RANDOMIZED CONTROLS FOR LINEAR PLANTS AND
 CONFIDENCE REGIONS FOR PARAMETERS under external arbitrary noise

Konstantin Amelin, Oleg Granichin

Saint-Petersburg State University
27 June 2012

Introduction

- Any model is never been the real system perfect description.
- It is important to determine the bounds of uncertainties for the model in which it can still be used.
- The key question in the system identification is a development of methods and procedures which are applicable for wide range uncertainties.

Control via feedback

Usually in a real time environment we have:

- restrictions of resources;
- an insufficient amount of data with necessary varieties.

Deterministic algorithm

Deterministic approaches often failed!

In theory and practice many difficulties arise when we try to make analytical investigation of "complex" systems.

In many practical applications traditionally efficient deterministic methods fail to yield a result when the system is complex.

In particular, this leads to the $N P$-hard problems.

Example. The unknown parameter estimation

Let's consider the simple problem of estimating an unknown parameter θ_{\star} from the observations:

$$
\begin{equation*}
y_{t}=\theta_{\star} \cdot u_{t}+v_{t}, t=1,2, \ldots, N \tag{1}
\end{equation*}
$$

where we can

- to choose the inputs (control actions) u_{t};
- to measure the outputs y_{t}.

An arbitrary external noise

There are no deterministic algorithms under arbitrary external noise!

$$
\theta_{\star}=3
$$

t	1	2	3	4	5	6	7
u_{t}	1	1	1	1	1	1	1
$v_{t}=\operatorname{rand}()-0.5$							
y_{t}	2.9	2.8	3.2	3.3	2.6	3.4	2.7
$\widehat{\theta}_{t}$	2.9	2.85	2.97	3.05	2.96	3.03	2.99
$v_{t}=\operatorname{rand}()-0.5+m, m=1$							
y_{t}	3.9	3.8	4.2	4.3	3.6	3.9	4.2
$\hat{\theta}_{t}$	3.9	3.85	3.97	4.05	3.96	4.03	3.99

$$
\widehat{\theta}_{t}=\frac{1}{7} \sum_{i=1}^{7} y_{i}
$$

Note, the bias m is an unknown for the user!

Randomized algorithms

- A randomized algorithm is an algorithm where one or more steps are based on a random rule, that is, among many deterministic rules, one rule is selected according to a random scheme
- Randomization is a powerful tool for solving a number of problems deemed unsolvable with deterministic methods

"Enriched" observation ("Flip a coin" approach)

Consider the following rule of the random input selection for the first step

$$
u_{t}=\left\{\begin{array}{l}
+1, \text { with probability } \frac{1}{2} \tag{2}\\
-1, \text { with probability } \frac{1}{2}
\end{array}\right.
$$

At the second step from the known values $\left(u_{t}, y_{t}\right)$ we form a value

$$
\begin{equation*}
\tilde{y}_{t}=u_{t} \cdot y_{t} \tag{3}
\end{equation*}
$$

For the "new" observations we have a model

$$
\begin{equation*}
\tilde{y}_{t}=\theta_{\star} \cdot \tilde{u}_{t}+\tilde{v}_{t} \tag{4}
\end{equation*}
$$

where $\tilde{u}_{t}=u_{t}^{2}=1$ and $\tilde{v}_{t}=u_{t} \cdot v_{t}$.

Two types of the algorithms

a)

INPUT

STEP1:
Choice of u_{t}

STEP 2:
Estimate calculation

Two types of the algorithms

Two types of the algorithms

b)

