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ESTIMATES FOR A MEAN TIME
OF TROUBLE-FREE WORK
FOR ONE QUEUING NETWORK CLASS*

N.K.KRIVULIN AND D.C.MILOV

The problem of estimation of the mean of process time for networks with queues
and with synchronization of service requirements in nodes is considered. The ap-
paratus of the idempotent algebra is used which admits to describe the dynamics
of system by the stochastic generalized difference equations. For the cases that
the network topology is described by an acyclic graph, the upper and lower
estimates of mean time of work are obtained.

In the present work the problem of estimating a mean time of the trouble-free work for queuing networks
with the synchronization of requirements in nodes is considered. The apparatus of idempotent algebra is
used which permits us to describe the system’s dynamics by the generalized stochastic difference equations.
For the case that the net topology is described by an acyclic graph, the upper and lower estimates of a mean

time of trouble-free work are obtained. _
1. Idempotent algebra. Consider the set of real numbers R, extended by adding one element ¢ = —o0,

with the defined in it operations @ and ®, whose definitions for any z,y € R are the following:
z @y = max(z,y), TQy=x+y,
andz®@e =¢.
The set R with the operations @ and ® is a commutative semiring with the idempotent addition, whose
zero and unit elements are the numbers € and 0 respectively. Semirings with the described properties are

usually called idempotent algebras (see, e.g., [1, 2]).
The idempotent algebra (semiring) of real matrices is introduced by the usual way: for any two matrices
A = (a;;) and B = (b;;) of size n x n operations & and ® are performed by the formulas

n
{A @ B}i_,' =a;; ® bij and {A ® B}ij = @aik ® bkj-
k=1

A matrix £, whose elements are all equal to &, is a neutral element with respect to the operation &.
The matrix E with zeros on the main diagonal and ¢ out of it represents the unit matrix.

Obviously, the operations @ and ® have the property of monotony, i. e., the inequalities A < C and B < D
imply the inequalities A®@ B C®Dand AR BLC®D.

Let A # £ be a square matrix. As usually, we put A° = E and A* = A® A*~1 = A*~1 ® A for any integer

k> 1.
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Consider an arbitrary matrix A = (a;;) and introduce the following magnitudes:

1Al = @ag,  wA) = lrilijﬂ{azjlaz‘j # €}
i,j '

under the condition that p(€) =e.
It is obvious that if A < B, then ||A]| < ||B]|| and u(A) < u(B). Besides, for any number ¢ > 0 the
equalities |[cA|| = c||4]|| and p(cA) = cu(A) are true.
It is easy to check that for any matrices A and B such that an expression A ® B is meaningful, the
following inequality holds
l4® Bl < | All @ IBI.
If A= D is a diagonal matrix (with non-diagonal elements equal to €), then the inequality holds:
IID® Bl > n(D) @ |IBIl.

2. Systems with synchronous service. Consider a network consisting of n nodes, each node having
a service device and a queue. The network topology is described by an oriented acyclic graph G = (N, A),
where N = {1,...,n} is the set of graph nodes, corresponding to the network’s nodes, and A = {(i,7)} C
N x N is a set of graph’s edges, which define the paths of requirements motion.

For any node 7 € N, define two sets of nodes

P@) ={l(,7) € A}, S() = {jl(z,5) € A}.
Each node 1, for which P(7) = 0, is considered as a source of the infinite flow of requirements, entering the
system. Requirements are deleted from the system after their service in the nodes i for which S(7) = 0. At
the initial time all the service devices of the network are free, the queue of requirements in each source-node
has infinite length, the queues of all other nodes do not contain requirements.

We assume that the processes of servicing of the requirements of the network nodes satisty some restraints on
synchronization [3]. Mechanisms of synchronization are realized by auxiliary operations “uniting” (join) and
“disjunction” (fork), which are performed in each node respectively before and after that requirement is
serviced. The performance of the operation “uniting” in node i is as follows: a requirement does not enter
the queue until the node obtains one requirement from each node j € P (7). These requirements are united
into one requirement, which then enters the queue of requirements waiting for service in the node 1.

The operation “disjunction” in node i is performed each time the service of some requirement is
ended. In this case the requirement is replaced by new requirements, whose number is equal to the number of
nodes in S(i). Then these new requirements simultaneously leave node i and are directed to each of the nodes
J € S(z). It is assumed that operations “uniting” and “disjunction”, and also the movements of requirements
between nodes are performed instantly.

