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Numerical justification of Leonov conjecture
on Lyapunov dimension of Rossler attractor
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Abstract. Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz,
Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rössler system is not known,
G.A. Leonov formulated the following conjecture: Lyapunov dimension of Rössler attractor is equal to local
Lyapunov dimension in one of its stationary points. In the present work Leonov’s conjecture on Lyapunov
dimension of various Rössler systems with standard parameters is checked numerically.

Keywords: Rössler system, Lyapunov dimension, strange attractor, self-excited and hidden attractor,
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1 Introduction

Lyapunov exponents (LEs) play an important role in the description of dynamical systems behavior. They
were introduced by A.M. Lyapunov Lyapunov [1892] for the analysis of stability by the first approximation
for regular time-varying linearizations, where the negativeness of the largest Lyapunov exponent indicates
stability. Much later, in 1940s, N.G. Chetaev tried to prove that for regular time-varying linearizations,
a positive Lyapunov exponent indicates instability in the sense of Lyapunov, but a gap in his proof was
revealed and filled recently for more weak definition of instability Leonov and Kuznetsov [2007]). Since there
are no general methods for checking regularity of linearization and there are known Perron effects Kuznetsov
and Leonov [2005a,b,c]; Leonov and Kuznetsov [2007] of sign inversion of the largest Lyapunov exponent for
nonregular time-varying linearizations, the computation of Lyapunov exponents for linearization of nonlinear
autonomous system along nonstationary trajectories is widely used for investigation of chaos. In this case
the positiveness of the largest Lyapunov exponent is often regarded as the indication of chaotic behavior in
the considered nonlinear system. The various methods, used for the numerical computation of Lyapunov
exponents, are described, e.g., in Benettin et al. [1980a,b]; Shimada and Nagashima [1979]; Wolf et al. [1985].

Nowadays various characteristics of attractors of dynamical systems (information dimension, metric en-
tropy etc) are studied based on Lyapunov exponents computation. In particular, J.L. Kaplan and J.A. Yorke
defined a quantity they called Lyapunov dimension and conjectured that it was equal to information dimension
Kaplan and Yorke [1979].

In the work Leonov [2012] G.A. Leonov considered exact formulas of Lyapunov dimension of Lorenz,
Henon, and Chirikov attractors. By analogy with the results for these attractors he conjectured that Lyapunov
dimension of Rössler attractor2 is determined by a stationary point belonging to this attractor.

In the present paper Leonov’s conjecture is checked numerically and it is demonstrated that this conjecture
is true for three different types of Rössler systems. These three-dimensional systems are simplest and, in a
sense, minimal models for continuous-time chaos. They have only a single nonlinear quadratic term and they

1PDF slides http://www.math.spbu.ru/user/nk/PDF/Lyapunov-exponent-Sign-inversion-Perron-effects-Chaos.pdf
2Following Broer et al. [1991]; Leonov [2008], an attractor is a bounded, closed, invariant, attracting subset of phase space of

dynamical system. Since for the considered Rössler systems there are no analytical estimations of localization of their attractors,
it is not feasible to check their boundness and closedness. Usually by Rössler attractor one means an attracting set obtained as
a result of numerical experiments Rossler [1976, 1979].
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generate chaotic attractors with a single ”leaf” (in contrast to Lorenz attractor). Rössler systems arose as
simplified prototypes of some chemical reactions while Otto Rössler researched different types of chaos in
chemical kinetics.

2 Problem statement

2.1 Rössler systems

Consider the following three-dimensional Rössler systems Rossler [1976, 1979]

(1.1)


u̇ = −y − z

ẏ = u

ż = a(y − y2)− bz

(1.2)


u̇ = −y − z

ẏ = u + ay

ż = b− cz + uz

(1.3)


u̇ = −y − z

ẏ = u + ay

ż = bu− cz + uz

(2.1)

with the corresponding standard parameters

(1.1) : a = 0, 386; b = 0, 2;

(1.2) : a = 0, 2; b = 0, 2; c = 5, 7;

(1.3) : a = 0, 36; b = 0, 4; c = 4, 5.