Preliminary result

$$
\theta_{\star}=3
$$

t	1	2	3	4	5	6	7
u_{t}	-1	1	-1	1	1	1	-1
$v_{t}=\operatorname{rand}()-0.5+m, m=1$							
y_{t}	-2.1	3.8	-1.8	4.3	3.6	4.4	-2.3
\bar{u}_{t}	1	1	1	1	1	1	1
\bar{y}_{t}	2.1	3.8	1.8	4.3	3.6	4.4	2.3
$\hat{\theta}_{t}$	2.1	2.95	2.57	3.00	3.12	3.33	3.19

$$
\begin{gathered}
\widehat{\theta}_{t}=\frac{1}{t} \sum_{i=1}^{t} \bar{y}_{i}=\frac{1}{t} \sum_{i=1}^{t} u_{i} y_{i} \rightarrow \theta_{\star} \text { with probability } 1 \\
\text { (O. Granichin, TAC, 2004) }
\end{gathered}
$$

Algorithm for the guaranteed set

(1) Let be $M=8$ and select randomly seven $(=M-1)$ different groups of four indexes T_{1}, \ldots, T_{7}
(2) Compute the partial sums $\bar{s}_{i}=\sum_{j \in T_{i}} \bar{y}_{j}, i=1, \ldots, 7$
(3) Build the confident interval

$$
\widehat{\Theta}=\left[\min _{i \in 1: 7} \bar{s}_{i} ; \max _{i \in 1: 7} \bar{s}_{i}\right]
$$

which contains θ_{\star} with the probability $p=75 \%(=1-2 \cdot 1 / M)$.
(M. Campi, EJC, 2010)

The confidence interval

i	T_{i}	\bar{s}_{i}
1	$\{2,3,4,5\}$	3.375
2	$\{1,3,4,6\}$	3.15
3	$\{2,3,5,6\}$	3.4
4	$\{1,2,6,7\}$	3.15
5	$\{1,4,5,7\}$	3.075
6	$\{2,3,5,7\}$	2.875
7	$\{1,4,6,7\}$	3.275

The unknown parameter θ_{\star} belongs to the interval $\widehat{\Theta}=[2.875 ; 3.4]$ with the probability $p=75 \%$.

Probability successful algorithm

Randomized algorithm is named
"probability successful" with the probability p if the probability of it's true result is not less than p
(M. Campi, EJC, 2010)

Randomization ...

1930 ...

- Fisher (remove bias) 1950 ...
- Metropolis, Ulam (method Monte-Carlo)
- Kirkpatrick, Holland (simulation annealing, genetic algorithm) 1980-90
- Polyak, Thzubakov, Luing, Guffi, Spall (fast algorithms)
- Granichin (arbitrary noise)
- Vadiyasagar (Randomized Learning Theory) 2000 ...
- Tempo, Campi, Calafiore, Sherbakov etc. - ...

Best features

- Significantly decreasing the number of operations
- Annihilating the systematic errors (bias effect or arbitrary noise)
- Accuracy not depend usually on the dimension of data

Adaptive control

Let's consider the dynamical system:

$$
\begin{equation*}
A_{\star}\left(z^{-1}\right) y_{t}=B_{\star}\left(z^{-1}\right) u_{t}+v_{t}, t=1,2, \ldots, N \tag{5}
\end{equation*}
$$

where
$A_{\star}(\lambda)=1+a_{\star}^{1} \lambda+\cdots+a_{\star}^{n_{a}} \lambda^{n_{a}}, B_{\star}(\lambda)=b_{\star}^{l} \lambda^{l}+b_{\star}^{l+1} \lambda^{l+1}+\cdots+b_{\star}^{n_{b}} \lambda^{n_{b}}$, $\tau_{\star}=\operatorname{col}\left(a_{\star}^{1}, a_{\star}^{2}, \ldots, a_{\star}^{n_{a}}, b_{\star}^{l}, b_{\star}^{l+1}, \ldots, b_{\star}^{n_{b}}\right)$ is the vector of parameters some of which are unknown.

