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Introduction

o Any model is never been the real system perfect description.

o It is important to determine the bounds of uncertainties for the
model in which it can still be used.

@ The key question in the system identification is a development of
methods and procedures which are applicable for wide range
uncertainties.
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Contradiction of Processes of Control and Gain
Knowledge

A goal of control is to achieve some kind of generally stable state (if
possible do not change over time).
In this state, invariability provides a “very little information” and,

therefore, it is impossible to identify or establish new links, values, and
SO on.

Feldbaum’s concept of dual control: control must be not only directing
but also learning.
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Control Via Feedback

Usually, we have
@ substantial restrictions of resources,
o an insufficient number of data with the necessary diversity

to “extract” an information from the data in the real time environment.
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Example

Let’s consider the simple problem of an unknown parameter 6,
estimating from the observations:

ytzﬂ*-ut—i—vt, t= 1,2,...,N.
We can

@ to choose the inputs (control actions) wuy;
o to measure the outputs .

v

U —» 9* _*L—y

Figure: The model of observations.
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The Source, Target and Detector of the Reflected Signal

Injector
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Algorithm of 6, Estimation

© Control u; selection and feeding it to the system input.
© Receiving the response from the system ;.

© Estimation of the parameter 6, based on the data obtained ut, y
(for example, calculation of an estimate Gt or set O, containing 6,).

© Repeat steps 1-3.

31’t

computation
of estimates

choice of Uy

Figure: A model of an estimation algorithm.

Amelin,Amelina,Granichin,Graniching Saint-Petersburg State University Maui, 12/11/2012 7/ 45



Deterministic Algorithm

Definition
An algorithm is called a deterministic algorithm if each of its steps

defined by the user is given by deterministic rules using the results of

the previous steps, and obtained new data (output) is returned for
using in subsequent steps of the algorithm.

Figure: A model of a deterministic algorithm.
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Deterministic Approaches Often Failed!

o In theory and practice many difficulties arise when we try to make
analytical investigation of “complex” systems.

o For many practical applications traditionally efficient deterministic
methods fail to yield a result when the system dimension is high.

o In particular, this leads to the notion of N P-hard problems.

Amelin,Amelina,Granichin,Graniching Saint-Petersburg State University Maui, 12/11/2012 9 /45



There are no Deterministic Algorithms Under Arbitrary
External Noise!

Let be

¢
~ 1
0. = 3, 9t=¥;yi

Table:
t |1 |2 3 4 5 6 7
ug | 1 1 1 1 1 1 1
vy = rand() — 0.5
¥ | 29128 (32 |33 |26 |34 |27
6, | 29| 285|297 | 3.05 296 | 3.03 | 2.99
vy =rand() —0.5+m, m=1

¥ | 3938 (42 |43 |36 |39 |42
0; | 3.9 1385|397 | 4.05|3.96 | 4.03 | 3.99

Note, the bias m is an unknown for the user!
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Randomized Algorithms

Randomization is a powerful tool for solving a number of problems
deemed unsolvable with deterministic methods

Definition

An algorithm is called a randomized algorithm when the execution of
one or more steps, which are defined by the user, is based on a random
rule (that is, among many deterministic rules one is chosen randomly
according to a probability P).
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“Enriched” Observations

Consider the following rule of a random input selection for the first step

1, with probability i
Ut:{—i—,v&n probability 3, (2)

—1, with probability %
At the second step from the known values (u,y;) we form a value
Ut = Ut " Yt-
For the “new” sequence of observations we have a similar to (1) model

Ut = Uy - Ox + 0y,

where u; = uf and v = ug - vy
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Diagram of Randomized Algorithm
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Two Kinds of Agorithms

Yt

[ ]
. computation
ELeLED E 7 of estimates
v
U —- f e Yy
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Two Kinds of Agorithms
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Two Kinds of Agorithms
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Preliminary result

t t
~ 1 - 1
0. = 3, at—gzyi:_zuzyz
=1 =1
Table:
t 1 3 4 5 6 7
u | -1 1 -1 1 1 1 -1

vy =rand() —0.5+m, m=1
ye | -21 138 |-18 |43 |36 |44 |-23
up | 1 1 1 1 1 1 1

U |21 |38 |18 |43 |36 |44 |23

0; | 2.1 | 2.95 | 2.57 | 3.00 | 3.12 | 3.33 | 3.19

~ 1 E{v? 1
Vt, Ve >0 Prob{|0; — 0] > e} < - {gt} + 0(;).

t ¢
[Granichin, TAC, 2004]
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Non-Asymptotic Result

For the finite number of observations (N = 9) a new rigorous
mathematical result of a guaranteed set of possible values of the
unknown parameter 6, can be obtained for an arbitrary external noise
vy following by the method described by M. Campi [EJC, 2010]:

@ Let be M = 10 and select randomly nine (= M — 1) different
groups of four indexes T1,...,Ty.