(2.2)

In the phase spaces of these systems, for parameters (2.2) there exist chaotic attractors and the corre-
sponding stationary points

x0 = (0, 0, 0) for systems (1.1) and (1.3),

x0 =

(
c−
√
c2 − 4ab

2
,−c−

√
c2 − 4ab

2a
,
c−
√
c2 − 4ab

2a

)
for system (1.2)

(2.3)

are located in the middle of these attractors Rossler [1976, 1979].

2.2 Lyapunov dimension

Consider a topological characteristic — a local Lyapunov dimension of the point x0 in the phase space U of
dynamical system, which is associated with the Lyapunov spectrum λ1(x0) ≥ . . . ≥ λn(x0) and is defined
by formula

dimL x0 = j +
λ1(x0) + . . .+ λj(x0)

|λj+1(x0)|
. (2.4)

Here j ∈ [1, n] is the smallest natural number m such that

λ1(x0) + . . .+ λm+1(x0) < 0, λm+1(x0) < 0,
λ1(x0) + . . .+ λm(x0)

|λm+1(x0)|
< 1.

Lyapunov dimension of invariant set B ⊂ U of dynamical system is defined by the relation

dimLB = sup
x∈B

dimL x. (2.5)

The properties of Lyapunov dimension are considered in details in the works Pesin [1988]; Temam [1993];
Boichenko et al. [2005]. In particular, it is proved that Lyapunov dimension is an upper bound for Hausdorff
and fractal dimensions.
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2.3 Leonov’s conjecture

For Lorenz, Henon, and Chirikov systems a problem of computation of Lyapunov dimension of their attractors
is solved in Leonov and Lyashko [1997]; Leonov [1998]; Boichenko et al. [1998]; Boichenko and Leonov [2000];
Leonov et al. [2011a,b]. In these works it is obtained analytically exact Lyapunov dimension of attractors of
these systems and in Leonov [2012] it is given estimates of Lyapunov dimension of attractor of Rössler system
(1.1). Based on these results, G.A. Leonov formulated the following

Conjecture. If a stationary point x0 is embedded in attractor A of Rössler systems (2.1), then

dimLA = dimL x0.

In order to verify this conjecture for attractors of systems (2.1) with parameters (2.2) and stationary
points (2.3), in the present work it is developed a special numerical procedure described below. Note that
this procedure can be applied similarly to various modifications of Rössler system of higher orders (see, e.g.,
Rossler [1979]; Szczepaniak and Macek [2008]; Li [2008]).

3 Numerical justification of Leonov’s conjecture

3.1 Lyapunov spectrum computation algorithm

To verify the conjecture, it is used an approach to the computation of Lyapunov spectrum, suggested in the
works Benettin et al. [1980a,b]. In Wolf et al. [1985] this approach was adapted to computer realization. This
method is an iterative process and is a variation of standard QR algorithm for computation of eigenvalues
and eigenvectors Golub and van Loan [1996]. It is based on the following definitions and statements.

Consider system (2.1) in general form
ẋ = F (x), (3.6)

where x(t) ∈ Rn for any t ∈ R, F : U → Rn is Cr-smooth function (r ≥ 1) on the open set U ⊂ Rn.
Denote by A(t) = TxF (f(t, x0)) the Jacobian matrix of system (3.6), where f(t, x0) is a solution of system

(3.6).
Consider two close points x0 and (x0 + u0) in the phase space U , where u0 is a small disturbance of the

point x0. Then the evolution of vector u(t) = f(t, x0 + u0)− f(t, x0) can be studied Parker and Chua [1989]
by the following linearized system

u̇ = A(t)u. (3.7)

The solution of equation (3.7) can be represented as u(t) = Φ(t)u0, where Φ(t) = Tx0f(t, x0) is a
fundamental matrix of system (3.7). The exponential rate of divergence (or convergence) of nearby trajectories
is given by formula

λ(x0, u0) := lim
t→∞

1

t
ln
‖u(t)‖
‖u0‖

= lim
t→∞

1

t
ln ‖Φ(t)u0‖. (3.8)

This value is called Lyapunov exponent of order 1 (or, simply, Lyapunov exponent).
It can be considered a generalization of Lyapunov exponent of order 1 to the case of order p, 1 ≤ p ≤ n.

