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Control and Data Processing “on the Fly”

Usually, to “extract” information from the data in the real time
environment we have:

substantial restrictions of resources;

an insufficient number of data with the necessary diversity.
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Mean-Risk Multivariable Optimization

Let us assume that we can chose
points of measurements x1,x2, . . . ∈ Rd

and on each iteration we can measure:

yt = f (xt ,wt) + vt , (1)

where f : Rd ×Rp→ R, wt is a random vector which is defined on the
basic probability space {Ω,F ,P}. It represents non-controlled random
uncertainty, and vn is an external arbitrary observation noise.
Consider the minimization problem:

F (x) =
∫

f (x ,w)P(dw)→min
x

. (2)
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Finite Difference Approach

The number of observations per one iteration is N = 2d
θ̂0 ∈ Rd

θ̂n = θ̂n−1−
αn

2βn
(Y +

n −Y −n ),

x
(i ,±)
n = θ̂n−1±βnei

Y ±n =


f (x

(1,±)
n ,w

(1,±)
n ) + v

(1,±)
n

f (x
(2,±)
n ,w

(2,±)
n ) + v

(2,±)
n

...

f (x
(d ,±)
n ,w

(d ,±)
n ) + v

(d ,±)
n
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Randomized Stochastic Approximation

We reduce the number of observations up to 1 or 2 instead of 2d (!)
One measurement form

xn = θ̂n−1 + βn∆n, ∆n =


±1
±1
...
±1


yn = f (xn,wn) + vn

θ̂n = θ̂n−1−
αn

βn
Kn(∆n)yn

Two measurements form

x±n = θ̂n−1±β
±
n ∆n

y±n = f (x±n ,w
±
n ) + v±n

θ̂n = θ̂n−1−
αn

β
+
n + β

−
n

Kn(∆n)(y +
n −y−n )

x+
n = θ̂n−1 + βn∆n, x−n = θ̂n−1

y±n = f (x±n ,w
±
n ) + v±n

θ̂n = θ̂n−1−
αn

βn
Kn(∆n)(y +

n −y−n )
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Tracking

Granichin et. al. (2009, 2014)

{fξ (x,w)}ξ∈Ξ

yt = fξt
(ut ,wt) + vt (3)

Ft(x) =
∫

fξt
(x,wt)P(dwt)→min

x
(4)

xn = xn−1 + ζ , xn ∈ Rd
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Advantages of Algorithms

Granichin (1989, 1992), Polyak and Tsybakov (1990), Spall (1992, 1997),
Chen, Duncan and Pasik-Duncan (1999)

Asymptotic-optimal rate of convergence

Min number of observations per iteration

Allows tracking

Consistency under almost arbitrary external noise

Easy to implement on quantum computer
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Quantum Computing

The representation of SPSA algorithm is associated with something well
known to those familiar with the fundamentals of quantum computing.
Virtually all known effective quantum algorithms implement a similar
scheme:

preparing input “superposition”,

processing,

measuring a result.
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Quantum Computing

Let us assume that classical data, a row i of length l , l ≤ r , is fed as input
into a quantum computer. In quantum computation r q-bits initialize in
state |i00 . . .0〉. An executable circuit is constructed from a finite number
of quantum circuits acting on these q-bits. At the end of computation, the
quantum computer passes into some state that is a unit vector in space
C2r . This state can be represented as

x = ∑
e

xe |e〉,

where summation is taken over all binary rows of length r , xe ∈ C,

∑e |xe |2 = 1 (xe are called probabilistic amplitudes and x is called a
superposition of basis vectors |e〉).
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Quantum Computing

The Heisenberg uncertainty principle asserts that the state of a quantum
system cannot be predicted exactly. The observation concept is defined as
an operator in Hilbertian state space U which is equivalent to the scalar
product with some given vector u:

U|x〉= 〈u,x〉.

The projection of each q-bit on the basis {|0〉, |1〉} is usually used in
measurement. The result of this measurement is the computation result.
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Deutsch’s problem

Let function f : {0,1} −→ {0,1} be defined as a black box and a process
of its computation continues for 24 hours.
The following question must be answered: Is function f (u) constant or
balanced?
In the classical case, obviously, not less than 48 hours should be spent to
answer the question.
Let the given quantum black box compute f (u). More precisely, let us
define two q-bit unitary transformations:

Uf : |u〉|z〉 −→ |u〉|z⊕ f (u)〉,

which flip the second q-bit if the value of f from the first q-bit is 1. We
have to determine whether or not f (0) = f (1). If we are limited to
classical inputs |0〉 and |1〉, we must call the box twice (u = 0 and u = 1)
in order to get the answer. However, if we are allowed to introduce a
coherent superposition of these classical states, calling the box one time is
sufficient to answer the question!
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Hadamard Transformation

In quantum computing the Hadamard transformation plays a special role.
It is defined by formula

H : |u〉 −→ 1√
2

∑
z

(−1)uz |uz〉, (5)

or H :

(
|0〉
|1〉

)
−→

(
1√
2

(|0〉+ |1〉)
1√
2

(|0〉− |1〉)

)
, that is H =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

The Hadamard transform is used to prepare the superposition of the input
data. In a certain sense, this transform can be interpreted as randomized
inputs.