Denote by i the duration and by z;(k) the time of ending of the kth service in the node i. We assume
that 7;; are given by the nonnegative stochastic variables and E[r;;] < co foralli =1,...,n,and k = 1,2,...
Under the condition that the system begins to work at the zero time, put z;(0) = 0 and z;(k) = e for all k < 0,
i =1,...,n. Introduce a vector (k) = (z1(k),...,zn(k))T, and also a matrix Ty, = diag (14, . .., Tnx), whose
nondiagonal elements are equal to €. Then the dynamics of the system may be described by the equation [4]

z(k) = Ak) @ z(k - 1) (1)
with the matrix
Ak)=(EoT®GT)" ® T, (2)
where G' = (g;;) is a matrix, whose elements are defined in the following way
~_fo, if ieP(j),
i = € in other cases,

r is the length of the longest path in the network graph G.
As an example, consider a net with n = 4 nodes, which together with the corresponding matrix G is

shown in the figure:

2
130 4 e 0 0 ¢
e € € 0
Jo ) pOo— o= iiig
E € € €

_10
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Since for the net graph the maximal path length is » = 2, the matrix (2) in the equation (1) has the form
T1k 3 € €
N Ty2 _ | @12 Tok € €
Ak)=(EdTh @G ) @ T = Tk © Tak c Tak €

Tik © (Tok B T31) @ Tar Tok @ Tap T3k © Tar  Tak

Note that for the matrix A(k)
AR = Tk © (T2x D T3k) ® T4k

Mean time of trouble-free work. We consider the evolution of the system as a sequence of service
cycles. The first cycle begins at time zero and goes along until in each net node, one requirement will be
serviced. The second cycle is accomplished when in each node two requirements are serviced and so on. It is
obvious that with taking into account the condition z(0) = 0 the time of accomplishment of the kth cycle
can be found as follows:

lz(B)ll = [1Acll,  Arv=A(R)®...@ A1)

Let there exist the probability of appearance of some condition, which prohibits the performance of
the current cycle and further work of the system (probability of refusal). Introduce a random magnitude
» being the number of the last successful cycle of service after which the refusal of the system occur and suppose
that E[v] < co. Then the mean time of the system work until the instant of refusal can be defined as a mathematical
expectation, namely,

El|A, || = E[E[[Aclllv = k] = Y El|A¢[|P{v = k}.
k=1

We assume that for any k the probability of the successful completion of the kth service cycle does not
depend on k. Denoting this probability by p, we obtain

o0
Ell Al = (1-p) D _EllAlp". (3)
k=1
4. Evaluation of the mean time of the network. To construct these estimates, we use the following auxiliary
results. Note at first that for any k we have
AK) =T 0 (T @GN T ®..® (i ®GT)" @ T > Tx-
Besides, for diagonal matrices 7i, ..., 7x the obvious identity holds 1 ® ...@ Thx =T1 + ... + Tr.
Let the elements of the matrix A = (a;;) be certain stochastic variables. Denote by E[A] a matrix obtained

from A by the replacement of its elements by their expectations under the condition that Ele] = €. It is easy
to check that for any matrices A and B the inequalities are valid

E|All > [E[4]ll,  EllA ® Bll > E|E[4] ® Bl| > [[E[A] © E[B]]|.

4.1. Lower estimates of the mecan time of the network. Suppose, for any i = 1, ..., n, stochastic
variables 7;1, Ti2, . . . are equally distributed and independent. Then the following statements hold.
Lemma 1. If ||[E[T1]|| > p (E[T1]), then the following inequality is true

El|Au|| > ap(1 - p™) - Bp <11__p: - mp’") +7 (%) ; (4)

where m = |a/] and
a=ElAW)] - pET]), B=IET]l-pET]), ~=IET]|

Proof. Consider the mathematical expectation

E|A, |l = (1-p) > EllAcllp* = (1 - p) (Z ElAclip* + > EnAknpk) :
k=1 k=1 k=m+1
Let
Akl = l[A(K) @ ... A 2 Tk © ... ® T2) ® A(L)]|-

19



Vestnik St.Petersburg University Vol. 34, No. 1
Mathematics

Passing to the expectation, we obtain
El|Axll > EIE(Tk + ...+ T2) @ AVl = Ell((k = DE[T1]) @ A(1)]]
> u((k - DE[T]) @ EJA(D)|| = (b = D (E[T1]) + E[JAD)]].
Now for the first sum we have

ZEnAkW (E[T3]) Z - 1)p* + ElAQ1)]] Zp

k=1
Inrespect to Ay 2T ® .. @Th =Te + ... + 7] we obtain

]E”Ak“ 2 |E(Tk + .-+ T)ll = IRE[TL I = KIIE[T]II-

Then for the second sum we have the inequality

o [eS)
ST OE|Apt 2 BT D ket
k=m+1 k=m+1

Uniting the inequalities obtained and using the above notation «, £, and 7, we find