Let Ep
0 be the p-dimensional subspace of tangent space E0 and U0 be the open parallelepiped generated by p

linearly independent vectors e1, . . . , ep of Ep
0 . Then Lyapunov exponent of order p is defined Benettin et al.

[1980a] as

λp(x0, E
p
0) := lim

t→∞

1

t
ln Volp(Tx0f(t, U0)) = lim

t→∞

1

t
ln Volp[Φ(t)e1, . . . ,Φ(t)ep], (3.9)

where Volp means p-dimensional volume induced in tangent space by scalar product.
If in (3.8), (3.9) lim

t→∞
can be replaced by lim

t→∞
, then it is said that exact Lyapunov exponent exists.
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It is known Lyapunov [1892]; Oseledec [1968]; Benettin et al. [1980a] that for regular linear systems there
exist exact Lyapunov exponents3 of order p, 1 ≤ p ≤ n and in the tangent space E0 at the point x0 it can be
chosen p linearly independent vectors e1, . . . , ep such that

λp(x0, E
p
0) = λ1(x0) + · · ·+ λp(x0), (3.10)

where λi(x0) := λ(x0, ei), i = 1 . . . p, and λ1(x0) ≥ . . . ≥ λp(x0). That is, each Lyapunov exponent of order p
is equal to the sum of p largest Lyapunov exponents of order 1.

In order to calculate all tangent vectors one can solve system (3.6) together with the matrix-valued
variational equation Parker and Chua [1989]

Φ̇t(x0) = A(t) Φt(x0), Φ0(x0) = I, (3.11)

where Φt(x0) = Tx0f(t, x0) and I is identity matrix.
In this case one can go directly to the description of computation procedure. Choose the initial point x0

and (n×n) matrix of orthonormal vectors Q0 = [q01, . . . , q
0
n]. During the k-th iteration, original system (3.6) is

integrated together with variational equation (3.11) with the initial data {xk−1, Qk−1} over the chosen small
time interval h for obtaining xk = f(hk, x0) and

Uk = [uk1, . . . , u
k
n] = Φhk(x0).

Then the matrix Uk is QR decomposed, i.e. Uk = QkRk, where Qk is orthogonal matrix and Rk is upper
triangular matrix. The p-dimensional volume, defined in (3.9), increases by the multiplier Rk(1, 1) · · ·Rk(p, p)
since Vp{uk1, . . . , ukp} = Rk(1, 1) · · ·Rk(p, p), where Rk(i, i) is a norm of the vector uki , i = 1 . . . p. The matrix
Qk is taken as the initial datum for variational equation at the following iteration.

So, formula (3.9) can be expressed as

λp(x0, U0) = lim
k→∞

1

kh

k∑
i=1

ln(Ri(1, 1) · · ·Ri(p, p)), 1 ≤ p ≤ n.

One repeats this iteration procedure K times. Subtracting λp−1 from λp and using formula (3.10), one
obtains approximate values of p-th Lyapunov exponent of order 1 for the chosen trajectory. By formula (2.4)
a local Lyapunov dimension can also be computed.

3.2 Discussion and results

The algorithm, described in the previous section, is used in the process of justification of Leonov’s conjecture.
The entire computational procedure is implemented in MATLAB. For the orthogonalization of fundamental
matrix it is used MATLAB library function qr, which implements a factorization procedure by using the
Householder transformation since a classical Gram-Schmidt algorithm is numerically unstable and its modified
version requires more execution time.

For nonlinear systems (2.1) there are no exact formulas, describing the solutions of these systems in general
form. In this case it is considered approximated solutions, obtained by numerical integration of this systems,
which is based on various finite-difference and more complex methods Yan and Ruan [2000]; Al-Sawalha and
Noorani [2009]. For Rössler system (1.2) the problem of analysis of its analytical and numerical solutions is
considered in Letellier et al. [2004].

