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lmprovemeots of the emdeocyofa complex system (optimization problem) are dlscusse~ where 
the eflldency coefllclent and Its gradleot are estimated by simulation. Conditions for unbiased 
estimates or the emciency gradient lD problems or optimization or a class or message switching 
networks are stated. 

In studies of complex systems, one important problem is raising the system efficiency (the optimization 

problem): find 

~-are max F (x), . (1) 
zex 

where F:X .. Y is a vector efficiency indicator, X is the set of admissible values of system parameters, Y is the set 

of values of F. If F(x) is a function differentiable on X C R•, then for solving problem {1), we can employ 

optimization algorithms based on gradient d~ F(x). For complex systems, the efficien~ characteristic is often 

defined as F(x) -E;" (.r; Cll) , where ,;- is the function of a random argument w and a parameter x (a random 

function). The explicit form ofF(x) is unknown, but the values rT (.r; Cll) at any fixed x and a realization of w can 

be obtained by means of a simulation model of the system. 

Let us assume that with probability (1), there is a derivative il: g:- (.r; Cll) on X and that we have an 

algorithm calculating its values for any x and w. In that case, it is natural to use the estimate of the derivative 

N 

- F(:X) - - ~.,. (x· ..,II)) 8 1 ~ 8 
ax - N dx • • 

(2) 

·-· 
where Cll(l), ••• , (I)CNl are independent realizations of w. In this paper we consider conditions where estimate (2) 

used in solution of the optimization problem for complex discrete systems is unbiased. 

In order for estimate (2) to be unbiased, the sufficient condition is the equality 
8 a 

il.x E.,.(x; 111)- E 8x J"{x; 111). (3) 

on X. The following statement takes place. It is a corollary to the Lebesgue theorem of convergence of majorized 

sequence (1) (other results can be found, e.g., in (2]). 

Theorem 1."Let (Q, '21,· P) be a certain probability space XC R•. For a random function f: xxa-R• 

there exists a.c. derivative a~ f(.r; Cll) on X. If a.c. 

l/(x1; 111)-j(x:; 111)1<l.(•l8x1 -x2DVx .. x~EX 

and EA < oo, then on X expression (3) takes place. 
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In the case where a certain function/ satisfies the conditions of Theorem 1, we will write fe !D. The 

functions from g; have the following properties. 

Lemma. Let f, ge fl>, c1, c, c:s. c4 be positive constants. In that case: 

1) /+ge~; 

2) if a is a random variable u Ia: I <c., then a./a S'>; 

3) if X Ill <CL Iii <ca a.c. then fge8J; 

4) if on X Ill >c• a.c. then 1/fe!l'>: 

5) if/ iJd g a.c. for any zeX, then max{f, g)& f>, min{f, g}eS'>. 

Proof. The validity of statements 1)-4) is established easily. We will prove 5) for h(z: w) •max{f(z; w), 

g(x: w)). We take an arbitrary .roeX. A derivative of function hat point Xo> may not exist if at least one of the 

derivatives 8~ f (x; •) I . iJ~ g (x; •) I does not exist. Besides, h may be undifferentiable in Xo when I (x0; 
s-x, z--z, 

•)- g (x1,; 111). By condition, these events take place with probability zero, and therefore, at almost all wE 0 there 

is a derivative ..!.. h (x; •> I . Since :xo E X is arbitrary, we conclude that there exists a.c. 8~ l&(x; •) on X. 
dX: x-x. ... 

Suppose that for any x" x2EX with probability (1) 

1/(z,; •) -I (x2: •) I < 1, (•) lxa- x2 1, EA1 < oo, 
lg(xa: •)-g(xJ; •)J<A2 (•)1x1 -x,l, EA.2< oo. 

We take an arbitrary /for which the above inequalities take place. We can readily verify the relation 

where A (•u- max {la (~J, ls (•)}. 

Therefore, almost for all w the function h satisfies ( 4) and. E A-E max (A •• At} <E A1 + E At< oo. 

Thus, he !1). The statement min {f, g} e S'> is proved similarly. 

We will illustrate an application of these results in an analysis of a relatively universal model of a complex 

discrete system: a closed network of message switching. The network consists of L nodes that service messages. 

· After a service at a certain network node is completed, the message is transferred to a different node according to 

a certain routing procedure. If the node is free, the message occupies it; otherwise, the message is added to the 

queue of messages waiting to be served at the given node. The messages are picked from the queue according to 

FCFS discipline. 

