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Abstract—We consider the possibilities of using cyclic stochastic approximation for solving op-
timization problems of a nonstationary functional of the data produced by distributed observers
(sensors) under constraints on the possibilities of simultaneous communication between the ob-
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Keywords : stochastic approximation, object tracking, nonstationary functional, parameter
tracking, cyclic approach, multi-agent algorithm

DOI: 10.1134/S0005117918060036

1. INTRODUCTION

Recently, optimization tasks in distributed systems have attracted considerable attention due to
their wide spread and relevance in practical applications. Areas of their application include wireless
sensor networks (mobile and/or stationary), distributed electrical networks, logistical networks,
Internet of things, and much more (see, e.g., [1]). A common problem inherent in the above
applications is the decentralized distribution of resources in a multi-agent system where agents
(devices, robots, programs etc.) jointly solve optimization problems under a lack or incomplete
knowledge of the overall structure of the task and constraints on communication channels. Under
such conditions, agents can interact with each other to clarify the information necessary for globally
efficient resource allocation. Decentralization is reflected in the ability of agents to “see” only a
part of the entire network, with each agent exchanging messages only with its neighbors.

As a rule, solving a stochastic optimization problem under uncertainty implies finding a set of
system parameters where the minimum or maximum value of a certain average risk functional is
achieved, which in practical applications can often have different forms during system operation.
Below we call such a functional nonstationary. In systems analysis, the points where the functional
reaches its optimal value are often associated with certain reference values of system parameters.
With a nonstationary functional of medium risk, the task is to monitor changes in system parame-
ters. To optimize functionals of average risk type, the maximum likelihood estimator and stochastic
approximation algorithms are actively used with step size decreasing to zero [2–4]. Derevitsky and
Fradkov in [5, 6], in their analysis of the dynamics of adaptation algorithms based on constructing
approximate averaged models, justified the use of stochastic approximation algorithms with nonde-
creasing step size. Later, randomized stochastic approximation algorithms with trial simultaneous
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input perturbation and step size that does not decrease to zero were used to solve optimization
problems for nonstationary functionals in [7–10]. The works [11–13] studied, using the averaged
model method, algorithms for consensus multi-agent decentralized network load control based on
the stochastic approximation method with nondecreasing step size for agents in a network with
nonlinear state dynamics with a randomly changing structure of constraints and observations with
random delays and interference.

The goal of distributed optimization is usually to find the minimum or maximum of some
objective function f̄(x) =

∑n
j=1 f

j(x) via interaction between agents. Here x ∈ R
d is the solution

vector, and f j(x) : R
d → R is the objective function (loss function) of agent j, which is generally

known only to the agent himself. First appearances of distributed optimization algorithms can
be traced to the papers from the 1970s and 1980s [14–16]. To date, there exist a number of
approaches for the case when function f j(x) is convex. In particular, the Alternating Direction
Method of Multipliers [17], as well as the subgradient method [18, 19] were proposed. For non-
convex tasks, the works [20, 21] develop a large class of distributed algorithms based on the use
of various “functional-surrogate units.” In cases when the gradient of the objective function is
unknown or can be measured only approximately (with noise), stochastic approximation methods
have been used in [22–24]. As the complexity of systems increases, “traditional” approaches based
on centralized elements turns out to be inadequate. Limited computing power of the central node
does not allow to scale the system as a whole. In addition, in a large system one has to deal with
serious communication problems such as high delays in data transmission, packet loss, and so on.
For such tasks, the spectral clustering method for large-scale datasets has been proposed in [25],
in [26] the method of data aggregation from a large number of devices is considered, and in [27] the
method for diagnosing faults in distributed systems.

Spall in [28, 29] investigated the methods of cyclic stochastic approximation where the vector
of parameters being evaluated is divided into two or more parts, which we call subvectors in what
follows, and the process of updating the estimate consists in sequentially evaluating each subvector
while keeping the values of the other parts in the current state, and the values of the estimate
vector are then joined in synchronous or asynchronous mode. Recently, these methods have been
under active development for multi-agent systems [30–33].