© Compute the partial sums §; = %zjeTi yj, 1=1,...,9.
© Build the confidence interval

@) = |min §;; max §;
[iel..9 Y iel.9 il

which contains 6, with the probability p = 80% (=1—2-1/M).
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The Confidence Interval

s 0111100 3.375
5 10110710 —1-(=2.1) 3.15
53 0110110 1-3.8 3.4
54 lrroo001 —1-(~18) 3.15
ss == 1001101 1-43 — | 3075
s 10110101 1-3.6 2.875
sr 1001101 1-4.4 3.275
s 11100710 —1.(-2.3) 3.025
S 1001011 3.275

@ The unknown parameter 6, belongs to the interval 0= [2.875,3.4]
with probability p = 80%.

The randomization in the process of the input data selection can get
quite reasonable results.
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Randomized and Bayesian Approaches

An alternative probabilistic approach is a Bayesian estimation when
the noise v; probability is attributed a priori to a nature Q.

But Bayesian and randomized approaches are quite different from the
practical point of view.

In a Bayesian approach the probability ) describes a probability of a
value of v; in a comparison with other, i. e. the choice of () is a part of
the problem model.

In contrast, the probability P in a randomized approach is selected
artificially. P exists only in our algorithm, and therefore, there is no a
traditional problem of “a bad model” as can happen with the @) in a
Bayesian approach.
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Randomization ...

1930 ...
o Fisher (remove bias)
1950 ... 1975

@ Metropolis, Ulam (method Monte-Carlo)

@ Rastrigin, Kirkpatrick, Holland (random search, simulation
annealing, genetic algorithm)

1980 ... 1999
@ Granichin, Fomin, Chen, Guo (randomized control strategies)
@ Polyak, Thzubakov, Luing, Guffi, Spall (fast algorithms)
@ Granichin (arbitrary noise)
@ Vadiyasagar (randomized learning theory)
2000 ...

o Tempo, Campi, Calafiore, Dabbene, Polyak, Sherbakov etc.
(probabilistic methods in a control syntheses, scenario approach)

e Candes, Donoho, Romberg, Tao (compressive sensing)
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Best Features

o Significantly decreasing the number of operations
o Annihilating the systematic errors (the bias effect or an arbitrary
noise)

@ Accuracy usually not depend on the dimension of data
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Adaptive Control

ur | Bz m

A(z7Y)

Let’s consider the dynamical system:

A*(z_l)yt = B*(z_l)ut +v, t=1,2,...,N,

where A,(\) =1 + aS)A tootal™ e, B()) =
b,((l))\l b(l+1))\l+1 4. b(nb))\nb

T, = col(ail),ai ), ) ("“) i), (l+1), ... ,binb)) is the vector of

parameters some of Wthh are unknown.
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Control Strategy Randomization

Goal:  lim |y¢| — min, sup |y| + |us| < oo
t—o0 t

(Granichin, Fomin, ARC, 1986)
Let bes<ng,+ny,—Il+1and N=s-K-Na.

u = 6n+NAAn + Usp—1, 1= O,
s Usntii, 1 €[l.s—1]orie€[-s+1..—1],

n € [1..KNa] and “own” controls {u;} are determined by the
adjustable feedback law

Ut = ut(ytvyt—lv ceey U1, ')7 u—y=0,1>0.

Amelin,Amelina,Granichin,Graniching Saint-Petersburg State University Maui, 12/11/2012 24 / 45



“Strip”-algorithm

The type and characteristics of a feedback depend on practical
problems specifics:

1) a; =0, t€[1.N —1]

2)stabilized regulator

C(z " 7)a = D(z~ ", 7)ye (4)
with parameters 7, = 7;_s which are tuning by the “Strip”-algorithm

T/\
= T ) prn 20, sl >0 s

o~

where Yt = (_yt—17 sy T Ytng, Ut—1y - - - 7ut—nb)T7 and
AN T)C(A\,7) — B(A\,7)D(A, T) is a stable polynomial.
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Random Perturbations
Ao, A1, ..., AgN,—1 are measurable:
E{An} = E{A}} =0, E{A}} = 0&, E{A}} < My

1, with bability £
For example, A, = + ’W% proba ?%Y%’
—1, with probabilitys.