We denote by Til the service time at the node i of a message with serial number j T~; (i = 1, ... , L, j = 1, 2, 

... ) are mutually independent random variables. The routing procedure is organized as follows. For each node i the 

sequence M,-(m11, m,, ... ) is given where IIl;j is the number of the node where the message with serial number j 

serviced at node i should be transferred; m,1e{l, .•• , L}, i-l, ... , L. i-l, 2, • . • . At the initial (0) time point 

all the nodes are free. There are n ;;:: 0 messages in the queue of the node i. Incidentally, an open network can be 

regarded as a special case of this model. For instance, for representation of the input message flows arriving into 

the network from outside, it is sufficient to introduce nodes for which the initial queues are set equal to oo. 
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We can demonstrate that for this model the values of time points where the next service of each message 

is completed can be expressed in terms of Tq by using tile operations of addition, max, and min. This can be 

illustrated by a simple example of a network consisting of three nodes, We set M 1• (2, 1. 1. 3, ... ). M2- (1. 3. 1. 

1, ... ). M,- (2, 3, 1. 2, ... ) • At the initial time point n1 = ~ • ~ • 1. We take a certain node, e.g., node 2. We 

introduce notations a 1, {JJ, 'YJ for the times of arrival at node 2, the beginning, and the end of the processing of 

message j. For this model we have 

111 =0, 
112 - min {'t11 , ~~ ), 
113 - max ('t11, 't31 ), 

After substitutions we obtain 

Pt=O. 
s,-max ITI· ~~~\, 
~" ...... max (1:~- a,), 

Tt '""''t21o 

1'2- ~' 4- "t~. 
'b=~J+'t-..:3 etc. 

Note that here, in expressions of the type max"· 11}, either~ and 71 arc independent, or 71 = .,_ + "lz, where 

712 arc pairwise independent with~ and 71J. (likewise, for min). 

Suppose now that the durations of processing of messages at the nodes arc defmed by random functions 

Tii(x; w) which depend on the parameter x E X. We take a node I and specify k as the number of messages to be 

processed by node I. As before, we denote by CZJ(X; w). PJ(X; w). \'t(i; w) the times of amval beginning and 

completion of the processing of message j at node I. 

For optimization problem (1), the following characteristics are usually adopted as measures of network 

efficiency: 

1) Fdxi,.,EfTdx; u) -thcoperationspeedofthenode I, fT.fx; •)-k/Tt(x; II));• 

2) F2 (x) = E fT1 (.r, •) -the utilization coefficient of the node I. ,.,-2 (x; 111) = ~ 'tfJ (x; w)f-:1dx: w); 
• J-l -

3) F3 (x)=E 9'3 (x; w) -the average waiting time at the node I, !Ta (x; w) - l: (~J (r; 111)- "'J (x; w))fk 

(here the problem of finding a minimum is posed). J - 1 

Theorem 2. Suppose that in this model Tt1e !1) and at each .reX Ttt (i-1, ... , L, j-1. 2, ... )are 

mutually independent random variables with continuous distributions; Ct• ez, and c, are positive constants. In that 

case 

1) .tra E !l); 

2) if on X Tij ~ Ct a.c., then ,.,-, E g); 

3) if on X <:z ~ Til ~ Ct a.c., then rff2 EgJ. 

The proof of Theorem 2 can be constructed on the basis of the lemma. The objective is to demonstrate that ai, {Ji, 

\'JE ~ i-1,2, .... This follows from the above-mentioned properties of the model and from the independence and 

continuity of Tij. 

It can readily be verified that Theorem 2 holds also for a random routing procedure where the choice of 

the next node I for message j just processed at node i is accomplished with given probabilities: 

P{m;J-l} -P!J'; IE(l, ... , LJ, l=f, ... , L. j=l, 2 ... 
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The conditions of Theorem 2 do not assume any special type of distribution (such as exponential) of the 

service time at nodes. Besides, it does not require that the durations of service of all messages at a given node 

follow the same distribution pattern. 

In practical optimization efforts, obtaining the values of iJ~ ~ (x; (I)) in simulation models is often 

difficult. For disaete systems, a new promising approach has been suggested based on analysis of small 

perturbations of the parameter [3,4). With this approach, effective procedures have been developed for calculating 

the values of d~fT' .(x; (I)) for optimization of message switching networks discussed in the paper. Our analysis 

has confirmed that estimates of the type of (2) in these problems arc unbiased. 
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