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Abstract
The application of the max-algebra to describe queueing systems by both linear

scalar and vector equations is discussed. It is shown that these equations may be
handled using ordinary algebraic manipulations. Examples of solving the equations
representing the G/G/1 queue and queues in tandem are also presented.

1 Introduction

Max-algebra [1, 5] is the system (R ∪ {ε},⊕,⊗), where

ε = −∞, x⊕ y = max(x, y), x⊗ y = x + y ∀x, y ∈ R.

It has the following properties which can be easily verified

∀x, y, z ∈ R x⊕ (y ⊕ z) = (x⊕ y)⊕ z, x⊕ y = y ⊕ x,
x⊗ (y ⊗ z) = (x⊗ y)⊗ z, x⊗ y = y ⊗ x,
x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z),
x⊕ ε = x, x⊕ x = x,
x⊗ e = x, where e = 0.

In the max-algebra these properties allow ordinary algebraic manipulation of linear
expressions to be performed under the usual conventions regarding brackets and precedence
of ⊗ over ⊕. Moreover, the scalar max-algebra is extended to the max-algebra of vectors
in the regular way. To emphasize parallels between conventional linear algebra and the
max-algebra, similar notations are used for the iterated operations ⊕ and ⊗

n∑
⊕

i=1

xi = x1 ⊕ · · · ⊕ xn,
n∏
⊗

i=1

xi = x1 ⊗ · · · ⊗ xn.

The max-algebra theory is currently under investigation. There are a number of classical
algebraic results reformulated and proved in this algebra. Specifically, the eigenvalue
problem has been solved, and analogues of Cramer’s rule and the Cayley-Hamilton theorem
have been found (see survey papers [1, 5]). Moreover, as a research tool in studying practical
problems, the max-algebra finds expanding applications in many fields of operations
research and optimization, including the analysis and performance evaluation of discrete
event dynamic systems [1, 2, 5].

Although max-algebra models were successfully applied to investigate certain classes of
discrete event dynamic systems, the models of queues have received little or no attention.
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The purpose of this paper is to show how queueing systems may be described using the
max-algebra approach by linear algebraic equations. As illustrations of handling these
algebraic models, the solutions of the equations representing the G/G/1 queue and queues
in tandem are presented.

2 A Linear Algebraic Model for the G/G/1 Queue

We start with the linear max-algebra representation of the G/G/1 queue which provides
the basis for more complicated models of queueing systems. In the analysis of queueing
systems, it is common to apply recursive equations to describe their dynamics analytically.
Such equations are normally written in terms of recursions for the arrival and departure
times of customers, and involve the operations of maximum and addition [2, 3, 4].

To set up the equations that represent the G/G/1 queue in the ordinary way, consider
a single server queue with infinite buffer capacity. Once a customer arrives into the system,
he occupies the server provided that it is free. If the customer finds the server busy, he is
placed into the buffer and has to wait until the service of all his predecessors completes.

Denote the interarrival time between the kth customer and his predecessor by αk, and
the service time of the kth customer by τk. Furthermore, let A(k) and D(k) be the arrival
and departure times of the kth customer, respectively. As is customary, we assume that
αk ≥ 0 and τk ≥ 0 are given parameters, whereas A(k) and D(k) are unknown variables.
With the conditions that the queue starts operating at time zero and it is free at the initial
time, one can readily represent the system dynamics by the set of equations [2, 3, 4]

A(k) = A(k − 1) + αk,

D(k) = max(A(k), D(k − 1)) + τk.

Let us now replace the usual operation symbols by those of the max-algebra and rewrite
the equations in their equivalent form as

A(k) = αk ⊗A(k − 1),(1)
D(k) = τk ⊗ (A(k)⊕D(k − 1)).(2)

Under the properties of the operation ⊕ and ⊗ these equations could be handled much as
if they were ordinary linear equations in the conventional algebra. Specifically, applying a
usual technique to solve the equations for the unknown variables A(k) and D(k), we get

A(k) = α1 ⊗ · · · ⊗ αk, D(k) =
k∑
⊕

i=1

α1 ⊗ · · · ⊗ αi ⊗ τi ⊗ · · · ⊗ τk.(3)