E||A, || > (1-p) ( Zp —ﬁzkp +vzkp>—ap1 ") - B;)(l_pp mp’”>+7<lfp)-
(5)

Obviously, the right side of (5) takes the greatest value for the same values of m that provide the maximum
of the function
@ (m) —aZp —szp = Z (a — kB)p
k=1
Note that a > # > 0. Then it is clear that the funcmon ®(m) is an increasing function while (oo —mp) >
and takes the mammal value for m = |a/f4]. O

Lemma 2. If [|E[7;]|| = p# (E[T1]), then the following inequality holds

B> p (ot ). ©)

Proof. Consider inequality (5). Under the condition 3 = [|[E[T1]|| — # (E[T1]) = 0, the right side of the
inequality takes the maximal value for m = co. After the calculation of the corresponding sums we obtain
the inequality (6). O

Note that the condition of the lemma is satisfied if and only if for all i = 1,...,n the values E[r;;] are
equal.

4.3. Upper estimates for a mean time of a trouble-free network.

Lemma 3. The following inequality is true

B4, || < 2 T Bl (7)

Proof. Taking into account that
Al <llAplle...e Al =AW + ... + [AQ)II;
and E[v] = p/(1 — p), let us use the Vald identity
Bl <EY AR = ToEAOI. O

k=1
Lemma 4. Under the condition that Dr;; < oo for alli = 1,...,n, the inequality

1
B4l <p (1 +r) BTl + (1 - C)VBIT] ®

holds, where r is a length of the maximal path in the network graph and C(p) is calculated by the formula

C(p) = 4% <1 + %;_;—Q)(l —erf\/a)) + M(p
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1 2 [
q= —%, le(l«) = ﬁL exp(_tz)dt’

k=1
M(p) = ——p" ).
(v) mﬁx(mp)

Proof. We apply the estimate obtained in [5]:

Bl Al < (5 + r)BITs || + e /BT

Consider the inequality

B4l = (1- ) > BlAI* < (1- ) (Eu’nuz(uy )p* + /DI ] Zm— )

k=1
Compute the first sum in the right side of the inequality:
- p 1
k+r)pk =
S+t = 2 ().
k=1
It is not difficult to verify that for the sum of the second series the following estimate holds

[ee]
- -1
' - Idx_*_ —_ 'nl’
Z\/Qk p s 1 \/Qx—lp \/2m—lp
where m is chosen such that the second addend in the right side represents the maximal by its value term

of the considered series.
It is obvious that for /m to be obtained it is sufficient to compute the root of the derivative of the integrand

function by the formula
_3lnp- Vin’p—6lnp+1-1

o= 4Inp

and then compare the values of the function nearest to the root integers, situated to the right and to the left of the

root.
Whereas

*© -1 - V(1 -2g) )
dz = 1+ —————=(1 —erf ,
e 1O v
where ¢ = —Inp/2, we arrive at the inequality ( ). O

Below we give the results of computations of estimates for the mean time of work for certain values of p
for the network, shown in the above figure. The durations of requirement services in the nodes i = 1,2, 3,4
are independent and have exponential distributions with parameters ;.

In Tab. 1 the results are represented under the condition that A\; = 1 for all 1 = 1,2, 3,4, in Tab. 2 the
results are represented for the case, then A\; = Ay = 1, Ay = 2, and A3 = 3. The tables contain also the
estimates for a mean time of the systems work and the bounds of corresponding confidence intervals on the level
0,95, computed on the basis of the imitational modelling of the system by 10000 of independent realizations.

Table 1

Estimate Results of Estimate | Estimate
P (4) simulation (7) (8)
0.05 0.178 0.181 ¥ 0.007 0.184 0.452
0.10| 0.361 0.385 ¥ 0.013 0.389 0.808
0.20| 0.750 0.793 ¥ 0.021 0.875 1.589
0.50 [ 2.250 2.488 x 0.069 3.500 4.776
0.80 | 6.000 7.729 ¥ 0.298 14.000 12.743
0.90 ( 11.250 | 14.888 F 0.401 | 31.500 23.730
0.95| 21.375 | 27.812 F 0.753 | 66.500 44.834
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Table 2
Estimate Results of Estimate | Estimate
D (6) modelling (7) (8)

0.05| 0.133 0.137 + 0.011 0.139 0.362
0.10] 0.267 0.250 ¥ 0.018 0.293 0.639
0.20 | 0.544 0.523 ¥ 0.029 0.658 1.249
0.50 1.155 1.811 + 0.068 2.633 3.744
0.80 | 4.416 5.452 ¥ 0.186 10.533 9.936
0.90 | 9.247 10.770 + 0.360 | 23.700 18.427
0.95| 19.134 | 20.611 + 0.705 | 50.033 34.712
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