
EFFICIENT PARALLEL ALGORITHMS FOR TANDEM
QUEUEING SYSTEM SIMULATION

Sergei M. Ermakov∗ and Nikolai K. Krivulin
(Faculty of Mathematics and Mechanics, St.Petersburg State University

Bibliotechnaya sq.2, Petrodvorets, 198904 St.Petersburg, Russia)

1. Abstract
Parallel algorithms designed for simulation and per-

formance evaluation of single-server tandem queueing sys-
tems with both infinite and finite buffers are presented.
The algorithms exploit a simple computational procedure
based on recursive equations as a representation of sys-
tem dynamics. A brief analysis of the performance of the
algorithms are given to show that they involve low time
and memory requirements.

2. Introduction

The simulation of a queueing system is normally an it-
erative process which involves generation of random vari-
ables associated with current events in the system, and
evaluation of the system state variables when new events
occur [4, 1, 3]. In a system being simulated the random
variables may represent the interarrival and service time
of customers, whereas, as state variables, the arrival and
departure time of customers, and the service initiation
and completion time can be considered.

The usual way to represent dynamics of queueing sys-
tems as well as their performance criteria relies on recur-
sive equations describing evolution of system state vari-
ables [1, 3, 8, 2, 9]. Since the recursive equations actually
determine a global structure of changes in the system state
variables consecutively, they can serve as a basis for the
development of efficient simulation algorithms [1, 3, 5, 9].

In this paper, we assume as in [3, 5, 9] that appropriate
realizations of the random variables involved in simulation
are available when required, and we therefore concentrate
only on deterministic parallel algorithms of evaluating the
system state variables from these realizations. Methods
and algorithms of generating random variables and their
analysis can be found in [4]. A thorough investigation
of parallel simulation from the viewpoint of statistics is
given in [6].

We present parallel algorithms designed for simulation
and performance evaluation of open single-server tandem

∗The research described in this publication was made possi-
ble in part by Grant #NVZ000 from the International Science
Foundation.

queueing systems with both infinite and finite buffers.
The algorithms are based on a simple computational pro-
cedure which exploits a particular order of evaluating the
system state variables from the related recursive equa-
tions, and they are intended for implementation on ei-
ther a vector processor or single instruction, multiple data
(SIMD) parallel processors [10]. The analysis of their per-
formance shows that the algorithms involve low time and
memory requirements.

In Section 3, we give recursive equations which de-
scribe the dynamics of tandem systems with both infinite
and finite buffers. Furthermore, tandem system perfor-
mance criteria are represented in terms of state variables
involved in the recursive equations. In Section 4, paral-
lel simulation algorithms are presented and their perfor-
mance is discussed. A brief conclusion is given in Sec-
tion 5.

3. Models of Tandem Queues

In this section we consider recursive equation based
models of tandem queues, and give related representation
of system performance measures. We start with a sim-
ple model of a single-server tandem queueing system with
infinite buffers, and then extend it to more complicated
models of systems with finite buffers, in which servers may
be blocked according to some blocking rule.

(1) Tandem Queues with Infinite Buffers

Consider a series of N single-server queues with in-
finite buffers, depicted in Fig. 1. An additional queue
labelled with 0 is included in the model to represent the
external arrival stream of customers.

0 1 N
- - - -g g gr r r

Fig. 1 Tandem queues with infinite buffers.

Each customer that arrives into the system is initially
placed in the buffer at the 1st server and then has to pass



Proc. 3rd Beijing Conf. on System Simulation and Scientific Computing, Beijing, China, Oct. 17-19, 1995, 8-12

through all the queues one after the other. Upon the com-
pletion of his service at server n, the customer is instanta-
neously transferred to queue n+1, n = 1, . . . , N −1, and
occupies the (n+1)st server provided that it is free. If the
customer finds this server busy, he is placed in its buffer
and has to wait until the service of all his predecessors is
completed.

