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Abstract

The problem of exact evaluation of the mean service cycle time in tan-
dem systems of single-server queues with both infinite and finite buffers
is considered. It is assumed that the interarrival and service times of cus-
tomers form sequences of independent and identically distributed random
variables with known mean values. We start with tandem queues with in-
finite buffers, and show that under the above assumptions, the mean cycle
time exists. Furthermore, if the random variables which represent inter-
arrival and service times have finite variance, the mean cycle time can be
calculated as the maximum out from the mean values of these variables.
Finally, obtained results are extended to evaluation of the mean cycle time
in particular tandem systems with finite buffers and blocking.

Keywords: tandem queueing systems, mean cycle time, recursive equa-
tions, independent random variables, bounds on the mean value

1 Introduction

We consider tandem systems of single-server queues with both infinite and finite
buffers. The interarrival and service times of customers are assumed to form
sequences of independent and identically distributed random variables. Given
the mean values of interarrival and service times, we are interested in evaluating
the mean cycle time of the system. In what follows, the mean cycle time is
used in reference to the mean value of the time interval between two successive
departures of customers from the system as the number of customers tends to
infinity. The inverse of the mean cycle time, which implies the mean number of
customers leaving the system per unit time, is referred to as system throughput.

Among other characteristics including, in particular, the mean waiting time
of customers, both the mean cycle time and the throughput present system
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performance measures commonly used in the analysis of queues. Note that the
problem of evaluating the mean waiting time is known as rather difficult; it
allows for the exact solution in an explicit form only for particular queueing
systems under certain restrictions on customer arrival and service processes.
One can find an overview of related results in [1] (see, also, [2] for more recent
results and references).

In many cases, the mean cycle time can be calculated exactly under fairly
general assumptions. As an illustration, one can consider results obtained in
[3, 4] in the context of investigation of stability of queueing systems. It has
been shown in [4] that for a general single-server system with infinite buffer
capacity, regardless of whether it is stable or not, the mean cycle time can be
calculated as the maximum out from the mean values of customer interarrival
and service times. Moreover, if a tandem system of queues with infinite buffers is
stable, the intensities of both customer arrival and departure processes coincide,
and therefore, the mean cycle time is equal to the mean interarrival time of
customers.

For more complicated queueing systems including tandem queues with finite
buffers and blocking, and fork-join networks there are some techniques which
allow one to derive bounds on the mean cycle time. Specifically, an efficient
approach which relies on results of the theory of large deviations as well as on
the Perron-Frobenius spectral theory has been proposed in [5, 6]. As another
example, one can consider simple bounds in [7, 8], obtained by using an approach
essentially based on pure algebraic manipulations together with application of
bounds on extreme values, derived in [9, 10].

In this paper, we first give quite general conditions for the mean cycle time
in tandem queueing systems with infinite buffers to exist, and show how it can
be calculated through the mean values of the interarrival and service times of
customers. The obtained results are then extended to evaluation of the mean
cycle time in particular tandem systems with finite buffers, which operate under
the manufacturing and communication blocking rules.

As the starting point, we take obvious recursive equations which describe
tandem system dynamics, and then examine their related explicit solution. Our
approach is based on simple algebraic manipulations with the solution, combined
with some classical results providing bounds on the mean value of maxima of
independent and identically distributed random variables. The approach does
not involve taking account of stability of the entire system, and therefore, offers
a unified way of examining both stable and unstable systems.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations, and consider recursive equations describing the dynamics of tandem
queueing systems with infinite buffers. Section 3 presents preliminary results
including an existence theorem and some inequalities. Our main result which
provides general existence conditions and a simple expression for calculating the
mean cycle time is included in Section 4. The obtained results are then applied
to the examination of the mean cycle time in particular tandem systems with
finite buffers in Section 5. Finally, Section 6 offers some concluding remarks
and discussion.
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2 Tandem Queues with Infinite Buffers

We consider a series of M single-server queues with infinite buffers and cus-
tomers of a single class. Each customer that arrives into the system is initially
placed in the buffer at the 1st server and then has to pass through all the queues
one after the other. Upon the completion of his service at server i, the customer
is instantaneously transferred to queue i+1, i = 1, . . . ,M−1, and occupies the
(i + 1)st server provided that it is free. If the customer finds this server busy,
he is placed in its buffer and has to wait until the service of all his predecessors
is completed.

