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Abstract

A stochastic queueing network model with parameter-
dependent service times and routing mechanism, and its
related performance measures are considered. An esti-
mate of performance measure gradient is proposed, and
rather general sufficient conditions for the estimate to
be unbiased are given. A gradient estimation algorithm
is also presented, and its validity is briefly discussed.
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1 Introduction

The evaluation of performance measure gradient
presents one of the main issues of analysis of queue-
ing network performance. Except in a few particular
models, there are generally no closed-form representa-
tions as functions of network parameters available for
performance measures and their gradients. In this sit-
uation, one normally applies the Monte Carlo approach
to estimate gradient of network performance measures.

In the last decade, infinitesimal perturbation anal-
ysis (IPA) [6, 5, 14] has received wide acceptance in
queueing system performance evaluation as an efficient
technique underlying the calculation of gradient esti-
mates as well as the examination of their unbiasedness.
Specifically, this technique was employed in [2] to cal-
culate gradient estimates in closed networks with an or-
dinary probabilistic routing mechanism and general ser-
vice time distributions. An extension of IPA, smoothed
perturbation analysis, has been applied in [4] to the
development of asymptotically unbiased gradient esti-
mates in queueing networks with parameter-dependent
routing.

Another approach based on the analysis of algebraic
representation of queueing system dynamics and their
performance has been implemented in [8, 9, 10]. This
approach offers a convenient and unified way of analyt-
ical study of gradient estimates, and it leads to com-
putational procedures closely similar to those of IPA.

In this paper, based on this approach, a rather general
queueing network model with parameter-dependent ser-
vice times and routing mechanism is presented. For the
performance measures which one normally chooses in
analysis of network performance, we propose a gradient
estimate, and give sufficient conditions for the estimate
to be unbiased. These conditions are rather general and
normally met in analysis of queueing network perfor-
mance. Finally, an algorithm of estimating gradient of
a particular performance measure is presented, and its
validity is briefly discussed.

2 The Underlying Network Model

We consider a generalized model of a queueing network
consisting of N nodes, with customers of a single class.
As is customary in queueing network models, customers
are assumed to circulate through the network to receive
service at appropriate nodes. We do not restrict our-
selves to a particular type of nodes, it is suggested that
any node may have a single server as well as several
servers operating either in parallel or in tandem.

Furthermore, there is a buffer with infinite capacity
in each node, in which customers are placed at their
arrival to wait for service if it cannot be initiated im-
mediately. We assume the queue discipline underlying
the operation of any node to be first-come, first-served.
Upon his service completion at one node, each customer
goes to another node chosen according to some routing
procedure described below. We suppose that the tran-
sition of any customer between nodes requires no time,
and he therefore arrives immediately into the next node.
Finally, we assume that the network starts operating at
time zero; at the initial time, the server at any node
n is free, whereas its buffer contains K, customers,
0<K,<oo,n=1,...,N.

We now turn to the formal description of the net-
work dynamics from an algebraic viewpoint, and then
introduce randomness into the network model.
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2.1 Algebraic Description of Node Dynamics

In a general sense, each node can be regarded as a pro-
cessor which produces an output sequence of departure
times of customers from another two, an input and con-
trol sequences formed respectively by the arrival times
and the service times of customers. Let us denote for
every node n, 1 < n < N, the kth arrival epoch to
the node by AF and the kth departure epoch from the
node by DF. Notice, because the transition of customers
from one node to another is immediate, each A% coin-
cides with some D? with the exception of A% =0 for all
k < K,,. Finally, we denote the service time associated
with the kth service initiation in node n, by 7%. The set
of all service times T = {7F|n=1,... ,N;k=1,2,...}
is assumed to be given.

The usual way to represent the operation of a node is
based on recursive equations describing evolution of DF
as a state variable [3, 7, 12]. Note that these recursive
equations are often rather difficult to resolve. Below are
given two equations which describe dynamics of nodes
operating as the G/G/1 and G/G/2 queueing systems.
Other examples may be found in [3, 7, 11, 12].