For each queue n in the system, n = 0, 1, . . . , N , we
introduce the following notations:

Ak
n, the kth arrival epoch to the queue;

Bk
n, the kth service initiation time at the queue;

Ck
n, the kth service completion time at the queue;

Dk
n, the kth departure epoch from the queue.

Furthermore, let us denote the time between the ar-
rivals of kth customer and his predecessor to the system
by τk

0 , and the service time of the kth customer at server
n by τk

n , n = 1, . . . , N , k = 1, 2, . . .. We assume that
τk

n ≥ 0 are given parameters, whereas Ak
n, Bk

n, Ck
n, and

Dk
n present unknown state variables. Finally, for each

n = 0, . . . , N , we define Dk
n ≡ 0 for all k ≤ 0, and

Dk
−1 ≡ 0 for all k = 1, 2, . . ..

With the condition that the system starts operating
at time zero, and its servers are free of customers at the
initial time, the state variables in the model can be related
by the equations [1, 3, 2, 9]

Ak
n = Dk

n−1,

Bk
n = Ak

n ∨Dk−1
n ,

Ck
n = Bk

n + τk
n ,

Dk
n = Ck

n,

where the symbol ∨ stands for the maximum operator,
n = 0, 1, . . . , N , k = 1, 2, . . .. Clearly, the above set of
recursive equations may be reduced to two equations

Bk
n = Dk

n−1 ∨Dk−1
n , (1)

Dk
n = Bk

n + τk
n , (2)

and even to the equation

Dk
n = (Dk

n−1 ∨Dk−1
n ) + τk

n , (3)

which will provide the basic representations for simulation
algorithms in the next sections.

(2) Tandem Queues with Finite Buffers

Suppose now that the buffers of servers in the open
tandem system have finite capacity. Furthermore, we as-
sume that the servers may be blocked according to some
blocking rule. In this paper, we restrict our consideration
to manufacturing blocking and communication blocking
which are most commonly encountered in practice [1, 3, 2].

Let us consider an open tandem system of N queues
(Fig. 2), and assume the buffer at the nth server, n =
1, . . . , N , to be of the capacity mn, 0 < mn <∞.

Manufacturing Blocking. First we suppose that the
dynamics of the system follows the manufacturing block-
ing rule. Under this type of blocking, if upon completion

0 1 N
- - - -g g gr r r

m1 mN

Fig. 2 Tandem queues with finite buffers.

of a service, the nth server sees the buffer of the (n+1)st
server full, it cannot be unoccupied and has to be busy
until the (n + 1)st server completes its current service to
provide a free space in its buffer. Clearly, since the cus-
tomers leave the system upon their service completion at
the Nth server, this server cannot be blocked.

With the additional condition that Dk
n ≡ 0 if n >

N , one can describe the dynamics of the system by the
equations [1, 3, 2, 9]

Bk
n = Dk

n−1 ∨Dk−1
n , (4)

Ck
n = Bk

n + τk
n , (5)

Dk
n = Ck

n ∨D
k−mn+1−1

n+1 . (6)

Communication Blocking. This rule does not permit
a server to initiate service of a customer if the buffer of
the next server is full. In that case, the server remains
unavailable until the current service at the next server is
completed.

Let us assume that the system depicted in Fig. 2 fol-
lows communication blocking, and introduce the notation
Hk

n to denote the time instant at which the nth server
becomes ready to check whether there is empty space at
the buffer of the next server, and to initiate service of cus-
tomer k if it is possible. Now the system dynamics may
be represented by the equations [1, 2, 9]

Hk
n = Dk

n−1 ∨Dk−1
n , (7)

Bk
n = Hk

n ∨D
k−mn+1−1

n+1 , (8)

Dk
n = Bk

n + τk
n . (9)