One characteristic feature of cyclic optimization is that at each iteration one has to compute
the “direction” for the next step only for some part of the parameter vector. Thanks to this
feature, it becomes possible to reduce the computational complexity of the optimization procedure
in high-dimensional problems, which in turn leads to an increase in numerical efficiency (increasing
the computational speed and reducing the amount of memory required to store the data during
calculations). These aspects are extremely important in solving the problem of estimating the
trajectories of a large group of moving objects with multiple spatially distributed sensors. As the
number of observers (sensors) and targets (moving objects) increases, the computational complexity
of the optimization procedure grows significantly. Despite significant expansion of the capabilities of
robotic devices, their computing and communication capabilities are often limited, which motivates
the development of new approaches that from the theoretical point of view will be quite strict, but
at the same time “simple” for practical application.

The paper is organized as follows. In Section 2 we give a general formulation of the optimization
problem for a nonstationary average risk functional, illustrated by the problem of estimating the
trajectories of moving objects by a group of observers. Next, we describe an approach for optimizing
a nonstationary functional based on cyclic stochastic approximation and formulate a theoretical
result about an upper bound on the mean-square estimation error. Section 3 describes in more
detail the problem of distributed estimation of the trajectories of moving objects and shows a
distributed cyclic algorithm for which we prove a theoretical result on the asymptotic properties of
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the sequence of resulting estimates. Section 4 presents the results of simulation modeling showing
how the algorithm performs in practice. Section 5 sums up the work and briefly discusses plans for
the future.

2. CYCLIC STOCHASTIC APPROXIMATION WITH PERTURBATION AT THE INPUT

2.1. Optimization of a Nonstationary Average Risk Functional

Many practical applications require to optimize some average risk functional. Although some-
times extreme values can be found analytically, technical systems often have to deal with a situation
where the optimized function itself is not fully defined, and its gradient is unknown. In this case,
it is possible to use only the values of the function at the selected points (where one can measure
or calculate them).

Consider a probability space (Ω,F ,P) with a set of elementary events Ω, σ-algebra of events F ,
and probability measure P; let E denote expectation, and let W be some set (for example, W = N

or W ⊂ R
p). We consider the family of differentiable functions {f̄w(θ)}w∈W, f̄w(θ) : R

d → R. Let
x1,x2, . . . be a sequence of observation points (measurements) chosen by the experimenter (obser-
vation plan), where at every time moment t = 1, 2, . . . the values y1, y2, . . . of the functions f̄w(·)
are available with additive external disturbances vt

yt = f̄wt(xt) + vt, (1)

where {wt} is an uncontrolled sequence, wt ∈ W.

We denote by Ft−1 the σ-algebra of probability events generated by those quantities from
w0, . . . , wt−1, x0, . . . , xt−1, v0, . . . , vt−1 that are random; let EFt−1 denote conditional expectation
with respect to the σ-algebra Ft−1. Suppose that if wt is a random variable, then function f̄wt(θ)
as a function of wt is measurable for each θ with respect to the σ-algebra Ft−1.

Nonstationary problem setting: find the “drifting” minimum point θt of the function

F̄t(θ) = EFt−1 f̄wt(θ) → min
θ
. (2)

More precisely: suppose that function F̄t(θ) has a minimum; then, using observations y1, . . . , yt
and inputs x1, . . . ,xt, the problem is to construct an estimate θ̂t of the unknown vector θt that
minimizes the nonstationary (time-dependent) average risk functional (2).

2.2. Estimating Trajectories of Moving Objects by a Group of Observers

To illustrate the general problem setting, consider a distributed network of n observers (sensors)
that have in their zone of visibility m objects whose state vectors are to be estimated.

Let N = {1, 2, . . . , n} be the set of observers (sensors), M= {1, 2, . . . ,m}, the set of objects,
sjt ∈ R

m, the vector of the current state of sensor j, j ∈ N , at time t, rit ∈ R
p, the state of object i,

i ∈M , at time t. The states rit of objects are accessible to observers through measurements obtained
from the observation model

zi,jt = ϕ(sjt , r
i
t) + εi,jt , (3)

where zi,jt ∈ R
q are noisy observations about object i available to sensor j at time t, ϕ(·, ·) :

R
m × R

p → R
q is the observation function that reflects the measurements of object i by sensor j

according to the current sensor and object states, {εi,jt } is independent noise in the measurements
with zero mean Eεi,jt =0 and covariance Eεi,jt (εi,jt )T =Σi,jt . (Here and below, ·T denotes the trans-
position of a vector or matrix.)
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We assume that there exists an inverse function with respect to the second argument ϕ−1(sjt , ·) :
R
q → R

p such that for any i ∈M , j ∈ N and independent centered εi,jt with covariances Σi,jt