2.1.1 The G/G/1 queue.

Suppose first that node n is represented as the G/G/1
queue. Its associated recursive equation may be written
as [3]

Dy = (Ay v Dy~ + 77,

where V denotes the maximum operator, and D¥ = 0
for all £ < 0. It is easy to see that the solution of the
equation in terms of arrival and service times has the
form
k k
pE=\/ |4, +3
J=1

=1

2.1.2 The G/G/2 queue.

The equation which describes the dynamics of a node
operating as the G/G/2 queue may be considered as
rather difficult to handle. For node n, it is written as
[11]

Dk

k
V(A5 v Di72) + ) A (AR v DY + 7t
i=1

where A stands for the minimum operator. Although
there are no closed-form solutions of the equation,
known to the author, it is clear that it exists.

2.2 Routing Mechanism and Interaction of
Nodes

The routing mechanism inherent in the network is de-
fined by the sequences R, = {p.,p2,...} given for each
node n, where p¥ represents the next node to be visited
by the customer who is the kth to depart from node n,

ok e{1,...,N}, k=1,2,.... The matrix

Py Py e P
R— .2 '2 .2
PN PN PN

is referred to as the routing table of the network.

In order to describe the dynamics of the network
completely, it remains to define formally interactions be-
tween nodes. In fact, a relationship between arrival and
departure times of distinct nodes is to be established.
To this end, for each node n, let us introduce the set

D, ={D!lpl=n;i=1,....N;j=1,2,...} (1)

which is constituted by the departure times of the cus-
tomers who have to go to node n. Furthermore, we
denote by AX the arrival time of the customer which
is the kth to arrive into node n after his service at any
node of the network. In other words, the symbol A*
differs from A% in that it refers only to the customers
really arriving into node n, and does not to those oc-
curring in this node at the initial time.

It has been shown in [9, 10] that it holds

L A

{D1,...,Dx}CD,,

(D1 V-V Dy), (2)

where minimum is taken over all k-subsets of the set
D,,. The times A* and A* are related by the equality

. o, it k<K,
An _{ AE=Kn = otherwise - (3)

Clearly, if deterministic routing with an integer ma-
trix R as the routing table is adopted in the model, each
set D,, n=1,..., N, is determined uniquely from (1),
and then a straightforward algebraic representation of
Ak may be obtained using (2-3). In this case, start-
ing from the above representations of node dynamics,
one may eventually arrive at algebraic expressions for
any arrival time AY and departure time DF, which are
written in terms of service times 7 € T', and involve only
the operations of maximum, minimum, and addition.

2.3 Representation of Network Performance

One of the features of the formal network model de-
scribed above is that it offers the potential for repre-
senting network performance criteria in a rather sim-
ple and convenient way. Suppose that we observe the
network until the Kth service completion at node n,
1 <n < N. As performance criteria for node n in the
observation period, one normally chooses the following
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average quantities [3, 8, 9, 10, 12]

system time
of one customer: Zk 1( — AN)/K,

waiting time
of one customer: Zk |(DE — Ak —7F) /K,

throughput rate
of the node: TK = K/DE

utilization
of the server:

K
w =k Th /DY

number of

customers: Zk |(DE — AF)/DE/

queue length

at the node: =K (DF — Ak — 7F) /DK,

It is easy to see that with the routing mechanism de-
termined by an integer matrix, all these criteria may be
represented only in terms of service times in closed form.

2.4 Stochastic Aspect and Performance
Evaluation

Let us suppose that for all n = 1,...,N, and k =
1,2,..., the service times are defined as random vari-
ables 7% = 75(0,w), where §# € © C R is a decision
parameter, w is a random vector which represents the
random effects involved in network behaviour. First we
assume the routing table R = R to be an integer ma-
trix. Since deterministic routing leads to algebraic ex-
pressions in terms of the random variables 7 € T for
the performance criteria introduced above, one can con-
clude that these criteria also present random variables.