(3) Representation of System Performance

Suppose that we observe the system until the Kth ser-
vice completion at server n, 1 ≤ n ≤ N . As is customary
in queueing system simulation, we assume that K > N .
The following average quantities are normally considered
as performance criteria for server n in the observation
period [1, 7, 8, 9]:

system time

of one customer: Sn =
∑K

k=1
(Dk

n −Ak
n)/K,

waiting time

of one customer: Wn =
∑K

k=1
(Bk

n −Ak
n)/K,

throughput rate
of the server: Tn = K/DK

n ,

utilization

of the server: Un =
∑K

k=1
τk

n/DK
n ,

2



Proc. 3rd Beijing Conf. on System Simulation and Scientific Computing, Beijing, China, Oct. 17-19, 1995, 8-12

number of

customers: Jn =
∑K

k=1
(Dk

n −Ak
n)/DK

n ,

queue length

at the server: Qn =
∑K

k=1
(Bk

n −Ak
n)/DK

n .

Clearly, the above criteria are suited to the systems
with both infinite and finite buffers. Furthermore, one can
consider the average idle time of server n, which presents
a criterion inherent only in the systems with finite buffers.
It is defined for the manufacturing and communication
blocking rules respectively as [1, 9]

IMn =

K∑
k=1

(Dk
n − Ck

n)/K,

ICn =

K∑
k=1

(Bk
n −Hk

n)/K.

Note finally that these expressions may be also written in
terms of departure epochs and service times in the same
form as

In =

K∑
k=1

(
Dk

n − (Dk
n−1 ∨Dk−1

n )− τk
n

)
/K.

4. Tandem Queues Simulation
Algorithms

We start with the description of a simple simulation
procedure designed for the tandem system with infinite
buffers, and then extend the procedure to algorithms for
systems with finite buffers and blocking. It is shown how
the algorithms can be refined so as to evaluate system
performance. In addition, time and memory requirements
associated with the algorithms are briefly discussed.

(1) The Basic Simulation Procedure

We use the procedure proposed in [5], which was de-
signed for the simulation of the tandem queueing system
described by equations (1-2). It actually performs compu-
tations of successive state variables Bk

n and Dk
n with in-

dices being varied in a particular order. According to this
order, at each iteration i, the variables with n + k = i,
i = 1, 2, . . ., have to be evaluated. The next algorithm
shows how to implement this procedure to the simulation
of the first K customers in a tandem queueing system
with infinite buffers and N servers, K > N .

Algorithm 1.

Set di = 0, i = −1, 0, . . . , N ;
for i = 1, . . . , K + N, do

j0 ←− max(1, i−N);
J ←− min(i, K);
for j = j0, j0 + 1, . . . , J, do

bi−j ←− di−j−1 ∨ di−j ;

di−j ←− bi−j + τ j
i−j .

In Algorithm 1, the variables bn and dn serve all the iter-
ations to store current values of Bk

n and Dk
n respectively,

for k = 1, . . . , K. Upon the completion of the algorithm,
we have for server n the Kth departure time saved in dn,
n = 0, 1, . . . , N .

Since one maximization and one addition have to be
performed so as to get new variables Bk

n and Dk
n, one can

conclude that the entire algorithm requires O(2(N+1)K)
arithmetic operations without considering index manipu-
lations. Moreover, the order in which the variables are
evaluated within each iteration is essential for reducing
memory used for computations. It is easy to see that
only O(N + 1) memory locations are actually required
with this order, provided only the departure epochs Dk

n

are to be calculated. To illuminate the memory require-
ments, let us represent Algorithm 1 in another form as

Algorithm 2.

Set di = 0, i = −1, 0, . . . , N ;
for i = 1, . . . , K + N , do

j0 ←− max(1, i−N);
J ←− min(i, K);
for j = j0, j0 + 1, . . . , J, do

di−j ←− di−j−1 ∨ di−j + τ j
i−j .

Finally, we suppose that there is a computer system
with either a vector processor or SIMD parallel processors
available for tandem queueing system simulation. In that
case, we can use the following algorithm, which is actually
a simple modification of Algorithm 1.

Algorithm 3.