In this paper for the integration of systems (2.1) it is used MATLAB realization (solver ode45) of Runge-
Kutta finite-difference schemes of order 4-5 with an adaptive step. The absolute and relative tolerance are

3 The opposite is not true: in the general case the existence of exact Lyapunov exponents does not imply regularity of the
system Leonov and Kuznetsov [2007].
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chosen equal to 10−8 since smaller values strongly influence a time of evaluation procedure. The parameter of
procedure h, which determines integration time at each iteration, is chosen sufficiently small for the columns
of fundamental matrix to be remained linearly independent. The parameter K – a number of iterations –
must be sufficiently large in order that the trajectory, with the initial point in the neighborhood of attractor,
covered this attractor. For the chosen parameters it was made the following: the number of iterations was
increased by 2 times and a step was decreased by 2 times, in which case the result was qualitatively the same.

(a) Attractor localization for (1.1) (b) Attractor localization for (1.2) (c) Attractor localization for (1.3)

Figure 1: Localization of attractors of systems (2.1)

Since for Rössler systems (2.1) there are no analytical estimations of localization of their attractors, for
estimation it is used computer experiments Barrio et al. [2009, 2011]. For the considered systems (2.1) their
attractors are numerically localized in cubes (Fig. 1) by standard computational procedure4. On each cube it
is chosen a grid with a certain step and at each grid point it is started the algorithm of computation of local
Lyapunov dimension5. The obtained values are compared with a local Lyapunov dimension at stationary
point. Then it is considered the grid points having the values of Lyapunov dimension, which are most close
to a value at stationary point. Around each of these grid points it is considered a grid with a smaller step and
at the points of this grid it is computed local Lyapunov dimensions. These values are also compared with a
value at stationary point.

Table 1: The results of justification for the following parameters: h = 1, K = 200, abs tol = rel tol = 10−8.

Rössler
system

Cube Grid
step

max
x∈grid

dimL x dimL x0

(1.1) [−1; 1, 3]× [−0, 7; 1, 8]× [−1, 05;−0, 03] 0,1 2,4205 2,6042
(1.2) [−9; 12]× [−11; 8]× [−0, 1; 23, 9] 0,5 2,0296 2,0341
(1.3) [−5; 7]× [−7; 4]× [−0, 2; 9, 8] 0,5 2,0340 2,0620

4 From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden
attractors Leonov et al. [2011c]; Bragin et al. [2011]; Leonov et al. [2012]; Leonov G. A. [2013]. Self-excited attractors can be
localized numerically by standard computational procedure, in which after a transient process a trajectory, started from a point
of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation and therefore it can easily be identified. In
contrast, for a hidden attractor, its basin of attraction does not intersect with small neighborhoods of equilibria. While many
classical attractors are self-exited attractors and therefore can be obtained numerically by standard computational procedure,
for localization of hidden attractors it is necessary to develop special procedures since there are no similar transient processes
leading to such attractors.

5 Since numerical localization of attractors is considered and there is no effective way to prove ergodicity rigourously, one has
to consider a mesh of initial conditions for investigation of Lyapunov exponents.
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4 Conclusion

In this work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with standard parameters
is verified numerically. While the data, given in Table (1), numerically confirm Leonov’s conjecture, analytical
proof of Leonov’s conjecture is still an open problem.
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Appendix: Computation of Lyapunov exponents and Lyapunov dimension in MATLAB
Here it is given the main parts of program, written in MATLAB, which implements the described above

algorithm for the computation of Lyapunov dimension of three-dimensional dynamical system (f.e. it is
considered Rössler system (1.1)).