ϕ−1
(
sjt , ϕ(s

j
t , r

i
t) + εi,jt

)
= rit + ξi,jt , (4)

where ξi,jt are independent with zero mean, Eξi,jt = 0, covariance Eξi,jt (ξi,jt )T = Ξi,jt and a bounded
fourth moment E‖ξi,jt ‖4 �M4. In addition, we assume that with a certain probability pσ the mean
values of the traces trace(Ξi,jt ) (sums of diagonal matrix elements Ξi,jt ) do not exceed a certain
threshold value (σ̄min)

2 > 0, and their average values, if the thresholds (σ̄min)
2 are exceeded, are

equal to (σ̄i,jt )2.

The simplest typical example is ϕ(s, r) = r− s and ϕ−1(s, z) = s+ z. For a different example,

when the objects rit =

[
ri,1t
ri,2t

]

and sensors sjt =

[
sj,1t
sj,2t

]

are located on a plane, and measurements are

of angles and distances to objects, we can consider functions ϕ(·, ·) of the form

ϕ(sjt , r
i
t) =

[
ψ(sjt , r

i
t)

ρ(sjt , r
i
t)

]

∈ R
2, (5)

where

ψ(sjt , r
i
t) = arctan

[
ri,1t − sj,1t

ri,2t − sj,2t

]

(6)

is the angle between the direction from the sensor to the north and direction to the observed object,
also called the azimuth angle, or directional angle,

ρ(sjt , r
i
t) =

√
(
ri,1t − sj,1t

)2
+
(
ri,2t − sj,2t

)2
(7)

is the distance from the location of the sensor to the object. The inverse function of the second
argument ϕ−1(sjt , ·) looks like

ϕ−1
(
sjt , z

i,j
t

)
= sjt +

[
zi,j,2t sin zi,j,1t

zi,j,2t cos zi,j,1t

]

, (8)

where zi,j,1t and zi,j,2t are the first and second coordinates of vector zi,jt . If the error covariance

matrices εi,jt are equal to Σi,jt =

⎡

⎣
σ2ψ 0

0
(
zi,j,2t σρ

)2

⎤

⎦, then for errors ξi,jt we have

Ξi,jt = R
(
zi,j,1t

)
⎡

⎢
⎣

(
zi,j,2t σψ

)2
0

0
(
zi,j,2t σρ

)2

⎤

⎥
⎦R(z

i,j,1
t )T, (9)

where R(ψ) =

[
sinψ − cosψ
cosψ sinψ

]

is the rotation matrix for the angle ψ. Note that the trace of the

resulting matrix equals trace(Ξi,jt ) = (zi,j,2t σψ)
2 + (zi,j,2t σρ)

2.

We denote by θt = col
(
r1t , . . . , r

m
t

)
the general state vector of all objects. Let r̂it be an estimate

for the state of object i at time t, θ̂t = col(r̂1t , . . . , r̂
m
t ), the cumulative total vector of estimates. In
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a sufficiently general case, the problem of estimating unknown object states can be formulated as
the problem of minimizing the functional

F̄t(θ̂t) =
1

2

∑

i∈M

∥
∥
∥rit − r̂it

∥
∥
∥
2 → min

θ̂t

(10)

at observations

yt =
K

2n

∑

j∈N

∑

i∈M

∥
∥
∥ϕ−1

(
sjt , z

i,j
t

)
− r̂it

∥
∥
∥
2/(

σi,jt

)2
, (11)

where ‖ · ‖ denotes the Euclidean norm of a vector, K = pσ(σ̄min)
2 + (1− pσ)

∑
j∈N (σ̄

i,j
t )2, (σi,jt )2 =

max{trace(Ξi,jt )} and the corresponding terms are assumed to be zero if (σi,jt )2 = ∞. Normaliza-
tion with respect to (σi,jt )2 in such problems is quite natural and allows one to rank observations
according to their level of reliability.

The observation model (11) naturally “fits” into the general scheme (1) if one selects

W = ⊗m
i=1 ⊗n

j=1 R
q ⊗n

j=1 R
p

and denotes wt = col(. . . , εi,jt , . . .s
j
t , . . .), xt = θ̂t,

f̄wt(xt) =
K

2n

∑

j∈N

∑

i∈M

∥
∥
∥ϕ−1

(
sjt , z

i,j
t

)
− r̂it

∥
∥
∥
2/(

σi,jt

)2
.