Oleg Granichin (ITMO) Randomized Algorithm and Quantum ComputersSt. Petersburg, 6/11/2014 13 / 46



Deutsch’s Problem Solving

If the input of the circuit is a couple of quantum bits |0〉|1〉 then we obtain
successively

|0〉|1〉 −→ 1

2
(|0〉+ |1〉)(|0〉− |1〉)1

2
[(−1)f (0)|0〉+ (−1)f (1)|1〉](|0〉− |1〉)−→

−→ 1

2

[(
(−1)f (0) + (−1)f (1)

)
|0〉+

(
(−1)f (0)− (−1)f (1)

)
|1〉
] 1√

2
(|0〉−|1〉).

Hence, when we measure the first q-bit we obtain the result |0〉 with
probability one if f (0) = f (1) (that is, f is a constant function) and the
result |1〉 with probability one if f (0) 6= f (1) (balanced function).
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Deutsch’s Problem Solving

H Uf|1〉 .

H H|0〉 • Measurement

Figure: Quantum algorithm.
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SPSA Algorithm Implementation and Quantum Computing

u =
1

2
d
2

∑
∆i∈{−1,+1}d

|x̂ + β∆i 〉= Hβ |x̂〉

Uf |u〉|0〉=
1

2d ∑
∆i∈{−1,+1}d

|x̂ + β∆i 〉|f (x̂ + β∆i )〉

Figure: The quantum circuit for “on the fly” computing of the gradient.
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The Algorithm’s Ground

E{θ̂n−1−
αn

βn
∆nyn|Fn−1}=

= θ̂n−1−
αn

βn
(E{∆nf (xn)|Fn−1}+ E{∆n}E{vn|Fn−1}) =

= θ̂n−1−
αn

βn
(E{∆nf (θ̂n−1 + βn∆n)|Fn−1} ≈

≈ θ̂n−1−
αn

βn
(E{∆nf (θ̂n−1) +

βn∆n∆n∇f (θ̂n−1)

2
|Fn−1}=

= θ̂n−1−
αn

2
∇f (θ̂n−1)
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Arbitrary External Noise

If some signal f goes into the recorder with a noise v then the
“instantaneous” observation yt can be written as

yt = Aft + vt (6)

v = 0.
v ≈ 0.
vt → 0 as t→ ∞.
vt , t = 1, . . . ,T , is i.i.d. with σv < ∞

Arbitrary external noise
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Data Averaging

If our registering apparatus averages signals ft coming at t = 1, . . . ,T then
at the output we receive

y =
1

N

T

∑
t=1

ft +
1

N

T

∑
t=1

vt (7)

If vt , t = 1, . . . ,T , is i.i.d. with mean value Mv and variance σv < ∞ then

Prob

{
| 1
N

T

∑
t=1

vt −Mv |> ε

}
→ 0 as t→ ∞.

Hence, we can use estimates

f̂ =
1

N

T

∑
t=1

yt −Mv .
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Estimation under Arbitrary Noise

Is it possible to get smart estimates?

Modernize the problem by including into the observations model the
controllable input u. Following the paradigm inseparability of an
information and control, we assume that the measured signal f at time t is
directly determined by the current input ut and some unknown parameter
θ? (an unknown coefficient of gain/attenuation inputs).

ft = utθ?. (8)

The problem is to find or estimate the unknown parameter θ? ∈ R by the
sequence of inputs and outputs {ut ,yt} without any restrictions for the
sequence {vt} of external noises.
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Problem Description

The model of observations (6) can be rewritten as:

yt = utθ? + vt . (9)

And we can

chose the inputs (controls) ut , t = 1,2, ...,T ,

measure the outputs yt (see Fig. 3).

Figure: The model of observations

If we use ut ≡ 1, we obtain the traditional problem of estimating of
unknown parameter θ? observed with noise
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The Source, Target and Detector of the Reflected Signal
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An Algorithm of Estimation of θ?

1 Control ut selection and feeding it to the system input.

2 Receive the response from the system yt .

3 Estimate the parameter θ? based on the data obtained ut ,yt (for
example, calculation of an estimate θ̂t or set Θ̂t containing θ?).