Denote the time between the arrivals of nth customer and his predecessor by
τ0n, and the service time of the nth customer at server i by τin, i = 1, . . . ,M ,
n = 1, 2, . . .. Furthermore, let D0(n) be the nth arrival epoch to the system,
and Di(n) be the nth departure epoch from the ith server. We assume that for
each i, i = 0, 1, . . . ,M , the sequence {τin| n = 1, 2, . . .} consists of nonnegative
random variables (r.v.’s).

With the condition that the tandem queueing system starts operating at
time zero, and it is free of customers at the initial time, we put Di(0) = 0 for
all i = 0, . . . ,M . The recursive equations representing the system dynamics
can readily be written as

D0(n) = D0(n− 1) + τ0n,

Dm(n) = max(Dm−1(n), Dm(n− 1)) + τmn, m = 1, . . . ,M,

for all n = 1, 2, . . ..
The above recursions can be resolved to get

Dm(n) = max
1≤k1≤···≤km≤n


k1∑

j=1

τ0j +
k2∑

j=k1

τ1j + · · ·+
n∑

j=km

τmj

 (1)

for all m = 1, . . . ,M .
We consider the evolution of the system as a sequence of service cycles: the

1st cycle starts at the initial time, and it is terminated as soon as the Mth

server completes its 1st service, the 2nd cycle is terminated as soon as this
server completes its 2nd service, and so on. Clearly, the completion time of the
nth cycle can be represented as DM (n).

In many applications, one is interested in evaluating the mean service cycle
time of the tandem system, which can also be treated as the mean interdeparture
time of customers from the system. It is defined as

γ = lim
n→∞

1
n

DM (n) (2)

provided that the above limit exists. The system throughput π presents another
performance measure of interest, which is calculated as the inverse of the mean
cycle time; that is, π = 1/γ.
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3 Preliminary Results

In order to examine the existence of the mean cycle time for the tandem queueing
system, we will apply the next classical theorem which has been proved in [11].

Theorem 1 Let {ζln| l, n = 0, 1, . . . ; l < n} be a family of r.v.’s which satisfy
the following properties:

Subadditivity: ζln ≤ ζlk + ζkn for all l < k < n;
Stationarity: the joint distributions are the same for both families {ζln| l <

n} and {ζl+1,n+1| l < n};
Boundedness: for all n = 1, 2, . . ., there exists E[ζ0n] ≥ −cn for some

positive constant c.
Then there exists a constant γ, such that it holds

1. lim
n→∞

ζ0n/n = γ with probability one (w.p.1),

2. lim
n→∞

E[ζ0n]/n = γ.

Let us now consider some useful inequalities which will be exploited in eval-
uation of the mean cycle time in the next section. In what follows, we assume
ξ1, . . . , ξn to be independent r.v.’s.

We start with a classical result from [12], providing an upper bound on the
mean value of the maximum of cumulative sums

ζk = ξ1 + · · ·+ ξk

of independent r.v.’s with zero means.

Lemma 2 If E[ξk] = 0, and E|ξk|p < ∞ for some p > 1, k = 1, . . . , n, then
it holds

E
[

max
1≤k≤n

|ζk|
]p

≤ 2
(

p

p− 1

)p

E|ζn|p.

The next inequality has been derived in [13]. Note that it actually remains
valid under somewhat weaker conditions than that of independence between the
r.v.’s ξ1, . . . , ξn.

Lemma 3 If E[ξk] = 0, and E|ξk|p < ∞ for some p, 1 ≤ p ≤ 2, k = 1, . . . , n,
then it holds

E |ζn|p ≤
(

2− 1
n

) n∑
k=1

E|ξk|p.