Control strategy randomization

Goal: $\varlimsup_{t \rightarrow \infty}\left|y_{t}\right| \rightarrow \min , \sup _{t}\left|y_{t}\right|+\left|u_{t}\right|<\infty$
(Granichin, Fomin, ARC, 1986)
$s \in \mathbb{N}, N=s \cdot N_{\Delta}$.

$$
\begin{gathered}
u_{s n+i-l}=\left\{\begin{array}{ll}
\Delta_{n}+\bar{u}_{s n-l}, & i=0, \\
\bar{u}_{s n+i-l}, & i=1,2, \ldots, s-1,
\end{array}, n=0, \ldots, N_{\Delta}-1,\right. \\
\bar{u}_{t}=\mathcal{U}_{t}\left(y_{t}, y_{t-1}, \ldots, \bar{u}_{t-1}, \ldots\right), t \geq 0, \quad \bar{u}_{-k}=0, k>0 .
\end{gathered}
$$

Δ_{n} is a measurable random trial perturbation
For example, $\quad \Delta_{n}=\left\{\begin{array}{l}+1, \text { with probability } \frac{1}{2}, \\ -1, \text { with probability } \frac{1}{2} .\end{array}\right.$

Unknown parameters estimation

$N<\infty, s=1$
Leave-out Sign-dominant Correlation Regions (LSCR) method (M. Campi and E. Weyer, TAC, 2010)

But

- Assumption: $\left\{\Delta_{n}\right\}_{n=0}^{N-1}$ and $\left\{v_{t}\right\}_{t=0}^{N}$ are independent. Hence, adaptive control schemes are not applicable. (We can not use the current estimates of parameters in a feedback).
- Randomization adds to the control channel at each step. It disturbs the system permanently.
- Algorithm dimension is so high (even for the simplest cases).

Example

$$
y_{t}-2 y_{t-1}+y_{t-2}=b_{\star} u_{t-1}+1.6 u_{t-2}+v_{t}, t=1, \ldots, 15
$$

$y_{0}=y_{-1}=u_{-1}=0, b_{\star}$ is an unknown coefficient, v_{t} is an unknown external arbitrary noise.
$\mathrm{LSCR}, s=1$

Example

$$
y_{t}-2 y_{t-1}+y_{t-2}=b_{\star} u_{t-1}+1.6 u_{t-2}+v_{t}, t=1, \ldots, 15
$$

$y_{0}=y_{-1}=u_{-1}=0, b_{\star}$ is an unknown coefficient, v_{t} is an unknown external arbitrary noise.

LSCR + adaptive stabilizing feedback

Example

$$
y_{t}-2 y_{t-1}+y_{t-2}=b_{\star} u_{t-1}+1.6 u_{t-2}+v_{t}, t=1, \ldots, 15
$$

$y_{0}=y_{-1}=u_{-1}=0, b_{\star}$ is an unknown coefficient, v_{t} is an unknown external arbitrary noise.

LSCR

$b_{\star}=1, E v_{t}=0.5, \sigma_{v}=0.1$

$$
\begin{aligned}
& g_{i}(b)=\sum_{t=1}^{15} h_{i, t} \cdot \Delta_{t-1} \epsilon_{t}(b), \\
& h_{i, t} \in\{0,1\}, i=1, \ldots, 19 .
\end{aligned}
$$

The confidence interval is
[0.834; 1.090]

Reparametrization

We can rewrite the model (5) as a linear regression

$$
\begin{equation*}
y_{s n+k-1}=\Delta_{n} \theta_{\star}^{(k)}+\bar{v}_{s n+k-1}=\Delta_{n} \theta_{\star}^{(k)}+\sum_{i=0}^{k-1} \theta_{\star}^{(k-i)} \bar{u}_{s n-l+i}+\ldots, \tag{6}
\end{equation*}
$$

with inputs Δ_{n} and regressors $\theta_{\star}^{(k)}, n=1, \ldots, N_{\Delta}, k=1, \ldots, s$.

$$
\begin{gather*}
\theta_{\star}=\theta\left(\tau_{\star}\right), \theta(\tau)=\mathbb{A}^{-1}(\tau) \mathbb{B}(\tau), \tag{7}\\
\mathbb{A}=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
a^{1} & 1 & \ldots & 0 & 0 \\
a^{2} & a^{1} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & a^{n_{a}} \ldots & a^{1} & 1
\end{array}\right), \mathbb{B}=\left(\begin{array}{c}
b^{l} \\
\vdots \\
b^{n_{b}} \\
\vdots \\
0
\end{array}\right) .
\end{gather*}
$$

(Granichin, Fomin, ARC, 1986)
Note, that Δ_{n} and $\bar{v}_{s n+k-1}$ are independent if the user can choose Δ_{n} and this choice does not affect to the external noise.