Set di = 0, i = −1, 0, . . . , N ;
for i = 1, . . . , K + N, do

j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− di−j−1 ∨ di−j ;
in parallel, for j = j0, j0 + 1, . . . , J, do

di−j ←− bi−j + τ j
i−j .

Let P denote the length of vector registers of the
vector processor or the number of parallel processors, de-
pending on whether a vector or parallel computer system
appears to be available. It is not difficult to see that Algo-
rithm 3 requires the condition P ≥ N +1 to be satisfied.
Otherwise, if P < N + 1, one simply has to rearrange
computations so as to execute each iteration in several
parallel steps. In other words, all operations within an
iteration should be sequentially separated into groups of
P operations, assigned to the sequential steps.

It has been shown in [5] that for any integer P > 0, Al-
gorithm 3 requires O (2N + 2K + 2bN/P c(K − P )) par-
allel (vector) operation, where bxc denotes the greatest
integer less than or equal to x. Moreover, provided that
P = N +1, the algorithm achieves linear speedup in rela-
tion to Algorithm 1 as the number of customers K →∞.
Finally, it is easy to understand that Algorithm 3 entails
O(2(N + 1)) memory locations.

(2) Simulation of Queues with Finite Buffers

3



Proc. 3rd Beijing Conf. on System Simulation and Scientific Computing, Beijing, China, Oct. 17-19, 1995, 8-12

Taking equations (4-6) as the starting point, we can
readily rewrite Algorithm 3 so as to make it possible to
simulate tandem queueing systems with manufacturing
blocking. Let us first introduce the variables bn and cn to
represent current values of Bk

n and Ck
n. Since calculation

of Dk
n involves taking account of the value of D

k−mn+1−1

n+1 ,

one has to keep in memory all values Dj
n+1 with j =

k − mn+1 − 1, k − mn+1, . . . , k. Therefore, we further
introduce the variables dj

n as memory locations of these
values, n = 1, . . . , N , j = 0, 1, . . . , mn. The locations
d0

n, d1
n, . . . , dmn

n are intended to be occupied using cyclic
overwriting so that the value Dk

n is put into the location
dj

n with j = k mod (mn + 1), where mod indicates the
modulo operation.

In order to simplify further formulas, we define the
index function

ρ(k, n) =

{
k mod (mn + 1), if 1 ≤ n ≤ N
0, otherwise

for all k = 1, 2, . . .. Finally, with the variables d0
−1, d0

0,
and d0

N+1 reserved respectively for D0
−1, Dk

0 , and Dk
N+1,

we have the next parallel algorithm.

Algorithm 4.

Set d0
−1, d

0
0, d

0
N+1 = 0;

set dj
i = 0, i = 1, . . . , N, j = 0, 1, . . . , mi;

for i = 1, . . . , K + N, do
j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− d
ρ(j,i−j−1)
i−j−1 ∨ d

ρ(j−1,i−j)
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

ci−j ←− bi−j + τ j
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

d
ρ(j,i−j)
i−j ←− ci−j ∨ d

ρ(j,i−j+1)
i−j+1 .

Consider now equations (7-9) which describe the dy-
namics of the tandem system operating under the com-
munication blocking rule. With the variables hn, n =
0, 1, . . . , N , used as storage for the values of Hk

n, it is
easy to arrive at

Algorithm 5.

Set d0
−1, d

0
0, d

0
N+1 = 0;

set dj
i = 0, i = 1, . . . , N, j = 0, 1, . . . , mi;

for i = 1, . . . , K + N, do
j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

hi−j ←− d
ρ(j,i−j−1)
i−j−1 ∨ d

ρ(j−1,i−j)
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− hi−j ∨ d
ρ(j,i−j+1)
i−j+1 ;

in parallel, for j = j0, j0 + 1, . . . , J, do

d
ρ(j,i−j)
i−j ←− bi−j + τ j

i−j .