With Lemmas 2 and 3, one can prove the following statement.

Lemma 4 If E[ξk] = 0, and E[ξ2
k] < ∞, k = 1, . . . , n, then it holds

E
[

max
1≤k≤n

ζk

]
≤ 2

√
2(2n− 1)

n

(
n∑

k=1

E[ξ2
k]

)1/2

.
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Proof. First note that

E
[

max
1≤k≤n

ζk

]
≤ E

[
max

1≤k≤n
|ζk|
]
≤

(
E
[

max
1≤k≤n

|ζk|
]2)1/2

.

By applying Lemma 2 with p = 2, and then Lemma 3, we get

E
[

max
1≤k≤n

|ζk|
]2
≤ 8E[ζ2

n] ≤ 8
(

2− 1
n

) n∑
k=1

E[ξ2
k].

Finally, extracting square root leads us to the desired result. �

Now suppose that ξ1, . . . , ξn present independent and identically distributed
(i.i.d.) r.v.’s. With this condition, in particular, the inequality in Lemma 4 takes
the form

E
[

max
1≤k≤n

ζk

]
≤ 2
√

2(2n− 1)E[ξ2
1 ].

The next result obtained in [9, 10] offers an upper bound for the expected
value of maximum of i.i.d. r.v.’s.

Lemma 5 If E[ξ1] < ∞ and D[ξ1] < ∞, then it holds

E
[

max
1≤k≤n

ξk

]
≤ E[ξ1] +

n− 1√
2n− 1

√
D[ξ1].

Assuming ξ1, . . . , ξn to be i.i.d. r.v.’s, let us introduce the notation

ζlk = ξl + ξl+1 + · · ·+ ξk

with 1 ≤ l ≤ k ≤ n, and consider the following statement.

Lemma 6 If E[ξ1] = a ≤ 0, and D[ξ1] < ∞, then it holds

E
[

max
1≤l≤k≤n

ζlk

]
≤ E[ξ1] +

(
4
√

2(2n− 1) +
n− 1√
2n− 1

)√
D[ξ1].

Proof. Simple algebraic manipulations give

max
1≤l≤k≤n

ζlk = max
1≤l≤k≤n

{
k∑

i=1

ξi +
l−1∑
i=1

(−ξi)

}

≤ max
1≤l≤k≤n

{
k∑

i=1

(ξi − a) +
l∑

i=1

(−ξi + a) + ξl

}

≤ max
1≤k≤n

k∑
i=1

(ξi − a) + max
1≤k≤n

k∑
i=1

(−ξi + a) + max
1≤k≤n

ξk.
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Proceeding to expectation, with E(ξ1−a)2 = D[ξ1], we have from Lemmas 4
and 5

E
[

max
1≤l≤k≤n

ζlk

]
≤ 4

√
2(2n− 1)D[ξ1] + E[ξ1] +

n− 1√
2n− 1

√
D[ξ1]

= E[ξ1] +
(

4
√

2(2n− 1) +
n− 1√
2n− 1

)√
D[ξ1].

�

4 Exact Evaluation of the Mean Cycle Time

We are now in a position to prove our main result which can be formulated as
follows.

Theorem 7 Suppose that {τin| n = 1, 2, . . .}, i = 0, 1, . . . ,M, are mutually
independent sequences of i.i.d. r.v.’s with 0 ≤ E[τi1] < ∞.

Then the limit at (2) exists w.p.1, and if D[τi1] < ∞, it is given by

γ = max
0≤i≤M

E[τi1]. (3)

Proof. First, we have to verify the existence of the limit at (2). In order to
apply Theorem 1, let us denote

ζln = max
l<k1≤···≤kM≤n


k1∑

j=l+1

τ0j +
k2∑

j=k1

τ2j + · · ·+
n∑

j=kM

τMj

 (4)

for each l, n, 0 ≤ l < n, and note that we can now write

DM (n) = ζ0n.