The general scheme of (1) also allows for additional errors in observations vt.

With the above notation, functional (10) is actually an average risk functional of type (2),
F̄t(xt) = EFt−1 f̄wt(xt), because by virtue of independence and centering of ξi,jt we have

EFt−1

K

2n

∑

j∈N

∑

i∈M

∥
∥
∥ϕ−1

(
sjt , z

i,j
t

)
− r̂it

∥
∥
∥
2/(

σi,jt

)2

= EFt−1

K

2n

∑

i∈M

∑

j∈N

∥
∥
∥rit + ξi,jt − r̂it

∥
∥
∥
2/(

σi,jt

)2

=
1

2

∑

i∈M

∥
∥
∥rit − r̂it

∥
∥
∥
2 ∑

j∈N
pσ + (1− pσ)E{trace(Ξi,j

t )>(σ̄min)2}
trace

(
Ξi,jt

)

(
σi,jt

)2

=
1

2

∑

i∈M

∥
∥
∥rit − r̂it

∥
∥
∥
2
.

2.3. Cyclic Stochastic Approximation

The works [28, 33] introduced a cyclic algorithm of stochastic approximation type to find an
estimate of vector θt, and the authors used step size decreasing to zero. However, in order to
solve problem (2), which consists in monitoring the changes in parameter θt, one has to use a
constant step size due to the nonstationarity of the minimized functional. This justifies the study
of properties of estimates of the method of cyclic stochastic approximation with nondecreasing step
size. The cyclic approach allows us to move from a centralized formulation of the problem to a
distributed one. One characteristic feature of the cyclic approach is that the unknown vector θt is
divided into several subvectors, and at time t only the selected subvector is updated. Nevertheless,
it is implied that over a certain time interval each subvector will be updated separately.
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Let us consider the application of the cyclic approach in more detail. We break the time axis into
a sequence of cycles of length 2k: 2(T − 1)k + 1, 2(T − 1)k + 2, . . . , 2Tk, and on each cycle we split
the set of indices D = {1, . . . , d} into k disjoint subsets Iu, u = 1, . . . , k, that show the selection of
active parameters at time moments t = 2(T − 1)k + 2u− 1 and t = 2(T − 1)k + 2u, u = 1, . . . , k,
and that satisfy conditions

k⋃

u=1

Iu = D, Iu′
⋂

Iu′′ = ∅ for u′ 	= u′′. (12)

For each t = 1, 2, . . . we define diagonal matrices At that form a sparse vector Atxt with respect
to the vector xt with zeros at positions whose indices do not belong to I(t mod (2k))÷2, where mod
denotes the remainder of a division, ÷ denotes exact division. By a cyclic sequence of matrices {At}
we define a polynomial

A(λ) =
k∑

u=1

A2kT+2uλ
u,

which will later be convenient to use together with the index shift operation λθt = θt−2k+2.

Taking into account the above notation, the obtained observations y1, y2, . . . can be represented
as

yt = fwt(Atxt) + vt. (13)

To track changes in θt, we use a randomized stochastic approximation algorithm with a pertur-
bation at the input [9], modified with the cyclic approach. Let θ̂0 ∈ R

d be a non-random initial
vector, ΔT , T = 0, 1, . . . , be the observable sequence of Bernoulli random vectors from R

d that
take values ±1 with equal probabilities 1

2 , called randomized sample disturbances. To construct ob-

servation points {xt} and estimates {θ̂t}, consider the search algorithm of stochastic approximation
with two observations and randomization at the input:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2((t−1)÷2)+1 = At(θ̂t−1 − β−Δt÷2), x2(t÷2) = At(θ̂t−1 + β+Δt÷2)

θ̂2((t−1)÷2)+1 = θ̂2((t−1)÷2)

θ̂2(t÷2) = θ̂2((t−1)÷2)+1 − αAtΔT
y2T − y2T−1

β
,

(14)

where α > 0 is a constant step size, β+ � 0 and β− � 0 are such that β = β+ + β− > 0.

2.4. Upper Bound of the Mean Squared Estimation Error

To evaluate the quality of estimates, we will use the following characteristic, similar to the one
presented in [9].

Definition. A sequence of estimates {θ̂t} yields an asymptotically optimal weak upper
bound L̄ > 0 of the mean squared residual if for every ε > 0 there exists t̄ such that

∀t > t̄
√

E‖θ̂t −A(λ)θt‖2 � L̄+ ε.

