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Linear Regression and Filtering Under Nonstandard
Assumptions (Arbitrary Noise)

Oleg Granichin

Abstract—This note is devoted to parameter estimation in linear regres-
sion and filtering, where the observation noise does not possess any “nice”
probabilistic properties. In particular, the noise might have an “unknown-
but-bounded” deterministic nature. The basic assumption is that the model
regressors (inputs) are random. Optimal rates of convergence for the modi-
fied stochastic approximation and least-squares algorithms are established
under some weak assumptions. Typical behavior of the algorithms in the
presence of such deterministic noise is illustrated by numerical examples.

Index Terms—Filtering, linear regression, parameter estimation, predic-
tion, randomized algorithm.

I. INTRODUCTION

This note is concerned with filtering and parameter estimation of a
class of linear models described later. Let �n, n = 0; 1; . . ., denote a
signal process not directly observable, and let 'n be a known process.
Let yn denote an observation process that is given by

yn = '
T
n�n + observation noise:

The objective of the problems considered in this note is to estimate
�n+1 based on the observation up to time n.

Traditionally, the observation noise is assumed to be a mutually in-
dependent and zero-mean. These assumptions are often hard to justify
in practice and without them, the validity of many algorithms is ques-
tionable in engineering applications. For example, it is known that the
standard “least-squares method” or the “maximum likelihood method”
give wrong estimates if the observation noise has an “unknown-but-
bounded” deterministic nature or it is a probabilistic “dependent” se-
quence (the enemy jams the signal). Therefore, it is important to in-
vestigate the capability of filtering or linear-regression (LR) parameter
estimation under minimal assumptions on the statistical characteristics
of the observation noise.

The main contribution of this note is the try to avoid the standard
requirements on the observation noise. In the case of noncentered cor-
related noise and even nonrandom noise, the LR parameters can be
efficiently estimated although it seems surprising at first glance. This
can be done under certain conditions when the inputs (regressors) 'n

are random and available. Moreover, the optimal LR parameter estima-
tion algorithms have the same rates of convergence as in the “standard”
case. The idea of using random inputs in order to eliminate the bias ef-
fect was suggested by Fisher [1] as the randomization principle in ex-
periment design. Apart from the experiment design problem where the
regressors can be randomized by an experimenter, random inputs occur
in many problems of identification, filtration, recognition, maneuvered
target tracking, telecommunications, and manufacturing.

Recursive algorithms for LR parameter estimation were considered
for the case of random inputs in many works; see [2]–[7]. Polyak and
Tsypkin [2], [6] studied the rate of convergence of such algorithms.
They obtained the optimal algorithms with the best possible rates of
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convergence. All these papers made standard assumptions on the noise
process, namely, the noise was assumed to be a sequence of mutually
independent or weakly dependent random variables with zero-mean.

In the case of unknown but bounded nonrandom noises, the minimax
problem or H1 approach were usually considered; see, for example,
[8]–[10]. The advantage of these approaches is that they do not require
any specific assumptions on statistic properties of the noise. The dis-
advantage is, however, that the accuracy of the estimation depends on
the noise level directly. The quality of estimates is not good when the
noise level is high.

In [11]–[14], the problem of LR parameter estimation was consid-
ered under nonstandard assumptions on the observation noise. Gold-
enshluger and Polyak [12] studied this problem with an arbitrary noise
for case of centered random input signals and time-invariant LR param-
eters. But the algorithms proposed in [12] do not achieve the optimal
rate of convergence in the general case. For the case of almost arbitrary
noise sequences, Granichin [11], [14] considered the problem with a
time-varying vector of unknown parameters. The author presented es-
timation algorithms for the mean vector of unknown parameters. The
possibility of getting strongly consistent parameter estimates was also
discussed by Ljung and Guo [13] when the noises were bounded and
deterministic and the input sequence was suitably chosen.

The filtering problem in the case of random inputs in an observation
channel was considered by Zhang [15], [16] with non-Gaussian distur-
bances and by Granichin [17] with almost arbitrary noise.