4 Repeat steps 1–3.

Figure: A model of an estimation algorithm.
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Deterministic Algorithm

Definition

An algorithm is called a deterministic algorithm if each of its steps defined
by the user is given by deterministic rules using the results of the previous
steps, and obtained new data (output) is returned for using in subsequent
steps of the algorithm.

Figure: A model of a deterministic algorithm.
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Deterministic Approaches are Often Fail !

In theory and practice many difficulties arise when we try to make
analytical investigation of “complex” systems.

In many practical applications traditionally efficient deterministic
methods fail to yield a result when the system is complex.

In particular, this leads to the notion of NP-hard problems.
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There are no Deterministic Algorithm Under Arbitrary
External Noise!

Let be θ? = 3

θ̂t =
1

t

t

∑
i=1

yi

Table:

t 1 2 3 4 5 6 7

ut 1 1 1 1 1 1 1

vt = rand()−0.5

yt 2.9 2.8 3.2 3.3 2.6 3.4 2.7

θ̂t 2.9 2.85 2.97 3.05 2.96 3.03 2.99

vt = rand()−0.5 + m, m = 1

yt 3.9 3.8 4.2 4.3 3.6 3.9 4.2

θ̂t 3.9 3.85 3.97 4.05 3.96 4.03 3.99
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Randomized Algorithms

Randomization is a powerful tool for solving a number of problems deemed
unsolvable with deterministic methods.

Definition

An algorithm is called a randomized algorithm when the execution of one
or more steps, which are defined by the user, is based on a random rule
(that is, among many deterministic rules one is chosen randomly according
to a probability P).
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“Enriched” Observations

Consider the following rule of a random input selection for the first step

ut =

{
+1, with probability 1

2 ,

−1, with probability 1
2 .

(10)

At the second step from the known values (ut ,yt) we form value

ỹt = ut ·yt .

For the “new” sequence of observations we have a similar to (9) model

ỹt = ũt ·θ? + ṽt ,

where ũt = u2
t and ṽt = ut ·vt .
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Diagram of Randomized Algorithm
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Two Kinds of Algorithms
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Results of Simulation

θ? = 3, θ̂t =
1

t

t

∑
i=1

ỹi =
1

t

t

∑
i=1

uiyi

Table:

t 1 2 3 4 5 6 7

ut -1 1 -1 1 1 1 -1

vt = rand()−0.5 + m, m = 1

yt -2.1 3.8 -1.8 4.3 3.6 4.4 -2.3

ũt 1 1 1 1 1 1 1

ỹt 2.1 3.8 1.8 4.3 3.6 4.4 2.3

θ̂t 2.1 2.95 2.57 3.00 3.12 3.33 3.19

∀t, ∀ε > 0 Prob{|θ̂t −θ?| ≥ ε} ≤ 1

t

E{v 2
t }

ε2
+ o

(
1

t

)
.

[Granichin, TAC, 2004]
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Non-Asymptotic Result

For the finite number of observations (N = 7) a new rigorous
mathematical result of a guaranteed set of possible values of the unknown
parameter θ? can be obtained for arbitrary external noise vt following by
the method described by M. Campi [EJC, 2010]:

1 Let be M = 8 and select randomly seven (= M−1) different groups
of four indexes T1, . . . ,T7.

2 Compute the partial sums s̄i = 1
4 ∑j∈Ti

ȳj , i = 1, . . . ,7.

3 Build the confidence interval

Θ̂ = [min
i∈1:7

s̄i ;max
i∈1:7

s̄i ],

which contains θ? with the probability p = 75% (= 1−2 ·1/M).
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Confidence Interval

For the previous data {(ut ,yt)} we obtain by the described method:

Table:

i Ti s̄i
1 {2, 3, 4, 5} 3.375

2 {1, 3, 4, 6} 3.15

3 {2, 3, 5, 6} 3.4

4 {1, 2, 6, 7} 3.15

5 {1, 4, 5, 7} 3.075

6 {2, 3, 5, 7} 2.875

7 {1, 4, 6, 7} 3.275

Hence,

unknown parameter θ? belongs to interval Θ̂ = [2.875;3.4] with
probability p = 75%.

The randomization in the process of the input data selection can get quite
reasonable results.
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Randomized and Bayesian Approaches

An alternative probabilistic approach is a Bayesian estimation when noise’s
vt probability is attributed a priori to nature Q.
However, Bayesian and randomized approaches are quite different from the
practical point of view.
In Bayesian approach probability Q describes a probability of a value of vt
in a comparison with other, i.e. the choice of Q is a part of the problem
model.
In contrast, the probability P in a randomized approach is selected
artificially. P exists only in our algorithm, and therefore there is no a
traditional problem of “a bad model” as can happen with Q in a Bayesian
approach.