Let F = F(6,w) be a random performance criterion
of the network. As is customary, we define the perfor-
mance measure associated with I’ as the expected value

[F(6,w)]. (4)

Although we may express F' in closed form, it is of-
ten very difficult or impossible to obtain analytically the
performance measure F'. In this situation, one generally
applies a simulation technique which allows of obtain-
ing values of F(6,w), and then estimate the network
performance by using the Monte Carlo approach.

We now turn to the networks with parameter-
dependent probabilistic routing. We assume pf =
pk(0,w) to be a discrete random variable ranging over
the set {1,..., N}. The routing mechanism of the net-
work is now defined by the random matrix R = R(6,w)
with particular routing tables as its values. We denote
the set of all possible routing tables R by R.

Obviously, the expression of AF defined by (2-3)
may change from one shape into another, depending on
particular routing tables. To take this into account, we
now define the random performance criteria in (4) as

F(9) = E,,

[9, 10]
F(0,w,R(0,0)) = Y Yr@w=rFr.w), (5
ReER

where 1{gr .)=p} is the indicator function of the event
{R(#,w) = R}, and Fr(f,w) = F(0,w, R) is the perfor-
mance criterion evaluated under the condition that the
network operates according to the deterministic routing
mechanism defined by the routing table R € R.

3 Performance Measure Gradient
Estimation

Since there are generally no explicit representations as
functions of system parameters 6, available for the per-
formance measure F', one may evaluate its gradient
F(0)/00 by no way other than through the use of ei-
ther finite difference estimates [1, 5] or the estimate

g0, w1,...,wn) MZ 50 F(0,w;), (6)
where w;, i = 1,..., M, are independent realization of
w, provided that the derivative 0F (0,w)/00 exists.

Very eflicient procedures of obtaining gradient es-
timates may be designed using the IPA technique
[6, 5, 14]. Such a procedure can yield the exact values
of the derivative 0F(8,w)/00 by performing only one
simulation run. Furthermore, in the case of a vector pa-
rameter € R%, the IPA procedures provide all partial
derivatives OF(0,w)/00;, ¢ = 1,...,d, simultaneously,
and take an additional computational cost which is nor-
mally very small compared with that required for the
simulation run alone. Finally, it can be easily shown
[1, 14] that if the IPA estimate of the derivative in (6)
is unbiased, the mean square error of g has the order
which is significantly less than those of any finite differ-
ence estimates based on the same number of simulation
runs.

A sufficient condition for the estimate (6) to be un-
biased at some 6 € © requires [1, 5, 14]

wEFOWI=E|Zrew|. @

A usual way of examining the interchange in (7) involves
the application of the Lebesgue dominated convergence
theorem [13]

Theorem 1 Let (2, F,P) be a probability space, © C
RY, and F: © xQ — R be a F-measurable function for
any 0 € © and such that the following conditions hold:

(i) for every 6 € ©, there exists OF(0,w)/d0 at 0
w.p. 1,
(ii) for all 01,0, € O, there is a random variable A(w)
with EX < oo and such that
[F(0r,w) = F(O2,w)| < Aw) [[ 1 =02 || wp. 1. (8)
Then equation (7) holds on ©.
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In [8, 9, 10] the approach based on the implementa-
tion of Theorem 1 has been applied to analyze estimates
of performance gradient in the networks models with
the parameter-independent probabilistic routing mecha-
nism determined by a random routing table R = R(w).
Specifically, starting from the representations of network
dynamics, discussed in Section 2, it has been shown that

(i) if each service time 7 € T' satisfies the conditions of
Theorem 1, and for every 6 € O, all 7 € T' present
continuous and independent random variables, then
the average total time SX and waiting time WX
satisfy the conditions of Theorem 1;

(ii) if in addition to previous assumptions, there exist
random variables u,r > 0 such that for all 7€ T
it holds v < |7| < u w.p. 1 for all § € ©, and
the condition E[u)/v?] < oo is fulfilled, where A
is the random variable providing 7 with (8), then
the average throughput rate T, utilization UK,
number of customers JX and queue length QX
satisfy the conditions of Theorem 1.