Listing 1: Computation of Lyapunov exponents
1 function [t, lces , trajectory] = lyapunov_exp(ode , x_start , t_start , ...
2 t_step , k_iter , rel_tol , abs_tol)
3

4 % For given dynamical system , represented by system of differential equations
5 % combined with variational equation this function returns array of
6 % LCEs for the point x_start.
7 %
8 % Parameters:
9 % ode - combined system (system of ode + var. eq.);

10 % x_start - initial point;
11 % t_start - initial time value;
12 % t_step - time -step in Gramm -Shmidt reorthogonalization procedure;
13 % k_iter - number of iterations of Gramm -Shmidt reorthogonalization procedure;
14 % rel_tol - relative error in Runge -Kutta 45 method;
15 % abs_tol - absolute error in Runge -Kutta 45 method;
16

17 % n1 - size of the system of odes :
18 [~,n1] = size(x_start );
19

20 % n2 - size of combined system :
21 n2 = n1*(n1+1);
22

23 % Memory allocation (to increase the speed)
24

25 % y - variable of combined system :
26 y = zeros(n2 ,1);
27

28 % norms - array of norms of vectors in Jacobi matrix :
29 norms = zeros(1,n1);
30

31 % log_sum - array of sums of logarithms of norms :
32 log_sum = zeros(1,n1);
33

34 % l_exp - array of lyapunov exponents (in current moment) :
35 lexp = zeros(1,n1);
36

37 % Initializing y :
38 y(1:n1) = x_start (:);
39

40 for i = 1:n1
41 y((n1+1)*i) = 1.0;
42 end
43

44 % Initializing t_curr :
45 t_curr = t_start;
46

47 % Preallocations for output values :
48 t = zeros(k_iter ,1);
49 lces = zeros(k_iter ,3);
50

51 % Set options for MATLAB solver :
52 options = odeset(’RelTol ’, rel_tol , ’AbsTol ’, abs_tol );
53

54 tr_len = 1;
55 % Main loop:
56 for i = 1 : k_iter
57

58 % Solving combined system :
59 sol = ode45(ode , [t_curr t_curr+t_step], y, options );
60 % i_last - the last moment :
61 i_last = numel(sol.x);
62

63 % Getting Jacobi matrix in the moment T PhiT
64 % from vector Y :
65 Y = transpose(sol.y);
66 PhiT = reshape( Y(i_last , n1+1 : n2 ), n1, n1);
67

68 % QR factorization of PhiT :
69 [V, R] = qr(PhiT);
70

71 for j = 1 : n1
72 if R(j,j) < 0
73 R(j,j) = (-1) * R(j,j);
74 V(:,j) = (-1) * V(:,j);
75 end
76 end
77

78 % Updating y and t_curr :
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79 t_curr = t_curr + t_step;
80 y( 1 : n1 ) = Y( i_last , 1:n1 );
81 y( n1+1 : n2 ) = reshape(V, 1, []);
82

83 % Computing lyapunov exponents (in moment t_curr) :
84 for k = 1 : n1
85 norms(k) = R(k,k);
86 log_sum(k) = log_sum(k) + log( norms(k) );
87 lexp(k) = log_sum(k) / (t_curr -t_start );
88 end
89

90 % Saving computations in corresponding vectors :
91 t(i) = t_curr;
92 lces(i, :) = lexp;
93

94 for j = 1 : i_last
95 trajectory(tr_len , :) = [sol.x(j) sol.y(1:n1, j)’];
96 tr_len = tr_len + 1;
97 end
98 end
99 end

Listing 2: Computation of Lyapunov dimension
1 function ld = lyapunov_dim(lces)
2 % For the given array of lyapunov characteristic
3 % exponents of some point this function
4 % compute so called lyapunov dimention of
5 % this point.
6

7 % ld - lyupunov dimention :
8 ld = 0;
9

10 % n - number of LCEs :
11 [~,n] = size(lces);
12

13 % lambda - sorted array of LCEs :
14 lambda = sort(lces , ’descend ’);
15

16 % Main loop :
17 le_sum = lambda (1);
18 if ( lambda (1) > 0 )
19 for i = 1 : n-1
20 if lambda(i+1) ~= 0
21 ld = i + le_sum / abs( lambda(i+1) );
22 le_sum = le_sum + lambda(i+1);
23 if le_sum < 0
24 break;
25 end
26 end
27 end
28 end
29 end