2.1 The Matrix Representation

To produce a matrix representation for the G/G/1 queue let us first define the vector
D(k) = (D0(k), D1(k))T with components D0(k) = A(k), D1(k) = D(k), and replace the
symbols αk and τk by τ0k and τ1k, respectively, k = 1, 2, . . .. It is convenient to preassign
D0(0) = D1(0) = e, and D0(k) = D1(k) = ε for all k < 0. With the new notations, the
equations (1-2) may be rewritten as

D0(k) = τ0k ⊗D0(k − 1),(4)
D1(k) = τ1k ⊗ (D0(k)⊕D1(k − 1)).(5)
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Substitution of (4) into (5) and the implementation of distributivity of ⊗ over ⊕ give

D0(k) = τ0k ⊗D0(k − 1),
D1(k) = τ1k ⊗ τ0k ⊗D0(k − 1)⊕ τ1k ⊗D1(k − 1).

We may now represent the model in matrix notations by the equation

D(k) = Tk ⊗D(k − 1),(6)

where the transition matrix is defined as

Tk =

(
τ0k ε

τ1k ⊗ τ0k τ1k

)
.

3 Linear Models of G/G/1 Queues in Tandem

In this section we extend the max-algebra linear models to cover systems of G/G/1 queues
operating in tandem. As the basic system of this type, we first consider a series of n queues
with infinite buffers. Each customer that arrives into this system is initially placed in the
buffer at the 1st server and then has to pass through all the queues consecutively. Upon
the completion of his service at server i , the customer is instantaneously transferred to
queue i + 1, i = 1, . . . , n− 1. The customer leaves the system after his service completion
at the nth server.

For the tandem queueing system the equations (4-5) can be easily generalized as

D0(k) = τ0k ⊗D0(k − 1),(7)
Di(k) = τik ⊗ (Di−1(k)⊕Di(k − 1)), i = 1, . . . , n.(8)

where Di(k) and τik denote the departure time and the service time of kth customer at
server i, respectively.

Let D(k) = (D0(k), . . . , Dn(k))T be the vector of the kth departure times in the system.
Similarly as in the case of the G/G/1 queue, we may write the vector equation representing
the tandem queueing system in the form (6) with the lower triangular transition matrix

Tk =


τ0k ε ε . . . ε

τ1k ⊗ τ0k τ1k ε . . . ε
...

...
. . .

...
τn−1k ⊗ · · · ⊗ τ0k τn−1k ⊗ · · · ⊗ τ1k τn−1k ⊗ · · · ⊗ τ2k ε

τnk ⊗ · · · ⊗ τ0k τnk ⊗ · · · ⊗ τ1k τnk ⊗ · · · ⊗ τ2k . . . τnk

 .

Furthermore, we may find the solution of the set of recursive equations (7-8) as an
extension of (3). With usual algebraic manipulations, it can be arrived at ([3])

Dn(k) =
∑

⊕
1≤i1≤···≤in≤n

 i1∏
⊗

j=1

τ0j ⊗
i2∏
⊗

j=i1

τ1j ⊗ · · · ⊗
k∏
⊗

j=in

τnj

 , k = 1, 2, . . . .

3.1 Tandem Queues with Finite Buffers

Suppose now that the buffers of servers in the tandem system described above have finite
capacity. The feature of queueing systems with limited buffers is that their servers may be
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blocked according to one of the blocking rules [2]. In this paper we restrict our consideration
to manufacturing blocking which is most commonly encountered in practice. Under this
type of blocking, if the ith server upon completion of a service sees the buffer of the (i+1)st
server full, it cannot be unoccupied and has to be busy until the (i + 1)st server completes
its current service to provide a free space in its buffer.

Consider a queueing system with n servers in tandem, and assume the buffer at the
ith server, i = 2, . . . , n, to be of the capacity bi, 0 ≤ bi < ∞. We suppose that the buffer
of the 1st server, as the input buffer of the system, is infinite. Since the customers leave
the system upon their service completion at the nth server, this server cannot be blocked.

It is not difficult to understand that the kth completion time at the ith server,
i = 1, . . . , n− 1, can be represented in usual form by the recursive equation [2, 3]

Di(k) = max(max(Di−1(k), Di(k − 1)) + τik, Di+1(k − bi+1 − 1)).