Oleg Granichin (ITMO) Randomized Algorithm and Quantum ComputersSt. Petersburg, 6/11/2014 34 / 46



Randomization for Reducing a Computational Complexity

The general idea is:
Suppose that a deterministic algorithm requires a huge amount of
computing resources to process all available information.
Then we can intentionally give up part of the information and proceed to
the solution of the simplified problem with partial information.
In this case, however, a deterministic solvability may be impossible to
achieve, but as above we can consider a randomized approach to defining
solutions with a high probability of success. The end result is a
compromise between the full guarantee of success and computational
feasibility (the opportunity to get a real answer for a limited time).
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Other results

Linear regression

Filtering

Machine learning
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Applications

Photoemission Experiment

UAV Soaring

Adaptive Optimization of a Server

Load Balancing

Oleg Granichin (ITMO) Randomized Algorithm and Quantum ComputersSt. Petersburg, 6/11/2014 37 / 46



Randomization in Photoemission Experiment

Input
parameter

Experiment

SPSA
algorithm

N

j

j  = I + Nq

j n

q q
With probability 1

h = 1486.6 eVn

h = 40.8 eVn

e-

(1)

(2)

(3)

(a) (b)

n n n

n

n

n

n n

_

Figure: (a) Scheme of the PE experiment, where sample (1) is illuminated by two
light sources, He IIα and Al Kα, electrons are analyzed by photoelectron
spectrometer (2) and detector (3) registers the signal jn. (b) Layout of the
present study using the rand. algorithm for eliminating noises of unknown nature.
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Results

Granichin O., Molodtsov S. et al. Review of Scientific Instruments. 79,
036103. 2008.

38363432302826

Kinetic Energy, (eV)E

spectrum without noise
spectrum with noise
after SPSA application

Noise

1

6
7

12

kin

Figure: Experimental PE spectra of the valence band of W(110) obtained with
He IIα radiation without (open circles) and with (filled circles) systematic noise.
Spectrum obtained after application of the rand. algorithm to a series of 50
experimental single-scan spectra is shown by thin line. The shaded area in the
bottom is systematic noise measured separately.
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UAV Soaring

Figure: The sequence of estimates and waypoints.
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Adaptive Optimization of a Server

F (x) = q(x) + L(x)≡ q(x) + lim
T

1

T

T

∑
t=1

Eyt(x) → min
x
,

yn =
tn− tn−1

x
dload +

1

N ∑
touti ∈[tn−1,tn]

(touti − t ini −di ). (11)

Figure: The behavior of yn for tuning abrupt changes in the parameters of the
input stream.
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Load Balancing

m

∑
j=1

uj = zn,

T (u) = ||t(u)||∞ = max
j∈1..m

tj(uj)→min
u

. (12)

x1u1 = x2u2 = · · ·= xmum.

F (x̂n) =
m

∑
j ,k=1

(t̄ jn− t̄kn )2 → min
x̂n

, (13)

x̂(n) = x̂(n−1)− α

β
∆n

m

∑
j ,k=1

(∆j
n−∆k

n)(t̄ j2n + t̄ j2n−1− t̄k2n− t̄k2n−1).
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Randomization . . .

1928-30 . . .

von Neumann (minimax theorem), Fisher (remove bias)

1950 . . . 1975

Metropolis, Ulam (method Monte-Carlo)

Rastrigin, Kirkpatrick, Holland (random search, simulation annealing,
genetic algorithm)

1980 . . . 1999

Granichin, Fomin, Chen, Guo (randomized control strategies)

Polyak, Thzubakov, Luing, Guffi, Spall (fast algorithms)

Granichin (arbitrary noise)

Vadiyasagar (randomized learning theory)

2000 . . .

Tempo, Campi, Calafiore, Dabbene, Polyak, Sherbakov etc.
(probabilistic methods in a control syntheses, scenario approach)

Candes, Donoho, Romberg, Tao (compressive sensing)
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Best Features

Significantly decreasing the number of operations

Annihilating the systematic errors (the bias effect or an arbitrary
noise)

Accuracy usually not depend on the dimension of data
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Figure: New book.
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Thank you for your attention!

Oleg Granichin (ITMO) Randomized Algorithm and Quantum ComputersSt. Petersburg, 6/11/2014 46 / 46


	Introduction
	Mean-risk multivariable optimization
	Randomized stochastic approximation (SPSA)
	Quantum computing
	Estimation under arbitrary noise
	Linear regression, filtering, and machine learning

	Applications
	Conclusion