In fact, both algorithms differ from Algorithm 3 in
that at every iteration, they involve three parallel opera-
tions each, whereas the latter does two operations. There-
fore, we may extend the above estimate of time require-
ments for Algorithm 3 to Algorithm 4 and Algorithm 5,

which then becomes O (3N + 3K + 3bN/P c(K − P )).
The number of memory locations now involved in compu-
tations can be evaluated as O(3(N + 1) + M + 1), where

M =
∑N

i=1
mi.

(3) Evaluation of Performance Criteria

In order to present a modification of Algorithm 3 suit-
able for the evaluation of the tandem system performance
criteria introduced in the previous section, first define the
additional variables xn, yn, and zn, n = 0, 1, . . . , N , to
represent the memory locations which are to store current
values of the sums

k∑
i=1

(Ai
n −Di

n),

k∑
i=1

(Bi
n −Ai

n),

k∑
i=1

τ i
n,

respectively. Taking into account that in the tandem
systems with both infinite and finite buffers, we have
Ak

n = Dk
n−1 for all n = 0, 1, . . . , N , and k = 1, 2, . . .,

we may write the following parallel algorithm.

Algorithm 6.

Set di = 0, i = −1, 0, . . . , N ;
set xi, yi, zi = 0, i = 0, 1, . . . , N ;
for i = 1, . . . , K + N, do

j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

xi−j ←− xi−j − di−j−1;
in parallel, for j = j0, j0 + 1, . . . , J, do

yi−j ←− yi−j − di−j−1;
in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− di−j−1 ∨ di−j ;
in parallel, for j = j0, j0 + 1, . . . , J, do

di−j ←− bi−j + τ j
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do
xi−j ←− xi−j + di−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do
yi−j ←− yi−j + bi−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

zi−j ←− zi−j + τ j
i−j .

As it is easy to understand, Algorithm 6 requires
O (7N + 7K + 7bN/P c(K − P )) parallel operations, and
involves O(5(N + 1)) memory locations. Upon the com-
pletion of the algorithm, the performance criteria associ-
ated with each queue n, n = 1, . . . , N , can be calculated
as

Sn = xn/K, Wn = yn/K,

Tn = K/dn, Un = xn/dn,

Jn = xn/dn, Qn = yn/dn.

One can modify both Algorithm 4 and Algorithm 5 to
provide performance evaluation in tandem queueing sys-
tems with finite buffers in an analogous way. Specifically,
the next two algorithms intended to compute the average
idle time of each server in the system. The first one based

4



Proc. 3rd Beijing Conf. on System Simulation and Scientific Computing, Beijing, China, Oct. 17-19, 1995, 8-12

on Algorithm 4 is designed for the system operating under
the manufacturing blocking rule.

Algorithm 7.

Set d0
−1, d

0
0, d

0
N+1 = 0;

set dj
i = 0, i = 1, . . . , N, j = 0, 1, . . . , mi;

set xi = 0, i = 0, 1, . . . , N ;
for i = 1, . . . , K + N, do

j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− d
ρ(j,i−j−1)
i−j−1 ∨ d

ρ(j−1,i−j)
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

ci−j ←− bi−j + τ j
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do
xi−j ←− xi−j − ci−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

d
ρ(j,i−j)
i−j ←− ci−j ∨ d

ρ(j,i−j+1)
i−j+1 ;

in parallel, for j = j0, j0 + 1, . . . , J, do

xi−j ←− xi−j + d
ρ(j,i−j)
i−j .

The variable xn inserted in Algorithm 7 serves for each
n, n = 0, 1, . . . , N to represent current values of the sums∑k

i=1
(Di

n − Ci
n). Upon the completion of the algorithm,

one can calculate xn/K which gives the value of IMn.
The time and memory costs can be estimated respectively
as O (5N + 5K + 5bN/P c(K − P )) and O(4(N + 1) +
M + 1).

Algorithm 8.