With simple algebraic manipulations, it is not difficult to verify that the
family {ζln| l < n} defined by (4) is subadditive. Since τi1, τi2, . . ., are i.i.d.
r.v.’s for each i = 0, 1, . . . ,M , the family also possesses the stationarity prop-
erty. Finally, boundedness follows from the condition 0 ≤ E[τi1] < ∞ which
immediately results in E[ζ0n] = E[DM (n)] ≥ 0.

Therefore, one can apply Theorem 1 so as to conclude that the limit at (2)
exists w.p.1, and it can be calculated as

γ = lim
n→∞

1
n

E[DM (n)].

Suppose that the maximum at (3) is achieved at some i = m. Consider the
completion time DM (n) and represent it in the form

DM (n) = max
1≤k1≤···≤kM≤n


k1∑

j=1

τ0j +
k2∑

j=k1

τ1j + · · ·+
n∑

j=kM

τMj

 =
n∑

j=1

τmj + µ,
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where

µ = max
1≤k1≤···≤kM≤n

{
k1∑

j=1

(τ0j − τmj)

+
k2∑

j=k1

(τ1j − τmj) + · · ·+
n∑

j=kM

(τMj − τmj)

+ τmk1 + · · ·+ τmkM

}
. (5)

Now we can write

1
n

E[DM (n)] = E[τm1] +
1
n

E[µ].

Let us examine the expected value E[µ]. With k1 = · · · = km = 1, and
km+1 = · · · = kM = n, we have from (5)

µ ≥ τ01 + τ11 + · · ·+ τm−1,1 + τm+1,n + · · ·+ τMn ≥ 0,

and so E[µ] ≥ 0.
On the other hand, simple algebra gives us an obvious upper bound for µ

in the form

µ ≤ max
1≤k1≤n

k1∑
j=1

(τ0j − τmj)

+ max
1≤k1≤k2≤n

k2∑
j=k1

(τ1j − τmj) + · · ·+ max
1≤kM≤n

n∑
j=kM

(τMj − τmj)

+ M max (τm1, . . . , τmn) .

With the condition that E(τi1 − τm1) ≤ 0 for all i = 0, 1, . . . ,M , one can
apply Lemma 6 to the first M + 1 terms on the right-hand side, and then
Lemma 5 to the last one so as to get

E[µ] ≤
M∑
i=0

(
E(τi1 − τm1) +

(
4
√

2(2n− 1) +
n− 1√
2n− 1

)√
D(τi1 − τm1)

)
+ M

(
E[τm1] +

n− 1√
2n− 1

√
D[τm1]

)
=

M∑
i=0
i6=m

E[τi1] +
(

4
√

2(2n− 1) +
n− 1√
2n− 1

) M∑
i=0
i6=m

√
D(τi1 − τm1)

+ M
n− 1√
2n− 1

√
D[τm1],
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and therefore,

E[µ] ≤
M∑
i=0
i6=m

E[τi1] + O(
√

n).

Finally, we have the double inequality

E[τm1] ≤
1
n

E[DM (n)] ≤ E[τm1] +
1
n

M∑
i=0
i6=m

E[τi1] +
O(
√

n)
n

,

and with n →∞, immediately arrive at (5). �

Corollary 8 Under the same conditions as in Theorem 7, if at least one of the
expectations E[τi1], i = 0, 1, . . . ,M , is positive, then it holds

π =
(

max
0≤i≤M

E[τi1]
)−1

.

5 Tandem Queues with Finite Buffers

In this section, we show how the above approach can be applied to the analysis
of tandem systems which include queues with finite buffers. Because of limited
buffer capacity, servers in the systems may be blocked according to one of the
blocking rules [14]. Below we present examples of systems with manufacturing
blocking and communication blocking which are most commonly encountered
in practice.

Let us consider a system which consists of two queues in tandem. Suppose
that the buffer at the first server is infinite, while that at the second server is
finite. The customers arriving to the system have to pass through the queues
consecutively, and then leave the system.

First we suppose that the system operates under the manufacturing blocking
rule. With this type of blocking, if upon completion of a service, the first server
sees the buffer of the second one is full, it cannot be freed and has to remain
busy until the second server completes its current service to provide a free space
in its buffer.