Next we formulate basic assumptions about perturbations and functions f̄w(x), F̄t(x).

1. At the minimum points θt of the functions F̄t(·) and gradient vectors of the functions f̄wt(Atx)
the following inequalities hold:

∀x ∈ R
d (x− θt)

TAT
t EFt−1∇f̄wt(Atx) � μ‖At(x− θt)‖2

for some constant μ > 0.

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 6 2018



CYCLIC STOCHASTIC APPROXIMATION 1019

2. ∀w ∈ W gradient ∇f̄wt(Atx) satisfies the Lipschitz condition: ∀x′,x′′ ∈ R
d

∥
∥∇f̄wt(Atx

′)− f̄wt(Atx
′′)
∥
∥ �M

∥
∥At(x

′ − x′′)
∥
∥

with a constant M � μ.

3. Gradient vector ∇f̄wt(Atx) is uniformly bounded at the minimum points θt:

∥
∥E∇f̄wt(Atθt)

∥
∥ � c1, E

∥
∥∇f̄wt(Atθt)

∥
∥2 � c2,

E
(∇f̄wt(Atθt)

)T ∇f̄wt−1(Atθt−1) � c2

(c1 = c2 = 0, if the sequence of wt is not random, i.e., f̄wt(x) = F̄t(x)).

4. The drift is bounded: for ηt=At(θt−θt−1) ‖ηt‖� δθ<∞ or E‖ηt‖2� δ2θ and E‖ηt‖‖ηt−1‖ �
δ2θ if the sequence {wt} is random.

5. The drift rate is bounded in such a way that ∀x ∈ R
d:

EFt−2

(
f̄wt(Atθt)− f̄wt−1(Atθt−1)

)2 � c3‖At(x− θt−2)‖+ c4.

6. Consecutive differences in observation interference are bounded:

|v2t − v2t−1| � cv <∞ or E(v2t − v2t−1)
2 � c2v,

if the sequence {vt} is random.

7. For T = 0, 1, . . ., if vt are random then the vector ΔT and interference difference v2kT+2 −
v2kT+1, . . . , v2k(T+1) − v2k(T+1)−1 are independent; if wt are random, then vector ΔT and w2kT+1,
. . . , w2k(T+1) are independent.

We denote

γ = 3d

(

M2d+
c3
β

)

, m = 2(μ − αγ),

b = 2βMd
√
d(1 + 6αMd) + δθ(M + 2μ + 6αM2d2),

l̄ = 2αd

(

c2v + 3

(
c4
β

+ d

(

c2 +M2
(
δθ + 2β

√
d
)2
)))

+ 2δθ
(
4βMd

√
d+Mδθ + c1 + 3μδ2θ

)
,

l = l̄ + 2bk
√
kδθ +

1− αm

α
δ2θ.

We use the result of Theorem 1 from [9] and based on it formulate a theorem for the estimates
formed by each sensor.

Theorem 1. If conditions (12) and assumptions 1-7 hold, and constant α is sufficiently small:

α ∈

⎧
⎪⎪⎨

⎪⎪⎩

(0;μ/γ), if μ2 < 2γ
(

0;
μ−√μ2 − 2γ

2γ

)

∪
(
μ+

√
μ2 − 2γ

2γ
;μ/γ

)

otherwise,
(15)

then the sequence of estimates {θ̂2kT }∞T=0, constructed with algorithm (14), has an asymptotically
optimal weak upper bound of the mean squared residue

L̄ =

√
k
(
b+

√
b2 +ml

)

m
. (16)

Proof of Theorem 1 is given in the Appendix.
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3. THE DISTRIBUTED MONITORING PROBLEM
FOR PARAMETER CHANGES

3.1. Distributed Tracking

Suppose that there are n observers (sensors) in the considered system. For example, observers
can be “tied” to robots, servers that process data, and so on. In distributed optimization, it is
assumed that for any w ∈ W, the function f̄w(θ) is separable with respect to either the function
itself or a partition of the vector θ into n subvectors, namely:

f̄w(θ) =
n∑

j=1

f jw(θ
j), (17)

where θj ∈ R
d is a copy of the vector θ for each j = 1, . . . , n or θj ∈ R

dj is a subvector of vector
θ = col(θ1, . . . ,θn) respectively. In the first case, one looks for a solution of optimization prob-
lem θ� for each of the observers (sensors) j based on available local information, assuming that all
functions f jw(·) have the same minimum points. In the second case, each observer j is associated
with some part θj

�
of the global optimal solution θ�. Further, when there are possible connec-

tions between observers, the local solutions obtained are aggregated in one way or another. For
example, under fairly general conditions on the topology of the connections between observers, the
results can be aggregated with the local voting protocol described in [13], which can operate under
interference and delays in communication channels.