Note that the above conditions do not involve indepen-
dence at each 6 between the random variables 7(0,w)
and p(w) in the probabilistic sense.

4 An Unbiased Gradient Estimate for
Networks with Parameter-Dependent
Routing

We start the section with an example which exhibits
difficulties arising in gradient estimation when there is
a parameter dependence involved in the routing mech-
anism of the network, and then present our main result
offering an unbiased estimate of performance measure
gradient in networks with parameter-dependent routing.

4.1 Preliminary Analysis

Suppose that there is a parameter dependence of the
routing mechanism in the network, that is R = R(f,w).
In this case, the random performance criterion F gen-
erally violates condition (8). As an illustration, one can
consider the following example.

Let © =[0,1], Q; = Qo =[0,1], and (Q,F, P) be a
probability space, where F is the o-field of Borel sets of
Q =y xQq, P is the Lebesgue measure on 2. Denote
w = (w1,ws)T, and define the function

Fow a0, ={ 2ok R0

where
n0,w)=04+w +1, O,w)=0+w,
and .
R

We may treat 7 and 75 as the service time of a cus-
tomer respectively at node 1 and 2. The function F'

is then assumed to be the service time of the customer
which may arrive into either node 1 or 2, according to
one of the two possible values of p.

Clearly, 71 and 75 satisfy the conditions of Theo-
rem 1, whereas the function F' now represented as

_ 9+W1+1, lfWQ§0
F(e’“)_{9+w1, ity >0

is differentiable w.p. 1 at any 6 € ©, and dF(0,w)/00 =
1 w.p. 1. However, for any 61,0, € © such that 6; >
wy and Oy < w9, it holds

|F(01,w) — F(fs,w)| > 1,

and therefore, condition (8) is violated.
On the other hand, it is easy to verify that

E[F(0,w)] =20 + 1, S E[F(9,w)] =2

ZFO,w)=1wp. 1, E[ZF(w)]=L1

In other words, equation (7) proves to be not valid, and
we finally conclude that estimate (6) will be biased.

4.2 The Main Result

To suppress the bias in estimates of the gradient

9 d
g F(0) = Z5EF (0,0, R(0,)], (9)

let us replace (6) by the estimate

M

~ 1
g(evwlv"'va):MZG(97‘U’L)’ (10)
i=1

where G(0,w) will be defined in the next theorem.

Theorem 2 Suppose that a random performance crite-
rion F is represented in form (5), and for each R € R
the following conditions hold:

(i) Fgr satisfies the conditions of Theorem 1;

(ii) for any 0 € ©, the random variable Fr(6,w) and
the random matriz R(0,w) are independent;

(i) for any 6 € O, the function ®(O,R) =
Pr{R(0,w) = R} is continuously differentiable at
8, and ©(6,R) > 0.

Then for any 6y € O, estimate (10) with

0
G(e()aw) = %F(07W7R(007w))
0=0¢

+ F‘(@o,w7 R(90,w))\lf(90,R(90,w)),

where U(0, R) = % In®(0, R), is unbiased.
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Proof. Clearly, it is sufficient to show that the equa-
tion

0

00

holds for any 6 € ©.
To verify this equation, let us first represent F' in
form (5), and consider its expected value

E[F(6,w, R(0,w))] = E[G(6,w)]

E[F(0,w, R(0,w))] = Y E [1{rp.w)-r} F(0,w, R)] .