This note is organized as follows. In Section II, we formulate the
LR problem under consideration and state the main assumptions on
the inputs (regressors) and the noises (disturbances). In Section III,
we present and study the randomized stochastic approximation and
least-squares algorithms for the estimation of a mean vector of the un-
known LR parameters. Conditions for almost sure and mean-square
convergence of estimates are given in Theorems 1 and 3, respectively.
An upper bound on the mean-square convergence rate is given in The-
orem 2 for the estimates of the randomized stochastic approximation
algorithm. In Section IV, we study the problem of linear filtering in
the case of random inputs in an observation channel and mixed type
uncertainties. We propose to use the randomized least mean squares
algorithm for a special case of the prediction problem. An upper bound
on the squaredmean value of the prediction error is given in Theorem 4.
It can bemade small by an appropriate choice of the probabilistic distri-
bution of inputs. In Section V, we give numerical simulation examples
comparing the performance of our schemes with the standard LMS or
KF estimates. When the observation noise is bounded but does not sat-
isfy the standard statistical properties, the numerical results indicate
the two important facts: the schemes suggested in this note often out-
perform standard algorithms; the averaged prediction errors are signif-
icantly less than the squared observation noise level. In the Appendix,
we go present the proofs of main results.

II. LR PROBLEM FORMULATION AND MAIN ASSUMPTIONS

Consider the linear regression model

yn = '
T
n�n + vn �n = � + wn; n = 0; 1; . . . (1)

where yn 2 R
1 is an observation output made at time n, the input

vector'n 2 R
d is available at timen, vn 2 R

1 andwn 2 R
d represent

noises (disturbances). The objective is to find an estimates sequence
f�̂ng which converges to the vector � of unknown parameters. Each
estimate �̂n should be based on the observations yi, 'i, i � n.

We adopt the following notations. The Euclidean norm of a vector
x from d is denoted by kxk. Ef�g is the mathematical expectation
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symbol. The trace of a matrixA is denoted by Tr[A].A > 0means that
A is a positive definite matrix. The maximum (minimum) eigenvalue
of A is denoted by �max(A)(�min(A)), and the Euclidean norm of A
is defined as its maximum singular value, i.e.,

kAk = �max(AA
T):

Let Fn be the �-algebra of probabilistic events generated by
f'0; . . . ; 'n; w0; . . . ; wn; v1; . . . ; vng, F̂n be the �-algebra gen-
erated by f'0; . . . ; 'n; w0; . . . ; wn; v0; . . . ; vn+1g and ~Fn be the
�-algebra generated by f'0; . . . ; 'n; w0; . . . ; wn+1; v0; . . . ; vn+1g,
Fn�1 � F̂n�1 � ~Fn�1 � Fn.

We make the following assumptions.

A) The inputs f'ng form a sequence of independent identi-
cally distributed random vectors with known bounded ex-
pectation kEf'ngk = M' < 1. For each n the vector
'n is independent of ~Fn�1, and the centered random vector
�n = 'n � Ef'ng have a symmetric distribution function
P(�) (i.e. P(
) = P(�
) for any Borel set 
 � d), and
Ef�n�

T
ng = B > 0, Efk�nk

4g � M4 < 1.
B) 8n Efwng = 0, wn is independent of F̂n�1, fvng and

fwng satisfy either
i)

E v2njFn�1 � �2v <1; a:s:; E kwnk
2 � �2w <1

or
ii)

E v2n � �2v <1; E wnw
T
n � Qw <1

conditions, where �v , �w are some constants, Qw is a sym-
metric matrix.

Note, that in the LR parameters estimation problem with random in-
puts f'ng the standard requirements on the observation noise fvng are
somewhat different (see, e.g., [2]). In particular, it is usually assumed
that fvng is a sequence of identically distributed random variables with
zero-mean and vn is independent of each other and 'n.

III. LR PARAMETERS ESTIMATION

We first examine a randomized algorithm of the stochastic approxi-
mation type for the observation model (1)

�̂n = �̂n�1 � �n��n 'Tn �̂n�1 � yn ; n = 1; 2; . . . (2)

where �n � 0 is a nonrandom step-size and � is a positive definite
symmetric matrix. We assume that the initial estimate �̂0 is an arbitrary
nonrandom vector from d.

Theorem 1: Let Assumption A) be satisfied for the model (1) inputs
and

1

n=1

�n =1; �n ! 0 as n!1: (3)

If Assumption Bi) holds for the model (1) noises and 1

n=1
�2n <

1, then for estimates generated by the algorithm (2) we have �̂n ! �
a.s. as n ! 1.