Problem (2) in the distributed form is reformulated as follows: find the “drifting” minimum
point θt for the function

F̄t(θ) = EFt−1

n∑

j=1

f jwt
(θj) =

n∑

j=1

F jt (θ
j) → min

θ
. (18)

We denote by D
j the subsets of indices from D corresponding to the indices of non-zero compo-

nents of the vector θj in θ.

3.2. Distributed Estimation of Trajectories of Moving Objects

Let us return to the example of a distributed network shown in Section 2.2 where a network
of n observers (sensors) have in their zone of visibility m objects whose state vectors are to be
estimated.

We define the adjacency matrix Bt = [bi,jt ], where bi,jt > 0 if sensor j is watching object i, and

bi,jt = 0 otherwise. Similarly, we introduce the interaction matrix Ct = [cj,kt ], where cj,kt > 0 if

sensor j can communicate with sensor k ∈ N , and cj,kt = 0 otherwise. We denote by N j
t = {j :

cj,kt > 0} ⊂ N the set of “neighbors” of sensor j; by |N j
t |, the number of “neighbors” of sensor j.

Denote by M j
t ⊂M the set of sensor targets j which it observes at time t by itself or about which

it can receive data from its neighbors.

We will consider two types of restrictions on the operation of the sensor network. The first
restriction is that each sensor can only exchange data with a certain number of “neighbors,” i.e.,
we assume that we are operating under constraints

|N j
t | � njmax. (19)

In a real operating environment, these restrictions may result from the fact that some restrictions
are imposed on the number of dedicated communication channels, or may be due to the inability to
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send data to a distance greater than a certain limit. The second restriction applies to the maximum
number of targets allowed at time t,

|M j
t | � mj

max, (20)

information about which sensor j is able to receive from its “neighbors” or by independent ob-
servation. This value, in turn, can be associated with limited bandwidth of the communication
channel. We also note that the formation of subsets M j

t is achieved by varying the coefficients of
the adjacency matrix Bt.

Suppose that matrices Bt and Ct satisfy conditions (19) and (20) and, in addition, for each
observer j, j ∈ N , data is generated about the states of objects from some set D

j when partition
conditions are fulfilled:

kj⋃

u=1

I
j
u = D

j, I
j
u′
⋂

I
j
u′′ = ∅ for u′ 	= u′′. (21)

We denote by Ajt the corresponding matrices that sparsify vectors θ̂t.

Taking into account the above notation, we can rewrite the functional (10) as (18) with

f jt (θ̂
j
t ) =

K

2n

∑

i∈Mj
t

∥
∥
∥ϕ−1

(
sjt , z

i,j
t

)
− r̂it

∥
∥
∥
2/(

σi,jt

)2
, (22)

since we can assume that (σi,jt )2 = ∞ if at time moment t observer j does not receive any infor-
mation about object i.

3.3. Multi-Agent Algorithm for Tracking Parameter Changes Using the Cyclic Approach

Algorithm (distributed cyclic estimation algorithm).

For each sensor j, j ∈ N , perform the following procedures.

1. Initialization and choice of coefficients. Set the counter to T j = 0. Choose initial approxi-
mation θ̂j0 ∈ R

d and sufficiently small αj > 0 and βj > 0. Set the maximum allowed values for the
number of “neighbors” njmax and tracking objects mj

max. Construct a sequence of matrices {Ajt}
such that conditions (19)–(21) are satisfied.