How to choose s ?

$$
\begin{gathered}
s: \exists \tau(\theta)=\theta^{-1}(\tau) \\
s=n_{a}+n_{b} \text { if polynomials } A_{\star}(\lambda) \text { and } B_{\star}(\lambda) \text { are mutually prime }
\end{gathered}
$$

Example

Consider the second-order plant

$$
\begin{equation*}
y_{t}+a_{\star}^{(1)} y_{t-1}+y_{t-2}=b_{\star}^{(1)} u_{t-1}+1.6 u_{t-2}+v_{t}, \tag{8}
\end{equation*}
$$

$t=1,2, \ldots, N$, with unknown coefficients $a_{\star}^{(1)}$ and $b_{\star}^{(1)} \neq 0$. Denote

$$
\tau_{\star}=\operatorname{col}\left(a_{\star}^{(1)}, b_{\star}^{(1)}\right)
$$

Let $s=2$ and vector θ_{\star} of the "new" parameters be

$$
\theta_{\star}=\binom{b_{\star}^{(1)}}{1.6-a_{\star}^{(1)} b_{\star}^{(1)}} \in \mathbb{R}^{2} .
$$

In this case, the inverse function $\tau(\theta)$ is

$$
\tau(\theta)=\binom{\frac{1.6-\theta^{(2)}}{\theta^{(1)}}}{\theta^{(1)}}
$$

The algorithm

$1 \widehat{y}_{s n+k-1}(\theta)=\Delta_{n} \theta^{k}+\sum_{i=0}^{k-1} \theta^{k-i} \bar{u}_{s n+k-l-i}$.
$2 \epsilon_{t}(\theta)=y_{t}-\widehat{y}_{t}(\theta), t=1, \ldots, N$.
$3 f_{s n+k-1}(\theta)=\Delta_{n} \epsilon_{s n+k-1}(\theta), n=0, \ldots, N_{\Delta}-1, k=1, \ldots, s$.
4 To choose $M>2 s$ and different random binary strings
$\left(h_{i, 1}, \ldots, h_{i, N}\right), i=0, \ldots, M-1$.
To calculate $g_{i}^{k}(\theta)=\sum_{n=0}^{N_{\Delta}-1} h_{i, n s+k} \cdot f_{n s+k-1}(\theta), i=0, \ldots, M-1$,
5 To choose $q \in[1 ; M / 2 s]$ and for $k=1, \ldots, s$ to build the regions:

$$
\widehat{\Theta}^{k}=\left\{\theta: \text { at least } q \text { of } g_{i}^{k}(\theta) \text { are }>0 \text { and at least } q \text { are }<0\right\} .
$$

$$
\begin{equation*}
\widehat{\Theta}=\bigcap_{k=1}^{s} \widehat{\Theta}^{k} \tag{9}
\end{equation*}
$$

Theorem

A1. The user can choose Δ_{n} and this choice does not affect to the external noise $v_{s n}, \ldots, v_{s(n+1)-1}$.

Theorem

Let condition A1 be satisfied. Consider $k \in\{1,2, \ldots, s\}$ and assume that $\operatorname{Prob}\left(g_{i}^{k}\left(\theta_{\star}\right)=0\right)=0$. Than

$$
\begin{equation*}
\operatorname{Prob}\left\{\theta_{\star} \in \widehat{\Theta}^{k}\right\}=1-2 q / M \tag{10}
\end{equation*}
$$

where M, q and $\widehat{\Theta}^{k}$ is taken from 4 and 5 steps.