If Assumption Bii) holds, then Ef(�̂n � �)(�̂n � �)Tg ! 0 as
n ! 1.

The following theorem establishes the rate of convergence of the
sequence of estimates generated by (2).

Theorem 2: Let Assumptions A) and Bii) be fulfilled, �n = n�1,
and ��B + (1=2)I be a Hurwitz matrix, i.e., all its eigenvalues lie in
the left half-plane.

Then, for the estimates of (2), we have

E (�̂n � �)(�̂n � �)T � n�1S + o(n�1) (4)

where the matrix S is the solution of the matrix equation

�BS + SB�� S =�R� (5)

R = �2v 1 +M2
'� +M2

'Tr[Qw] B

+ E �n�
T
nQw�n�

T
n

with any � > 0.
Proofs of Theorems 1 and 2 are given in the Appendix.
If � = B�1,Tr[Qw] = 0 andM' = 0, then the (5) for the matrix S

can be explicitly solved: S = B�1RB�1. For (2), which assumes the
form

�̂n = �̂n�1 � (nB)�1'n 'Tn �̂n�1 � yn (6)

we get here

E (�̂n � �)(�̂n � �)T � n�1�2vB
�1 + o(n�1):

For the last algorithm (6), we have obtained almost the same conver-
gence rate as the best possible rate in the case where the noise vn is an
independent random variable with zero-mean; see [2]. Moreover, this
choice of �n and � has been shown in [2] is an optimal for the similar
kind algorithms.

Remark: If Assumption Bii) in Theorem 2 holds as an equality, the
inequality in the bound on the convergence rate can also be replaced
by an equality.

For the same regression model of observations (1), we consider now
the estimates generated by the following randomized least squares
method:

�̂n = �̂n�1 � �n�n 'Tn �̂n�1 � yn

�n = �n�1 �
� � � �

(1+� � � )
; �0 = �10 I

(7)

where 0 > 0 is some regularization parameter; see [3] and [4]. We as-
sume again that the initial estimate �̂0 is an arbitrary nonrandom vector
from d.

Theorem 3: Let Assumption A) be fulfilled.
If Assumption Bi) is satisfied, then for the estimates generated by

the algorithm (7) we have �̂n ! � a.s. as n ! 1.
If jvnj � Cv , kwnk � Cw , k�nk � C� a.s., then for the algorithm

(7), Ef(�̂n� �)(�̂n� �)Tg ! 0 as n!1. Here,Cv , Cw ,C� <1
are constants.

The proof of Theorem 3 is also given in Appendix.

IV. PREDICTION OF SIGNAL (FILTERING)

We confine our consideration to the following special case of the
filtering problem: the one-step prediction when the observations are
governed by equations

yn = 'Tn�n + vn; n = 0; 1; . . . : (8)

Here, yn 2 1 is an observation made at time n and 'n is a d-di-
mensional vector that is known at time n, vn 2 1 represents an and
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a vector process f�ng, �n 2 d is generated by a zero-mean white
wide-sense noise sequence fwng through a stable linear filter

�n+1 = A�n + wn+1 �0 2
d (9)

where A is a known stable matrix (i.e., kAk < 1).
The objective is to find an estimate of �n+1 based on the observations

yi,'i up to time n. Let �̂n+1 be the current estimate of the vector �n+1.
Quality of prediction (performance of filtering) is defined by the mean
squared mismatch

E k�̂n+1 � �n+1k
2 :

It is usually assumed that the vectors f'ng in the observation model
(8) are defined by a deterministic sequence. Here, we will suppose that
they are random and satisfy Assumption A).

We study the behavior of the estimates of the randomized least mean
squares (RLMS) algorithm

�̂n+1 = A�̂n��A��n 'Tn �̂n � yn ; �n = 'n�M' (10)

where n = 0; 1; . . .,� > 0 is a step-size, and � is a positive–definite
symmetric matrix. We suppose that the initial value �̂0 is a vector from
d.
By substituting (8) and (9) into (10), we canwrite the prediction error

as follows:

�̂n+1 � �n+1 = A I� ���n�
T
n (�̂n � �n)

��A��n Ef'ng
T(�̂n � �n)� vn � wn+1:

Suppose that AssumptionsA) andBii) are satisfied.We carry out condi-
tional averaging in the �-algebraFn and ~Fn�1 successively. By virtue
of the independence of the random vectors �n and wn+1 and the as-
sumption regarding the symmetric nature of the distribution P(�), we
conclude that

E k�̂n+1 � �n+1k
2j ~Fn�1

� 1� 2��min(B�) + �2k�k2M4
4 kAk2k�̂n � �nk

2

+ �2 Ef'ng
T(�̂n � �n)� vn

2

k�k2Tr[B] + Tr[Qw]:

By taking the unconditional expectation on both sides of the last for-
mula, for any � > 0, we obtain the following bound of the mean value
of the prediction error:

E k�̂n+1 � �n+1k
2 � b(�; �)E k�̂n � �nk

2

+�2(1 +M'�)k�k
2Tr[B]�2v + Tr[Qw]

where

b(�; �) = 1� 2��min(B�) + �2k�k2M4 kAk2

+�2 M' +
1

�
M'k�k

2Tr[B]: (11)

The last inequality gives rise to the following theorem.
Theorem 4: Let the sequences fyng, f'ng, fvng, f�ng, and fwng

be related by (8), (9), � > 0, and � > 0.

If Assumptions A) and Bii) are satisfied, then for the prediction er-
rors of the estimates f�̂ng generated by the algorithm (10), the inequal-
ities

E k�̂n+1��n+1k
2 �

Tr[Qw]+�
2(1+M'�)k�k

2Tr[B]�2v
1�b(�; �)

+b(�; �)nE k�̂0��0k
2

are satisfied for any � > 0 and sufficiently small � such that b(�; �) <
1. Here, the constant b(�; �) is determined by (11).

Theorem 4 allows us to study dependence of the filtering perfor-
mance on the algorithm step-size �. Let us suppose that � = B�1,
Efk�̂0 � �0k

2g = 0, kAk�2 = 1 + O(�3) and � is a sufficiently
small. We denote

r(�) =
M4 + M' + 1

�
M'Tr[B] ��2min(B)

2
:

Then, from Theorem 4, we obtain

E k�̂n+1 � �n+1k
2 � D(�; �) +O(�2)

where

D(�; �) =
1

2
Tr[Qw]

�
1

�
+ r(�) + r(�)2 +

(1 +M'�)Tr[B]�
2
v

Tr[Qw]�2min(B)
� : (12)

The last expression roughly indicates the tradeoff between the filtering
ability and the noise sensitivity. In the case ofM' = 0, a similar result
can be obtained as a corollary to [8, Th. 4] for a tracking problem.

By minimizing D(�; �) in � and �, we establish

�? = r(�?)2 +
(1 +M'�

?)Tr[B]�2v
Tr[Qw]�2min(B)

�

where �? is the minimum point of the function

�D(�) =
1

2
Tr[Qw]

� r(�)+2 r(�)2+
(1+M'�)Tr[B]�2v�

�2

min(B)

Tr[Qw]
: (13)

If M' = 0, then the function D(�; �) is independent of �. In this
case, we have

�? = 2�2min(B)
Tr[Qw]

M2
4Tr[Qw] + 2�2min(B)Tr[B]�

2
v

and

�D? =
Tr[Qw]

4�2min(B)
M4 + 2 M2

4 +
2�2min(B)Tr[B]�

2
v

Tr[Qw]
:

From this equation, we easily conclude that it is best to use the proba-
bilistic Bernoulli distribution on (�1) for simulating the random vec-
tors 'n when they can be chosen arbitrarily from the d-dimensional
cube [�1; 1]d.

Let d = 1, �2w = Tr[Qw] � �2v , let f'ng be a scalar Bernoulli
independent process (equal to � �' with the same probability). Then,
�?A� � �w=j �'j�v . Note that this value coincides approximately with
the limiting value of the Kalman coefficient for the optimal Kalman
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TABLE I
AVERAGED ERRORS OF VARIOUS ALGORITHMS

filter when the observation noises fvng are independent and equal to
��v with the identical probability.

V. NUMERICAL EXAMPLES

Let us discuss the example of applying the RLMS algorithm (10) to
the prediction problem for the scalar (d = 1) signal f�ng generated
through a stable linear filter (9) with A = 0:9999 and �0 = 0 by
an independent process fwng which is uniformly distributed over the
interval [�(1=3); 1=3]: Efwng = 0, Efw2

n
g = 2=81. The quantities

yn and 'n are available at each time n. They are related to the signal
�n by the (8) with the bounded noise (disturbance): jvnj � 2.