2. Iteration T j → T j + 1.

a. According to the Bernoulli distribution generate a random vector Δj
T j ∈ R

d from indepen-
dent components equal to ±1 with probability 1

2 .

b. Iteration over an observation cycle for u = 1, 2, . . . , kj :

b-1) t := 2T j + 2u;

b-2) construct an observation point xjt−1 with lth component equal to θ̂j,l
2T j − βjΔj,l

T j , if

aj,lt−1 > 0 and equal to 0 if aj,lt−1 = 0;

b-3) obtain the measurements zi,jt−1, i ∈M j
t−1;

b-4) compute the empirical value of the quality functional yj,−t−1 =f
j
t (x

j
t−1) by (22);

b-5) generate observation point xjt with lth components equal to θ̂j,l
2T j + βjΔj,l

T j , if a
j,l
t > 0,

and equal to 0 if aj,lt = 0;

b-6) get the measurements zi,jt , i ∈M j
t ;

b-7) compute the empirical value of the quality functional yj,+t = f jt (x
j
t ) by (22);
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b-8) compute the pseudogradient

∇̂j
t = AjtΔ

j
T j

yj,+t − yj,−t−1

2βj
;

b-9) find the new estimate:

θ̂jt = θ̂jt−1 − αj∇̂j
t .

3. Go to step 2a.

We formulate the following theorem on the properties of the estimates produced by Algorithm.

Theorem 2. If the drift is bounded: ‖rit − rit−1‖ � σir, i ∈M , conditions (4) hold for the obser-

vation model, conditions (19)–(21) hold for the matrix sequences {Bt}, {Ct} and {Ajt}, j ∈ N , and
the constant α is sufficiently small:

α ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0;μj/γj), if (μj)2 < 2γj

⎛

⎝0;
μj −

√
(μj)2 − 2γj

2γj

⎞

⎠ ∪
⎛

⎝
μj +

√
(μj)2 − 2γj

2γj
;μj/γj

⎞

⎠ otherwise,

then the sequences of estimates {θ̂j
2kjT

}∞T=0, constructed according to Algorithm, have asymptotically
optimal weak upper bounds of the mean square residue

L̄j =

√
kj
(
bj +

√
(bj)2 +mjlj

)

mj
, (23)

where

μj =
K

2nmaxi,t(σ
i,j
t )2

, M j =
K

2nmini,t(σ
i,j
t )2

, γj = 3d2(M j)2,

mj = 2(μj − αγj), δjθ = kj max
i,t

∑

i∈Mj
t

δir,

bj = 2βM jd
√
d(1 + 6αM jd) + δjθ

(
M j + 2μj + 6α(M j)2d2

)
,

l̄j = 6d
α

β
max
t

K

2n

∑

i∈Mj
t

(
M4

(σi,jt )4
+

M4

(σi,jt−1)
4
− 2

)

+6d2
(
K

2n
max
i,t

trace(Ξi,jt )

(σi,jt )2
+ (M j)2(δjθ + 2β

√
d)2
)

+ 2δjθ

(
4βM jd

√
d+M jδjθ + 3μj(δjθ)

2
)
,

lj = l̄j + 2bjkj
√
kjδjθ +

1− αmj

α
(δjθ)

2.

Proof of Theorem 2 is given in the Appendix.
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4. MODELING

We apply the results obtained in Section 3 to the problem of distributed estimation of the
trajectory of moving objects from Section 2.2. In our construction of the observation model we use
functions (5)–(8).

Suppose that the six monitored objects are moving uniformly and rectilinearly across a square
region with area 300× 300 km2 with the same speed equal to 2500 km/h.

In the area of interest (tracking area), there are six randomly located stationary sensors. The
level of errors in the measurements obtained from each sensor is set at 5% for distances and
0.5 degrees for angles. For these values, the variance of the measurement error of the trajectory of
object i by sensor j will be

Σi,jt =

[
σ2ψ 0

0 (zi,j,2t σρ)
2

]

=

[
0.52 0

0 (0.05zi,j,2t )2

]

.

Objects and sensors have the same rectangular coordinate system with axes x1 and x2.
Objects start their movement at points with coordinates r10 = [270, 295]T; r20 = [240, 290]T;
r30 = [210, 285]T; r40 = [180, 280]T; r50 = [150, 275]; r60 = [120 , 270]T. During the simulation, we
set parameters of the algorithm to αj = 0.05 and βj = 0.03 for each sensor j ∈ N . The initial
approximation θ̂j0 is sampled randomly from the interval [299, 300]T. Let mj

max ∈ {1, . . . , 6} be the
maximum possible number of targets that sensor j can monitor, and let njmax = 1 be the maximum
possible number of “neighbors” of sensor j.