A1. The user can choose A,, and this choice does not affect to the

external noise vgp, . . -, Vs(ng1)—1-

Saint-Petersburg State University Maui, 12/11/2012
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Diagram of Adaptive Control
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Reparametrization
We can rewrite the model (3) as a linear regression

Ysn = /8n+NA Angg) + 99)@5”_1 + Usn, 99) = bil)

and
Ysn+i—1 = /Bn NAA 0 Z 0* usn I+j + Uspti—1- (6)
0, =0(ry), 0(r) = A~1(7)B(7), (7)
1 0 . 0 0 bV
a1 .. 0 0 :
A = a,(?) ail) . 0 0], B= bgnb)
0 .. aﬁn“) .. ail) 1 ()

(Granichin, Fomin, ARC, 1986)
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How to choose s?

A2. 5:3 7(0) =07 (1)
s = ng + ny if polynomials A, (A\) and B,(\) are mutually prime
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Example

Consider the second-order plant

(1)

Yt + al Y1+ Y2 = ba((l)ut—l + 1.6us—2 + vy, (8)

t=1,2,..., N, with unknown coefficients ail) and bil) # 0. Denote

(M 0y,

Ty = COl(CL* 5 Ox

Let s = 2 and vector 6, of the “new” parameters be

0 bl R?
= - .
* 1.6 — aMpV)

In this case, the inverse function 7(0) is
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Unknown Parameters Estimation

We combine two different algorithms:

@ Stochastic approximation algorithm with perturbation in the input
(Granichin, Fomin, ARC, 1986)

@ Leave-out Sign-dominant Correlation Regions (LSCR) method
(M. Campi and E. Weyer, TAC, 2010)
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Stochastic Approximation Algorithm

7 =1(0n_1), t € [s(n—1) + 1..sn], n € [L.KNa], (9)
51(11) 57(;11 - %An(usn—l@(;ll - ysn—i-i—l)y (AS [1~3]~

- {Tt, if |yt| + |’LLt_1| < R, (10)

T;_s — otherwise.

Theorem

-1
If A1-A2 and 20% > 1, E{v}} <02, 300 0 =

n=1 n - )
—2

S YA < oo then Vp >0

n2

. : C2 + -1
E{|0%) — 9£7')|2} < TlnNA 92 01 To (LNA ,i€[l.s], (11)
UA -

Cy = sup, @y, 02, = 02+ (C2 +03) Y074 [0V 2.

Amelin,Amelina,Granichin,Granichins Saint-Petersburg State Unlversusy Maui, 12/11/2012 32 / 45



LSCR method

1 Vk € [1..K] consider [k's..k's + sNa — 1] where k' = (k — 1)Na.
2 Uprstsnti-1(0) = /BkAk’-H’Le(i) + Z;;%) o(i_j)ak’s-i-sn—i-i—l—j'

3 e(0) =y —9(0), t € [K's.k's+sNa —1].

4 fistsnti-1(0) = Db gnerston+i-1(0).

5 Choose M > 2s and construct M different binary stochastic

strings (hj1,...,hjsn,)- We calculate
) Na—1
g,(;’)J(H) = Z hjms+ti - frrstns+i—1(0), © € [1..s].
n=0

6 Choose ¢ € [1, M/2s] and construct @),(:): at least ¢ of the g,(;)J ()
functions are strictly higher than 0 and at least ¢ functions are
strictly lower than 0.
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Confidence Set

We define the confidence set by the formula
6r=[)6\. (12)
i=1

Theorem

Let condition A1 be satisfied. Consider i € [1..s] and assume that
Prob(g,(;’}(&) =0) =0. Then

Prob{f, € 8"} =1 —2¢/M (13)

Prob{, € O} > 1— 2sq/M (14)

where M, q and @,(;) are from steps 5 and 6 of the above-described
procedure.

v
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Combined Algorithm

Q Fork=1,2,... K.
@ To generate the sequence {6, } by the algorithm (9).
© To choose € > 0 and to build the parallelepiped

S
Oy = [J16" : 1833, — 69 <<}
i=1

© To choose ¢ and M and to compute the region @k by the
algorithm (12).
© We define the confidence set as the intersection ék = @k N Oy.