Set d0
−1, d

0
0, d

0
N+1 = 0;

set dj
i = 0, i = 1, . . . , N, j = 0, 1, . . . , mi;

set xi = 0, i = 0, 1, . . . , N ;
for i = 1, . . . , K + N, do

j0 ←− max(1, i−N);
J ←− min(i, K);
in parallel, for j = j0, j0 + 1, . . . , J, do

hi−j ←− d
ρ(j,i−j−1)
i−j−1 ∨ d

ρ(j−1,i−j)
i−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do
xi−j ←− xi−j − hi−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

bi−j ←− hi−j ∨ d
ρ(j,i−j+1)
i−j+1 ;

in parallel, for j = j0, j0 + 1, . . . , J, do
xi−j ←− xi−j + bi−j ;

in parallel, for j = j0, j0 + 1, . . . , J, do

d
ρ(j,i−j)
i−j ←− bi−j + τ j

i−j .

With the same time and memory requirements as for
the previous algorithm, Algorithm 8 allows one to eval-
uate the average idle time of each servers in tandem
queues with communication blocking. It produces the
sums

∑K

i=1
(Bi

n−Hi
n) stored in xn, n = 1, . . . , N , which

can be used in calculation of the criteria ICn with the
expression xn/K.

5. Conclusions

Parallel algorithms which offer a quite simple and ef-
ficient way of simulating tandem queueing system have
been proposed. It has been shown that the algorithms

involve low time and memory requirements. Specifically,
one can conclude that the parallel simulation of the first
K customers in a system with N queues requires the
time of order O (L(N + K + bN/P c(K − P ))), where P
is the number of processors, L is a small constant compa-
rable with the number of the performance criteria being
evaluated. Note, however, that this estimate ignores the
time required for computing indices, and allocating and
moving data, which can have an appreciable effect on the
performance of parallel algorithms in practice.

References

[1] Chen, L. and C.-L. Chen, A Fast Simulation Ap-
proach for Tandem Queueing Systems Proceedings
of the 1990 Winter Simulation Conference, New Or-
leans, LA, Dec. 9-12 (O. Balci, R.P. Sadowski and
R.E. Nance, eds), 1990, 539–546.

[2] Cheng, D.W., On the Design of a Tandem Queue
with Blocking: Modeling, Analysis, and Gradient
Estimation, Naval Research Logistics, 41, 1994, 759–
770.

[3] Greenberg, A.G., B.D. Lubachevsky and I. Mi-
trani, Algorithms for Unboundedly Parallel Simu-
lations, ACM Transactions on Computer Systems,
9(3), 1991, 201–221.

[4] Ermakov, S.M., Die Monte-Carlo-Methode und ver-
wandte Fragen, VEB Deutscher Verlag der Wiss-
eschaften, Berlin, 1975.

[5] Ermakov, S.M. and N.K. Krivulin, Efficient Algo-
rithms for Tandem Queueing System Simulation, Ap-
plied Mathematics Letters, 7(6), 1994, 45–49.

[6] Heidelberger, P., Discrete Event Simulation and Par-
allel Processing: Statistical Properties, SIAM Jour-
nal on Statistical Computing, 9(6), 1988, 1114–1132.

[7] Krivulin, N.K., Optimization of Complex Systems for
Simulation Modeling, Vestnik Leningrad University:
Mathematics, 23(2), 1990, 64–67.

[8] Krivulin, N.K., Unbiased Estimates for Gradients of
Stochastic Network Performance Measures, Acta Ap-
plicandae Mathematicae, 33, 1993, 21–43.

[9] Krivulin, N.K., Recursive Equations Based Models
of Queueing Systems. In Proceedings of the European
Simulation Symposium, İstanbul, Turkey, Oct. 9-12,
1994 (Ali R. Kaylan, Axel Lehmann, Tuncer İ. Ören,
Eds.), 1994, 252–256.

[10] Ortega, J.M., Introduction to Parallel and Vector So-
lution of Linear Systems. Plenum Press, New York,
1988.

5