For simplicity, let us assume the finite buffer to have capacity 0. With the
notations introduced above, one can represent the dynamics of the system by
the equations

D0(n) = D0(n− 1) + τ0n,

D1(n) = max(max(D0(n), D1(n− 1)) + τ1n, D2(n− 1)), (6)
D2(n) = max(D1(n), D2(n− 1)) + τ2n,

for all n = 1, 2, . . ..

152



Applied Statistical Science V, Nova Science Publishers, NY, 2001, 145-155

Note that from the second equation, we have D1(n) ≥ D2(n − 1), and
therefore, the third equation can be reduced to

D2(n) = D1(n) + τ2n.

Clearly, under appropriate conditions, both E[D1(n)]/n and E[D2(n)]/n
have a common limit γ as n tends to ∞, which can be considered as the mean
cycle time of the system.

By resolving the recursive equations, we get

D1(n) = max
1≤k≤n


k∑

j=1

τ0j + τ1k +
n−1∑
j=k

max(τ1,j+1, τ2j)

 .

As it is easy to verify, D1(n) satisfies the double inequality

L(n)−max(τ1,n+1, τ2n) ≤ D1(n) ≤ U(n), (7)

where

L(n) = max
1≤k≤n


k∑

j=1

τ0j +
n∑

j=k

max(τ1,j+1, τ2j)

 ,

U(n) = max
1≤k≤n


k∑

j=1

τ0j +
n∑

j=k

max(τ1j , τ2,j−1)

 .

Taking into account that both L(n) and U(n) actually have the form of
(1), one can see that, under the same conditions as in Theorem 7, it holds

lim
n→∞

1
n

E[L(n)] = lim
n→∞

1
n

E[U(n)] = max(E[τ01], E max(τ11, τ21)).

Finally, proceeding to mean value in both sides of (7), divided by n, we
conclude that the mean cycle time is given by

γ = max(E[τ01], E max(τ11, τ21)).

Let us now assume the system to follow the communication blocking rule.
This type of blocking requires the first server not to initiate service of a customer
if the buffer of the second server is completed. With the finite buffer having
capacity 0, the system dynamics is described by the same recursions as above,
except for equation (6) which now takes the form

D1(n) = max(D0(n), D1(n− 1), D2(n− 1)) + τ1n.

Resolving the recursive equations leads us to the expression

D2(n) = max
1≤k≤n


k∑

j=1

τ0j +
n∑

j=k

(τ1j + τ2j)

 .

Under the same conditions as in Theorem 7, we get the mean cycle time

γ = max(E[τ01], E[τ11] + E[τ21]).
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6 Concluding Remarks

First note that with similar arguments as used in the proof of Theorem 7 and
related lemmas, one can verify that the statement of the theorem remains valid
with the condition E[τα

i1] < ∞ for some α > 1, instead of D[τi1] < ∞.
Furthermore, the proof of the theorem does not actually require that for

each n, r.v.’s τin with i = 0, 1, . . . ,M , be independent. This allows one to
apply obtained results to tandem queueing systems with dependence for each
customer between his interarrival and service times, including tandem queues
with identical service times at each server.

Theorem 1 actually offers more general existence conditions for the mean
cycle time, which imply stationarity of the sequence {(τ0n, τ1n, . . . τMn)| n =
1, 2, . . .} in place of independence conditions in Theorem 7.

Let us consider recursive equations describing the dynamics of the tandem
queues above, and note that the symbol τin can be thought of as the nth service
time at server i rather than the service time of the nth customer at the server.
Since in this case, the order in which customers are selected from a queue for
service is of no concern, the equation also describes the dynamics of systems
with any queueing disciplines not permitting the preempting of service, and
therefore, Theorem 7 can trivially be extended to such systems.

Finally note that the proof of the theorem provides us with bounds on
E[DM (n)], as well as an upper bound of order n−1/2 for the convergence rate
of E[DM (n)]/n to the mean cycle time as n tends to ∞.
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