Random variables generated by the uniform distribution over the in-
terval [0.5; 1.5] were used in simulating the sequence f'ng. The ob-
servations were made over the interval from n = 1 to 199. The filtering
quality was defined as the averaged squared mismatch

~D f�̂ng =
1

199

199

n=1

k�̂n � �nk
2:

Minimization of the function �D(�) of (13) in � provides �? = 0:269.
Hence, for the RLMS algorithm (10) we obtain the optimal step-size
to be �? = 11:3808, � = 1=48 and the bound on the filtering error is
�D? = 1:3699. Note, this bound is less than �2

v
= 4.

In the presence of different kinds of observation noises, we compare
the prediction errors of estimates generated by the following three al-
gorithms:

• RLMS

�̂n+1 = 0:9999 �̂n � 0:2371('n � 1:0)('n�̂n � yn) (14)

• LMS

�̂n+1 = 0:9999 �̂n � 0:2371'n('n�̂n � yn) (15)

• Kalman filter (KF)

�̂n+1 =0:9999�̂n � kn'n('n�̂n � yn)

kn =
0:9999n�1
16

3
+ n�1'2n

n = n�10:9999
2 �

'2
n
2
n�1

16

3
+ n�1'2n

+
2

81

0 =0: (16)

The numerical results are summarized in Table I. TheKalman filter (16)
is known to provide the optimal estimates in the case of a Gaussian in-
dependent observation noise, LMS estimates (15) are sufficiently effi-
cient for the independent zero-mean noises fvng and fwng. Therefore,
for the independent zero-mean noises the estimates generated by the
algorithms (15) and (16) exhibit rather good behavior despite the high
level of the observation noise. For the constant unknown observation

noise or zero-mean, but insufficiently “diverse” noise, the prediction
errors of the algorithms (15) and (16) are comparable with the squared
observation noise level. At the same time, in all situations, the perfor-
mance index of RLMS estimates is noticeably less than the squared
observation noise level.

VI. CONCLUDING REMARKS

For random inputs, the requirements on the observation noise to en-
sure convergence are very moderate for the proposed algorithms. In
particular, the noise is allowed to have “unknown-but-bounded” deter-
ministic nature. For this reason, these algorithms can be useful in many
applications. Numerical simulation has demonstrated their efficiency
for various kinds of noises.

APPENDIX

In this appendix, we give the proofs of Theorems 1–3. For notational
simplification, we denote �n = �̂n�1 � �n, �n = vn � Ef'ng

T�n,
Dn = (�̂n � �)(�̂n � �)T.

Proof of Theorem 1

From (1) and (2), we can obtain

k�̂n � �k2 = (�̂n�1 � �)T � �T
n
�n�n�

T
n
�

� (�̂n�1 � �)� �n��n�
T
n
�n

+ �2
n
�2
n
�T
n
�2�n

+ (�̂n�1 � �)T � �T
n
�n�n�

T
n
� �n�n��n

+ �n�n�
T
n
� (�̂n�1 � �)� �n��n�

T
n
�n :

First, we note that the relations

E �T
n
�n�n��nj ~Fn�1 = �T

n
�n�n�Ef�nj ~Fn�1g

= �T
n
�n�n�Ef�ng = 0

are satisfied by virtue of Assumption A) and that also

E (�̂n�1 � �)T�n�n��nj ~Fn�1 =0

E �T
n
�2
n
�n�

T
n
�2�n�nj ~Fn�1 =0

by virtue of symmetric nature of the distribution P(�). Therefore, we
have

E k�̂n � �k2jF̂n�1

� k�̂n�1 � �k2 � �T
n
�nB�(�̂n�1 � �)

� (�̂n�1 � �)T�n�B�n

+ �2
n
k�nk

2E Tr �n�
T
n
�2�n�

T
n

+ �2
n
�2
n
Tr[�B�]:
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By averaging over wn and vn sequentially, we derive

E k�̂n � �k2jFn�1

� k�̂n�1 � �k2

� I + �2n k�k2E k�nk
4 + 2M2

'Tr[�B�]

