain stochastic variables. Denote by lE[A] a matrix obtained

from A by the replacement of its elements by their expectations under the condition that lE[e] = e. It is easy

to check that for any matrices A and B the inequalities are valid

IEIIAII 2 |I1113lf1ll|. IEIIA ® BII 2 1P3|l1F3lAl ® Bll>|I113lf1l®1ElBl||-

4.1. Lower estimates of the mean time of the network. Suppose, for any i = 1,  11, stochastic
variables 131, "rig, . . . are equally distributed and independent. Then the following statements hold.

Lemma 1. If  > p (lE[’H]), then the following inequality is true

1E|I-4./Il 2 0fP(1 - Pm) - BP %:;-_Eg - mpm) + 1 (T-5335) , (4)

Where m = |_a/B] and

0 = Eli/1(1)|| - /»(1E[7i]), [3 = ||11f3l7i]|| - /1(11‘3l7il), 7 = ||1‘3[”El||-

Proof Consider the mathematical expectation

1E||Ai/|I= (1 -P)Z1E||Ak||1>k = (1 -P) Z:1E||A/tllnk + Z 11‘3||/lrllnk -

k=1 k=1 k-='m.+1

Let

||f4k|| = HA(/f) ® ~ ~ - ® A(1)|| 2 ||(% ® . . . ® 75) ® A(1)||~
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Passing to the expectation, we obtain

IEIIA/fll 2 1E||lE("/L + _ _ + 75) ® A(1)|| = lE||((/‘H -1)lEl7il)® A(l)I|

2 /1((/f - 1)1ElFl)<2> IEII/4(1)I| = (lf -1)/1(lEl7il)+ 1l3||_4(1)l|-

Now for the Hrst sum we have

ZE||Ai||Pk 2 /1 (lEl'/il) Elk -1)P'° + lf‘3||A(1)|| Zpk-
kr-1 kr-'1 k=1

In respect to Ak ;7],®...®7] =7L+...-1-7] weobtain

ll3||At|| 2 Ill-U72 + _ _ . + hill = ||k1El7il|| = /f||lP3l7il||~

Then for the second sum we have the inequality
OO OO

2 If_2||_<1_.||i»’°>||H2tm|| 2 /<p"_
k:1n-{-1 k=m+1

Uniting the inequalities obtained and using the above notation oz, B, and 7, we find

Tn 'ITL OO

. . . 1- "1

1E||A.,||><1-p> ijt*-fi§j1<p'~+v}j/fpt =<1p<1-i>'">-to T;-Q-ifen_1i"‘>+v<3§5>.
A 1 It 1 It 1

<5>

Q; ‘__ 1

Obviously, the right side of (5) takes the greatest value for the same values of in that provide the maximum
of the function

TTL 'ITL 'ITL

‘1>(m)= 01 EP” - B Z kif” = Z(CY - /fB)i2'°~

k=1 k=1 k=1

Note that ci 2 B > O. Then it is clear that the function <I>(m) is an increasing function while (oi - md) 2 O

and takes the maximal value for m = Lot/Bl. El

Lemma 2. If||lE[7]]  = /.i (lE[7]]), then the following inequality holds

1@||A.,||>p a+;-L <@>- P

Proof. Consider inequality  Under the condition B =   - ,ii (lE[7]]) : O, the right side of the
inequality takes the maximal value for m = oo. After the calculation of the corresponding sums we obtain
the inequality  I]

Note that the condition of the lemma is satisfied if and only if for all i = 1 ,..., it the values lE[T¢1] are

equal.
4.3. Upper estimates for a mean time of a trouble-free network.
Lemma 3. The following inequality is true

P
1EI|A~||< T-j5IE||A(1)l|- <i>

Proof. Taking into account that

||A~|| S |IA(1/)|| ® ~ - - ® ll-/1(1)|| = ||A(1/)|I + ~ - - + ||A(1)||_

and lE[1/] = p/ (1 - p), let us use the Vald identity

i=:||A.|| < E2 IIA(/<)|| = 3%-i:||A<1>||_ 1:1

A 14-_-__

Lemma 4. Under the condition that lD>r,1 < oo for all i = 1, . . . ,n, the inequality

1

IEIIAVII S P K-I; + 1° 1E||7i II + 1‘(1 - P)C(P)\/lU>||7i II (8)

holds, where 1° is a length of the maximal path in the network graph and C(p) is calculated by the formula

C<p>=£ 1+“’l§;§")<1 effvo +M<p>,
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lnp 2 ”” 2

q : --, erf(;1;) = - exp(-t )dt,
2 \/E 0 - 111}§tX  

Proof We apply the estimate obtained in [5]:

k -1
Ell/itll S (li + "llE||71 II + TWV DH71 ||-

Consider the inequality

lc
OO OO A OO $1 `

IEIIA./Il = (1 - IDEIEIIA/tl|1v" S (1 - P) IEIIF II Z(/f + NP" + ’“\/lDl||71||Z: -if
1.=1 /¢=1 11:1 2k _l

Compute the Hrst sum in the right side of the inequality:

OO p 1

Z(/f+1‘)P'“= -_ --+1 .

If-1 1-7) 1-1)
It is not difficult to verify that for the sum of the second series the following estimate holds

O0 ooE k-1pk< ax-1pa.dx+ m-1 pm

kzl ./2/1 - 1 ` 1 \/211: - 1 \/2m - 1 ’

where fm is chosen such that the second addend in the right side represents the maximal by its value term
of the considered series.

It is obvious that for /11 to be obtained it is sufficient to compute the root of the derivative of the integrand
function by the formula

3lnp- \/lnzp-61np+ 1 - 1
£1202

4lnp
and then compare the values of the function nearest to the root integers, situated to the right and to the left of the
I‘OOl.

Whereas
OO -1 1-2

1 _iDZ;i_i.p"’d:r=£ 1+\/EQ/1Eq)(1 erf\/§) ,

where q = - ln p/ 2, we arrive at the inequality (8). [Il

Below we give the results of computations of estimates for the mean time of work for certain values of p
for the network, shown in the above figure. The durations of requirement services in the nodes 1 = 1, 2, 3, 4
are independent and have exponential distributions with parameters /\,.

In Tab. 1 the results are represented under the condition that /\, = 1 for all 11 = 1, 2, 3,4, in Tab. 2 the
results are represented for the case, then A1 = /\4 = 1, A2 = 2, and /\3 = 3. The tables contain also the
estimates for a mean time of the systems work and the bounds of corresponding confidence intervals on the level
0,95, computed on the basis of the imitational modelling of the system by 10000 of independent realizations.

Table 1

Estimate Results of Estimate Estimate
p (4) simulation (7) (8)

0.05 0.178 0.181 ZF 0.007 0.184 0.452
0.10 0.361 0.385 ¥ 0.013 0.389 0.808
0.20 0.750 0.793 IF 0.021 0.875 1.589
0.50 2.250 2.488 ZF 0.069 3.500 4.776
0.80 6.000 7.729 FF 0.298 14.000 12.743
0.90 11.250 14.888 IF 0.401 31.500 23.730
0.95 21.375 27.812 IF 0.753 66.500 44.834
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Table 2

Estimate Results of Estimate Estimate
p (6) modelling (7) (8)

05 0.133 0.137 3F 0.011 0.139 0.362
0.267 0.250 IF 0.018 0.293 0.639
0.544 0.523 IF 0.029 0.658 1.249
1.155 1.811 IF 0.068 2.633 3.744
4.416 5.452 IF 0.186 10.533 9.936
9.247 10.770 42 0.360 23.700 18.427
19.134 20.611 qi 0.705 50.033 34.712
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