ReER

Since E[l{r(9w)=r}] = Pr{R(0,w) = R} = ®(0,R), it
follows from condition (ii) of the theorem that

E[F(0,w, R(0,w))]

:ZE

ReR

= Y E[F(0,w,R)|®(0,R).

ReER

R)|Pr{R(0,w) = R}

For any 6y € ©, under conditions (i) and (iii), we
successively get

0
g PO RO
0
= };3 (80 [F(8,w, R)] - ®(6p, R)
0
0o, w, — (0,
EIF (fo,, B)] (6, R) HO)

RER =00
o g
o0 | o
E[F(@O,M,R)]W(I)wO»R))
S <E O P90, R)
RER a0 =60

E[F (00, w, R)]¥ (0o, R)) (0o, R)

:ZE

% (0,w, R)
RER

6=060

+ F(6p,w, R)¥(0g, R) | Pr{R(fy,w) = R}

0

F(0,w, R(6y,w))

0=0,
+ F(0o,w, R(6o,w))¥ (0o, R(%M))]
= FE[G(Hp,w)]. O
It is not difficult to obtain the conditions for esti-

mate (10) to be unbiased for gradient of particular per-
formance measures. They can be stated by combining

the conditions in Section 3, related to particular perfor-
mance criteria in networks with parameter-independent
routing, with those of Theorem 2. Note that these con-
ditions are rather general, and normally met in analysis
of queueing networks.

Let us now return to the example presented in the
previous subsection. First, we have

®(0,1) =Pr{p(d,w) =1} =0,

®(0,2) = Pr{p(f,w) =2} =1-46,

and then J .
U(h,1)=—1Inf =
(9? ) dg ne 9?
d 1
U(0,2)=—In(l1-0)=——.
In this case, the function G is defined as
1+ Hetl f 0, < 9
GO,w) =
1—}—90-"_:‘}11, if wo >0

for any 6 € (0,1). Finally, evaluation of its expected
value gives

E[G(0,w)] = 2 E[F(0,w,p(0,w))] = 2.

0
00
5 Application to Network Simulation
Consider a network with N single-server nodes, and as-
sume that the Kth service completion at a fixed node
n, 1 <n < N, comes with probability one after a finite
number of service completions in the network. In this
case, to observe evolution of the network until the Kth
completion at the node, it will suffice to take into con-
sideration only finite routes defined by a right truncated
routing table with integer (N X L)-matrices

P2 ok

1 2 L

ry Ty ... Th
R:

1 2 L

N v -+ TN

as its values, with some L > K.

Furthermore, we assume, as is customary in net-
work simulation, that for each 6 € ©, the random vari-
ables p%(6,w) are independent for all n = 1,..., N,
and k = 1,...,L. With this condition and the nota-
tion ¢k (0,7) = Pr{pk(6,w) = r}, we may represent the
function ® introduced in Theorem 2, as

R}—HHson

n=1k=1

®(0,R) =Pr{R(0,w)

and then get the function ¥ in the form

N

P L
U(0,R) = %IINIDQR ZZ% n ok (,r5).

n=1k=1
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Suppose now that we have to estimate the gradient of
a performance measure, say UX (0) = E[UX(0,w)], the
expected value of the average utilization of the server at
node n. It results from Theorem 2 that, as an unbiased
estimate, the function

G0, w) = %F(G,M,R) L F(0,w,R)U(0,R), (11)

may be applied with R = R(6,w), and
K
F(0,w,R) =Y 7F(0,w)/DE(0,w,R).
k=1

It is not difficult to construct the next algorithm
which produces the value of G(6,w) for fixed § € © C
R, and w € 2, provided that there is a network simula-
tion procedure into which the algorithm may be incor-
porated. It actually combines an IPA algorithm [6] for
obtaining the derivative 0F (6,w, R)/06 with additional
computations according to (11).

ALGORITHM 5.1.