� (�̂n�1 � �)T�n(B� + �B)(�̂n�1 � �)

+ �2n �2wk�k
2E k�nk

4 + 2�2v +M2

'�
2

w Tr[�B�] :

Since 1

n=1
�2n(1 + Tr[�B�]) < 1, we get by the Robbins–Sieg-

mund lemma [18] that a finite limit limn!1 k�̂n��k2 exists, and, ad-
ditionally, the series 1

n=1
(�̂n�1��)

T�n(B�+�B)(�̂n�1��) <1

converges. From �n =1, it follows that k�̂n��k2 ! 0 a.s. which
proves the first assertion of Theorem 1.

To prove the second part, analogous to the previous proof, from (1)
and (2) we obtain

EfDnjF̂n�1g

�Dn�1��n �BDn�1+D
T

n�1B�

+�2n kDn�1kE k�nk
4 �2

+� v2n 1+M2

'� +kDn�1k�
�1

+M2

'Tr[Qw] B+E �n�
T

nQw�n�
T

n � :

By taking the unconditional expectation and using the first part of As-
sumption Bii) we get for the matrices Vn := EfDng that

Vn � Vn�1 � �n(�BVn�1 +Vn�1B�)

+�2n�R�+ �2nO (kVn�1k)

where R is defined by Theorem 2. By [19, Lemma 3], we conclude
Vn ! 0 as n ! 1.

Proof of Theorem 2

We first demonstrate the matrix (5) is solvable. We rewrite it in the
form

�B�
1

2
I S + S B��

1

2
I = �R�:

Since ��B + (1=2)I is a Hurwitz matrix, according to the Lyapunov
lemma, there is a positive–definite matrix Swhich is the solution of the
corresponding matrix equation.

Let us return to the last inequality from the proof of Theorem 1.
DenoteWn = nVn � S. Then, from the conditions of Theorem 2, we
get

Wn �Wn�1 � (n� 1)�1 �B�
1

2
I Wn�1 � (n� 1)�1

�Wn�1 B��
1

2
I + n�2O (kWn�1k) :

Consequently, by applying again [19, Lemma 3], we concludeWn !
0 as n ! 1 and, thus, Theorem 2 is proved.

Proof of Theorem 3

The following auxiliary results of [12] will be used in the proof.
Lemma 1: Under the conditions of Theorem 3, the following facts

hold.

a) 1

n=1
�T

n�
2

n�n <1 a.s. and 1

n=1
k�nk

4�2max(�n) <1
a.s.

b) 1

n=1
�T

n�n�n = 1 a.s.

By substituting (7) into (1), we have

k�̂n � �k2 = (�̂n�1 � �)T � �Tn�n�
T

n�n

� (�̂n�1 � �)� �n�n�
T

n�n + �2n�
T

n�
2

n�n

+ (�̂n�1 � �)T � �Tn�n�
T

n�n �n�n�n

+ �n�
T

n�n (�̂n�1 � �)� �n�n�
T

n�n :

Taking the conditional expectation of both sides of the last relation with
respect to �-algebra ~Fn�1 we obtain by Assumption A)

E k�̂n � �k2j ~Fn�1

� k�̂n�1 � �k2 + E �2nj ~Fn�1 E �T

n�
2

n�nj ~Fn�1

� �TnE �n�
T

n�nj ~Fn�1 � (�̂n�1 � �)� (�̂n�1 � �)T

E �n�n�
T

n j ~Fn�1 �n

+ �TnE �n�
T

n�
2

n�n�
T

n j ~Fn�1 �n:

Hence, averaging over wn and vn sequentially, we derive

E k�̂n � �k2jFn�1

� 1 + E 2M2

'�
T

n�
2

n�n + k�nk
4�2max(�n)jFn�1

� k�̂n�1 � �k2 � (�̂n�1 � �)T

� E �n�n�
T

n +�n�
T

n�n jFn�1 (�̂n�1 � �)

+ �2wE k�nk
4�2max(�n)jFn�1

+ 2�2v +M2

'�
2

w E �T

n�
2

n�njFn�1 :

By applying the Robbins–Siegmund lemma [18] to the last relation, we
conclude that by virtue of Lemma 1 assertion a) the sequence fk�̂n �
�k2g has a finite limit a.s. and

1

n=1

(�̂n�1 � �)TE �n�n�
T

n +�n�
T

n�njF̂n�1 �

(�̂n�1 � �) <1:

By virtue of Lemma 1 assertion b), 1

n=1
Ef�n�n�

T

n jF̂n�1g =1,
and therefore k�̂n � �k2 ! 0 a.s. as n ! 1. The proof of the first
part of Theorem 3 is completed.