Using max–algebra notations, the complete set of linear equations describing the finite
buffers tandem queueing system with manufacturing blocking is written as

D0(k) = τ0k ⊗D0(k − 1),(9)
Di(k) = τik ⊗ (Di−1(k)⊕Di(k − 1))⊕Di+1(k − bi+1 − 1), i = 1, . . . , n− 1,(10)
Dn(k) = τnk ⊗ (Dn−1(k)⊕Dn(k − 1)).(11)

Although it is evident that we are dealing here with a linear model once again, handling
the model in its general form (9-11) requires rather cumbersome algebraic manipulations.
Therefore, let us consider more thoroughly a simple example of a system with n = 2,
b2 = 0. The equations (9-11) are reduced to

D0(k) = τ0k ⊗D0(k − 1),(12)
D1(k) = τ1k ⊗ (D0(k)⊕D1(k − 1))⊕D2(k − 1),(13)
D2(k) = τ2k ⊗ (D1(k)⊕D2(k − 1)).(14)

Going to matrix notations, we arrive at the linear equation

D(k) = T̃k ⊗D(k − 1),

with

T̃k =

 τ0k ε ε
τ1k ⊗ τ0k τ1k e

τ2k ⊗ τ1k ⊗ τ0k τ2k ⊗ τ1k τ2k

 .

The above representation of the transition matrix for the system with two servers is easily
extended to the case of the system with n servers and bi = 0, i = 2, . . . , n

T̃k =


τ0k ε ε . . . ε

τ1k ⊗ τ0k τ1k e ε
...

...
. . .

τn−1k ⊗ · · · ⊗ τ0k τn−1k ⊗ · · · ⊗ τ1k τn−1k ⊗ · · · ⊗ τ2k e
τnk ⊗ · · · ⊗ τ0k τnk ⊗ · · · ⊗ τ1k τnk ⊗ · · · ⊗ τ2k . . . τnk

 .

Note that the matrices T̃k and Tk differ only in elements of the upper diagonal adjacent
to the main diagonal. In T̃k these elements become equal to e , excluding the one of row
0 which remains equaled ε.
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Now we return to the example so as to present the solution of the recursive equations
(12-14). After usual algebraic manipulations one can obtain

D1(k) =
k∑
⊕

i=1

 i∏
⊗

j=1

τ0j ⊗ τ1i ⊗
k∏
⊗

j=i+1

(τ1j ⊕ τ2j−1)

 , D2(k) = τ2k ⊗D1(k).

3.2 Closed Systems of G/G/1 Queues

Consider a closed tandem system of n queues with infinite buffers. We assume that the
customers after their service completion at the nth server return to the 1st server for a new
cycle of service. There are the finite number of customers circulating through the system,
at the initial time all the customers are placed in the buffer of the 1st server.

Let us denote the number of customers in the system by c. With the condition
Dn(k) = ε for all k < 0, we may modify (7-8) to write the set of equations for the
closed system without specifying D0(k), in the form

D1(k) = τ1k ⊗ (Dn(k − c)⊕D1(k − 1)),
Di(k) = τik ⊗ (Di−1(k)⊕Di(k − 1)), i = 2, . . . , n.

To produce a matrix representation, we now define the vector of departure times as
D(k) = (D1(k), . . . , Dn(k))T . The vector equation associated with the closed tandem
queueing system with c customers is represented as

D(k) = Rk ⊗D(k − 1)⊕ Sk ⊗D(k − c),

where

Rk =


τ1k ε . . . ε

τ2k ⊗ τ1k τ2k ε
...

...
. . .

τnk ⊗ · · · ⊗ τ1k τnk ⊗ · · · ⊗ τ2k . . . τnk

, Sk =


ε . . . ε τ1k

ε . . . ε τ2k ⊗ τ1k
...

...
...

ε . . . ε τnk ⊗ · · · ⊗ τ1k

.

In conclusion, consider an example of a closed system with n = 2, c = 2. We have the
following linear equations representing this system

D1(k) = τ1k ⊗ (D1(k − 1)⊕D2(k − 2)),
D2(k) = τ2k ⊗ (D1(k)⊕D2(k − 1)).

Traditional methods of solving linear recursions give the solution

D1(k) = τ11 ⊗
k−2∏

⊗
i=1

(τ1i+1 ⊕ τ2i)⊗ τ1k, D2(k) = τ11 ⊗
k−1∏

⊗
i=1

(τ1i+1 ⊕ τ2i)⊗ τ2k.
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