Listing 3: Rössler system (1.1)
1 function OUT = rossler_syst_1(t, X)
2

3 % Parameters:
4 global a b
5

6 % Output vector , that representing combined system:
7 OUT = zeros (12 ,1);
8

9 % Rosler equation:
10 OUT (1) = - X(2) - X(3);
11 OUT (2) = X(1);
12 OUT (3) = -b*X(3) + a*(X(2) - X(2)*X(2));
13

14 % Variational equation:
15 OUT (4:12) = [0 -1 -1; 1 0 0; 0 a*(1-2*X(2)) -b] ...
16 * [X(4) X(7) X(10); X(5) X(8) X(11); X(6) X(9) X(12)];

Listing 4: Numerical procedure for Rössler system (1.1)
1 function run_rossler1
2

3 % Computes local lyapunov dimention in fixed point
4 % and in the points on the grid for the 1st Rossler
5 % attractor and compares thems.
6

7 % Parameters :
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8 global a b
9

10 % Values of parameters :
11 a = 0.386; b = 0.2;
12

13 % T - time -step in iterative procedure :
14 T = 1.0;
15

16 % K - number of iterations of iterative procedure :
17 K = 200;
18

19 % Relative and absolute errors for Runge -Kutta 45 method :
20 rel_tol = 1e-8;
21 abs_tol = 1e-8;
22

23 % Epsilon -- is step on the grid :
24 eps = 1e-1;
25

26 % Fixed point :
27 x0 = [0 0 0];
28

29 % Attractor is located in cube :
30 x_begin = -1; x_end = 1.3; % x \in [-1; 1.3];
31 y_begin = -0.7; y_end = 1.8; % y \in [ -0.7; 1.8];
32 z_begin = -1.1; z_end = 0; % z \in [-1.1; 0];
33

34 x_iterations = (x_end - x_begin) / eps + 1;
35 y_iterations = (y_end - y_begin) / eps + 1;
36 z_iterations = (z_end - z_begin) / eps + 1;
37

38 % Infinity factor: if trajectory leaves cube with side ’infinity_factor ’,
39 % then we conclude , that trajectory will leave basin of attraction :
40 infinity_factor = 10;
41

42 % Result array :
43 grid_results = zeros(x_iterations*y_iterations*z_iterations , 7);
44 i_res = 1;
45

46 % Looping the attractor grid :
47 for i = 1 : x_iterations
48 for j = 1 : y_iterations
49 for k = 1 : z_iterations
50

51 % Main logic :
52 curr_point = [x_begin +(i-1)* eps y_begin +(j-1)* eps z_begin +(k-1)* eps];
53 [~, lces , trajectory] = lyapunov_exp(@rossler_syst_1 , curr_point , 0, ...
54 T, K, rel_tol , abs_tol );
55 len = size(trajectory , 1);
56

57 if (abs(trajectory(len , 2)) < infinity_factor ...
58 && abs(trajectory(len , 3)) < infinity_factor ...
59 && abs(trajectory(len , 4)) < infinity_factor)
60

61 % Saving results for current point :
62 grid_results(i_res , :) = [curr_point lyapunov_dim(lces(end , : )) ...
63 lces(end , : )];
64 i_res = i_res + 1;
65 end
66 end
67 end
68 end
69

70 % Computing (local) lyapunov dimention for the fixed point :
71 [~, lces , ~] = lyapunov_exp(@rossler_syst_1 , x0, 0, T, K, rel_tol , abs_tol );
72 LCEs = lces(end , : );
73

74

75 % Saving results in file :
76 fid = fopen(’hypothesis_roessler_1.txt’);
77 fprintf(fid , ’%4s %4s %4s %10s %10s %10s %10s\r\n’ ,...
78 ’x’, ’y’, ’z’, ’dim_L’, ’lce1’, ’lce3’, ’lce3’);
79 fprintf(fid , ’%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n’, grid_results );
80 fprintf(fid , ’\r\nLyapunov dimension in fixed point:\r\n’);
81 fprintf(fid , ’%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n’, ...
82 [x0 lyapunov_dim(LCEs) LCEs ]);
83 fclose(fid);
84

85 end
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