From the constructing logic of the estimates (7), it follows �̂n =
�n

n

k=1
�k(yk � Ef'Tk g�n�1), �n = ( n

k=1
�k�

T

k + 0I)
�1.

By denoting �k = �k + �T

k (�k � �), we obtain

Dn = �n 20��
T +

n

k=1

�k�
T

k �
2

k � 0�

n

i=1

�T

i �i

� 0

n

i=1

�i�i�
T +

n

�i�
T

j �i�j �n:

It is not so hard to show Ef�n�i�
T

j �i�j�ng = 0 and
Ef�n0��

T

i �i�ng = 0 for any i 6= j, i; j = 1; . . . ; n (see,
e.g., [12]). On the basis of the conditions on the boundedness of vn,
wn, �n, we obtain for a sufficiently large n

EfDng = E �n 20��
T +

n

k=1

�k�
T

k �
2

k �n � ĈEf�ng
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with some constant Ĉ . Since n

k=1
�k�

T

k !1 a.s. as n!1 and
k�nk � �1

0
from the Lebesgue theorem of dominating sequence we

conclude that EfDng ! 0 as n ! 1. This completes the proof of
Theorem 3.
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Disturbance Propagation in Vehicle Strings

Pete Seiler, Aniruddha Pant, and Karl Hedrick

Abstract—This note focuses on disturbance propagation in vehicle
strings. It is known that using only relative spacing information to follow
a constant distance behind the preceding vehicle leads to string instability.
Specifically, small disturbances acting on one vehicle can propagate and
have a large effect on another vehicle. We show that this limitation is due
to a complementary sensitivity integral constraint. We also examine how
the disturbance to error gain for an entire platoon scales with the number
of vehicles. This analysis is done for the predecessor following strategy as
well as a control structure where each vehicle looks at both neighbors.

Index Terms—Complementary sensitivity integral, interconnected sys-
tems, string stability.

I. INTRODUCTION

The problem, in its most basic form, is to move a collection of ve-
hicles from one point to another point. One application of this work is
an automated highway system (AHS) [2] where the goal is to reduce
traffic congestion by using closed loop control. To maximize the traffic
throughput, the vehicles travel in closely spaced platoons (Fig. 1). Cen-
tralized control is impractical for medium to large sized platoons. Thus,
a decentralized controller should be used. Furthermore, treating the ve-
hicles independently is an unsafe approach because the intervehicle
spacings are required to be small. A reasonable decentralized control
strategy is for each vehicle to use a radar to keep a fixed distance be-
hind the preceding vehicle (Fig. 2). The reference trajectory for the
ith vehicle is a fixed distance, �i, behind the preceding vehicle: ri =
xi�1 � �i. The feedback loops are coupled and it is possible for dis-
turbances acting on one vehicle to propagate and affect other vehicles
in the string. In fact, we show that for any linear control lawK(s) it is
possible for a small disturbance acting on one vehicle to have an arbi-
trarily large effect on another vehicle.

The possibility of disturbance propagation in vehicle strings has been
known for some time. Chu showed that an infinite string of vehicles
could not be stabilized using the strategy depicted in Fig. 2 with a pro-
portional control law [3]. A similar result was shown via a transfer func-
tion analysis [4]. In the early 1990s, renewed interest in AHS spurred
further research on the control of vehicle strings [5]–[11]. Swaroop de-
veloped rigorous definitions of string stability and relations to error
propagation transfer functions [9]. The research on vehicle strings can
be generalized and studied as a spatially invariant system [12].

To summarize, we note that many researchers have shown that
“string stability” cannot be obtained when vehicles use only relative
spacing information to maintain a constant distance behind their
predecessor. All of these results have been for specific control laws.
In this note, we show that if vehicles use only relative spacing infor-
mation, then we have “string instability” for any linear controller. It
is well known [5], [9] that this string instability can be corrected by
using a constant time headway policy (�i is proportional to the vehicle
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