Sketch of the proof

Proposition 1: Fix $k \in[1, \ldots, s]$. Let H be a stochastic $M \times N_{\Delta}$ matrix with elements $h_{i, n s+k}, i=0,1, \ldots, M-1, n=0, \ldots, N_{\Delta}-1$, from step 4 of the algorithms in Section VI, and let $\eta=\operatorname{col}\left(\eta_{1}, \ldots, \eta_{N_{\Delta}}\right)$ be a vector independent of H, consisting of mutually uncorrelated random variables symmetrically distributed around zero. Given an $i \in[0, M-1]$, let H_{i} be the $M \times N$ matrix, whose rows are equal to the i-th row of H. Then, $H \eta$ and $\left(H-H_{i}\right) \eta$ have the same M-dimensional distribution provided that the i-th element of $\left(H-H_{i}\right) \eta$ (which is 0) is repositioned as the first element of the vector.
(M. Campi and E. Weyer, TAC, 2010)

Sketch of the proof

Denote $\eta_{n}:=\Delta_{n-1} \epsilon_{(n-1) s+k-1}\left(\theta_{\star}\right)$.
For the correlation between η_{i} and $\eta_{j}, i>j$,:

$$
E\left[\eta_{i} \eta_{j}\right]=E\left[\Delta_{i-1}\right] E\left[\epsilon_{(i-1) s+k-1}\left(\theta_{\star}\right) \Delta_{j-1} \epsilon_{(j-1) s+k-1}\left(\theta_{\star}\right)\right]=0
$$

$E\left[\Delta_{i-1}\right]=0\left(\eta_{1}, \ldots, \eta_{N_{\Delta}}\right.$ are mutually uncorrelated $)$.
Take $g_{\bar{i}}^{(k)}\left(\theta_{\star}\right)$ in the r-th position.

$$
g_{i}^{(k)}\left(\theta_{\star}\right)-g_{\bar{i}}^{(k)}\left(\theta_{\star}\right)=\sum_{n=0}^{N_{\Delta}}\left(h_{i, n s+k}-h_{\bar{i}, n s+k}\right) \eta_{n}<0
$$

for $r-1$ selection of $i \in[0, M-1]$.
From Proposition 1: $\operatorname{Prob}\left\{{ }^{[} r-1\right.$ entries of $\left(H-H_{\bar{i}}\right) \eta$ are negative" $\}=\operatorname{Prob}\{$ " $r-1$ entries of $H \eta$ are negative" $\}$, and it does not depend on \bar{i}.

Example

$$
\begin{gathered}
y_{t}+a_{\star}^{1} y_{t-1}+y_{t-2}=b_{\star}^{1} u_{t-1}+1,6 u_{t-2}+v_{t}, t=1,2, \ldots, 960, \\
\operatorname{Prob}\left\{\theta_{\star} \in \widehat{\Theta}^{k}\right\}=1-2 q / M, \\
95 \%=(1-2 \cdot 2 \cdot 6 / 480) \cdot 100 \% .
\end{gathered}
$$

Adaptive control block-scheme

Randomized algorithm for the small UAV flight optimization

$$
\left\{\begin{array}{c}
u_{t}=\bar{u}_{t-1}+\Delta_{t} \tag{11}\\
\widehat{\theta}_{t+1}=\widehat{\theta}_{t}-\alpha \Delta_{t} \varepsilon_{t} \\
\bar{u}_{t}=\frac{b}{a} \sin \widehat{\theta}_{t+1}
\end{array}\right.
$$

[^0]
Simulation results

External noise	RA	KF	SKF
$v_{t}=10 \cdot(\operatorname{rand}() \cdot 4-2)$	41,36	38,15	42,65
$v_{t}=0,1 \cdot \sin (t)+19 \cdot \operatorname{sign}(50-\mathrm{t} \bmod 100)$	53,4	197,64	212,45
$v_{t}=20$	45,15	276,35	169,48

Thank you for your attention!

[^0]: Intel Lab. "Sprint"