Theorem

= B pCi+ 075 ’ Br
X >(1— - ’ k).
Prob{0, € ©} > (1 — 2sq/M) (1 FNa (208 — 1) +o0 A
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Thank you for your attention!
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Example
Yt — 211 +yr—2 = byug1 + 1.6ug_o + vy, t=1,...,15,

Yo =y—1 = u_1 = 0, by is an unknown coefficient, v; is an unknown
external arbitrary noise.

LSCR, s=1
y2UE|

180

t
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Example
Yt — 211 +yr—2 = byug1 + 1.6ug_o + vy, t=1,...,15,

Yo =y—1 = u_1 = 0, by is an unknown coefficient, v; is an unknown
external arbitrary noise.

LSCR + adaptive stabilizing feedback
yZUU

180

t
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Example

Yt — 211 +yr—2 = byug1 + 1.6ug_o + vy, t=1,...,15,

Yo =y—1 = u_1 = 0, by is an unknown coefficient, v; is an unknown
external arbitrary noise.

LSCR

b, =1, Ev; = 0.5, oy = 0.1

15
9i(b) = Z it - Ar—1€:(b),
=1

hi,te{O,l}, 1=1,...,19.

The confidence interval is

[0.834; 1.090]

L L L L L L L
[ 08 0.9 1 11 12 13
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Example

Yt + ayye—1 + Y2 = byug_1 + 1.6u_g +vp, £ =1,2,...,960,
Prob{f, € ©F} =1 —2¢/M,
95% = (1 —2-2-6/480) - 100%.

" r(B) = (B8
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Randomized algorithm for the small UAV flight
optimization

up = Up—1 + Ay,
Opr1 = 0 — aley, (15)

Uy = ESin 0t+1.

Intel Lab. ”Sprint”
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Simulation results

5000
= 20

4000

3000
y,m
2000
1000
0 | T T T T
0 1000 2000 i 3000 4000 5000
— Optimal route — Randomized algorithm
Kalman filter - Simplified Kalman filter
External noise RA KF SKF
v;= 10 - (rand () -4 — 2) 41.36 | 38.15 | 42.65
vy= 0.1 - sin (£) +19 - sign(50 — t mod100) | 53.4 | 197.64 | 212,45
ve= 20 45.15 | 276.35 | 169.48
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o Assumption: {A,}V- ' and {v,}Y, are independent.
Hence, adaptive control schemes are not applicable. (We can not
use the current estimates of parameters in a feedback).

@ Randomization adds to the control channel at each step. It
disturbs the system permanently.

@ Algorithm dimension is so high (even for the simplest cases).
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Sketch of the proof

Proposition 1: Fix k € [1,...,s]. Let H be a stochastic M x Na matrix

with elements h; psik, 1 =0,1,...,M —1, n=0,...,Na — 1, from

step 4 of the algorithms in Section VI, and let n = col(n1,...,nn,) be

a vector independent of H, consisting of mutually uncorrelated random

variables symmetrically distributed around zero. Given an

i € [0, M — 1], let H; be the M x N matrix, whose rows are equal to

the i-th row of H. Then, Hn and (H — H;)n have the same

M-dimensional distribution provided that the i-th element of

(H — H;)n (which is 0) is repositioned as the first element of the vector.
(M. Campi and E. Weyer, TAC, 2010)
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Sketch of the proof

Denote M = An—le(n—l)s—i—k—l(e*)'
For the correlation between 7; and n;, i > j,:

Enim;] = E[Ai1]Ele_1)s4k—1(05)Aj_1€_1)s41—1(0x)] =0
E[A;—1] =0 (n1,...,nn, are mutually uncorrelated).

Take gé )(9*) in the r-th position.

Na
ggk) (0,) — gék) (i) = Z(hi,nerk - hi,ns+k)"7n <0

n=0

for r — 1 selection of i € [0, M — 1].

From Proposition 1: Prob{“r — 1 entries of (H — H;)n are

negative” } = Prob{“r — 1 entries of Hn are negative”}, and it does not
depend on 1.
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