Initialization:
for :=1,...,N do g; <— 0;
s, t,t" «—— 03

R+— R(6,w);

Upon the kth service completion at node 1,
perform the instructions:
gi — gi + 570, w);
if i=n then t «— t+7F(0,w);
te—t + Z7h0,w);
if k=K then d «—— DE(0,w, R);
stop;
re—rk;
s s+ %hupf(@,r);
if the server of node r 1is free then g, «— g;.

On completion of the algorithm, it remains to com-
pute (t'd —tg,)/d? + ts/d as the value of G.

Note, in conclusion, that estimate (6) with the func-
tion G evaluated using the algorithm will not be un-
biased in general. For the estimate to be unbiased, the
function ¥(#, R) in (11) must be calculated as the sum
with the same number of summands 9ln ¥ (0,7)/00
for any of simulation runs. However, during the sim-
ulation runs with distinct realizations of w, there may
be different numbers of service completions encountered
at nodes i # n, and then considered in evaluation of
U. This normally involves an insignificant error in es-
timating the gradient, which becomes inessential as K
increases.

6 Acknowledgements

The research described in this publication was made
possible in part by Grant # NWAOQ000 from the Inter-
national Science Foundation.

References

[1]

X.-R. Cao, ”Convergence of Parameter Sensitiv-
ity Estimates in a Stochastic Experiment,” IEEE
Trans. Automat. Control, vol. AC-30, no. 9,
pp. 845-853, 1985.

X.-R. Cao, ”Perturbation Analysis of Closed
Queueing Networks with General Service Time
Distribution,” IEEE Trans. Automat. Control,
vol. AC-36, no. 11, pp. 1327-1331, 1991.

L. Chen and C.L. Chen, A Fast Simulation Ap-
proach for Tandem Queueing Systems,” in Proc.
1990 Winter Simulation Conf., pp. 539-546, De-
cember 1990.

W.-B. Gong and H. Schulzrinne, ” Application of
Smoothed Perturbation Analysis to Probabilis-
tic Routing,” Math. Comput. Simulation, vol. 34,
pp- 467-485, 1992.

Y .-C. Ho, ”Performance Evaluation and Perturba-
tion Analysis of Discrete Event Dynamic Systems,”
IEEFE Trans. Automat. Control, vol. AC-32, no. 7,
pp- 463-572, 1987.

Y .-C. Ho and X. Cao, ”Perturbation Analysis and
Optimization of Queueing Networks,” J. Optim.
Theory Appl., vol. 40, no. 4, pp. 559-582, 1983.

J.-Q. Hu, ”Convexity of Sample Path Performance
and Strong Consistency of Infinitesimal Perturba-
tion Analysis Estimates,” IEEE Trans. Automat.
Control, vol. AC-37, no. 2, pp. 258-262, 1992.

N.K. Krivulin, ”Optimization of Complex Systems
for Simulation Modeling,” Vestnik Leningrad Univ.
Math., vol. 23, no. 2, pp. 64-67, 1990.

N.K. Krivulin, Simulation Based Optimization of
Discrete Event Dynamic Systems, Ph.D Thesis,
St.Petersburg State Univ., 1990 (in Russian)

N.K. Krivulin, ”Unbiased Estimates for Gradi-
ents of Stochastic Network Performance Measures,”
Acta Appl. Math., vol. 33, pp. 21-43, 1993.

N.K. Krivulin, ” A Recursive Equations Based Rep-
resentation for the G/G/m Queue,” Appl. Math.
Lett., vol. 7, no. 3, pp. 73-78, 1994.

N.K. Krivulin, ”Recursive Equations Based Mod-
els of Queueing Systems,” submitted to 1994 SCS
Europ. Simulation Symp., October 1994.

M. Loeve, Probability Theory, Van Nostrand, New
York, 1960.

R. Suri ”Perturbation Analysis: The State of the
Art and Research Issues Explained via the GI/G/1
Queue,” Proc. IEEE, vol. 77, no. 1, pp. 114-137,
1989.