Figure 1 presents an example of a sensor network of six devices that track six targets. For
simplicity of visualization, we only show one target with i = 1 on the figure. The figure uses
the following notation: dotted line—trajectory of the target; circles with dots—sensors; solid line
with a square marker—trajectory estimate by the fourth from the left sensor. Figures 2–5 present
simulation results for different values of mj

max, where errt is the deviation of the estimate from
the true value at time t. We can see that with a minimal number of possible tracking objects the
rate of convergence of the estimate to the true value slows down significantly. In turn, the best
convergence is demonstrated at the maximum possible value of mj

max. Based on simulation results,
we can also say that when setting an allowed time interval for estimation, it is possible not to use
all available sensors to track each target. This implies that it is possible to use the resources of the
sensor network more rationally and further improve its tracking characteristics.

Fig. 1. A sample sensor network with visualized trajectory estimation for object i = 1 by sensor j = 4 with
m4

max = 2.

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 6 2018



1024 GRANICHIN, EROFEEVA

Fig. 2. Deviation of the estimate from the
true value at mj

max = 1.
Fig. 3. Deviation of the estimate from the
true value for mj

max = 2.

Fig. 4. Deviation of the estimate from the
true value for mj

max = 3.
Fig. 5. Deviation from the true value
for mj

max = 6.

5. CONCLUSION

In this work, we have studied and justified the application of cyclic stochastic approximation
for solving optimization problems for a nonstationary functional. A distributed problem setting is
formulated with respect to the optimization of the functional using the cyclic approach. We have
considered the problem of tracking parameters in a distributed network of sensors, for example,
tracking moving objects by stationary sensors. We have proposed a multiagent estimation algorithm
for this problem. We have showed a theoretical result that proves that the sequence of estimates
obtained by the proposed algorithm has an asymptotically optimal weak upper bound of the mean
square residue of the form (23). The algorithm’s operation has also been illustrated by an example
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of modeling the process of tracking moving objects. Further work may be related to optimizing the
use of sensor network resources, namely finding a rational distribution of tracking objects among
the sensors with the ability to predict the best tracking group based on the quality of received
estimates.
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APPENDIX

Proof of Theorem 1. Consider the following auxiliary Lemma 1 from [34].

Lemma 1 [34]. If en > 0, α,m > 0, αm < 1, b, l̄ � 0 and

en � (1− αm) en−1 + 2α b
√
en−1 + α l̄, n = 1, 2, . . . , (A.1)

then for every ε > 0 there exists N such that ∀n > N

en �
(
b+

√
b2 +ml̄

m

)2

+ ε.

Proof Lemma 1 is presented in [8].

Let T = 0, 1, . . . . Consider the cycle with index T . Similar to the proof of Theorem 1 from
[9, (16), p. 1358], since assumptions 1–7 hold and taking into account the form of algorithm (14),
we obtain for every u = 1, 2, . . . , k the following relation:

EF2kT+2u−2

∥
∥
∥A2kT+2u(θ̂2kT+2u − θ2kT+2u)

∥
∥
∥
2

� (1− αm)
∥
∥
∥A2kT+2u(θ̂2kT − θ2kT+2u−2)

∥
∥
∥
2

+ 2αb
∥
∥
∥A2kT+2u(θ̂2kT − θ2kT+2u−2)

∥
∥
∥+ αl̄.

Summing up the left and right parts of the last equality over u ∈ {1, . . . , k}, averaging them
with respect to the σ-algebra F2kT , and taking into account the form of the matrices A2kT+2u, we
obtain

EF2kT
ν2T+1 � EF2kT

(1− αm)
∥
∥
∥θ̂2kT −A(λ)θ2k(T+1)−2

∥
∥
∥
2

+ 2αb
√
k
∥
∥
∥θ̂2kT −A(λ)θ2k(T+1)−2

∥
∥
∥+ kαl̄,

where we have denoted νT+1 = ‖θ̂2k(T+1) −A(λ)θ2k(T+1)‖.
From the triangle inequality and assumption 4, we obtain the estimates

EF2kT

∥
∥
∥θ̂2kT −A(λ)θ2k(T+1)−2

∥
∥
∥
2
� ν2T + k2δ2θ

and

EF2kT

∥
∥
∥θ̂2kT −A(λ)θ2k(T+1)−2

∥
∥
∥ � νT + k2δθ

and, taking them into account, we get that

EF2kT
ν2T+1 � (1− αm)ν2T + 2αb

√
kνT + kα

(

l̄ + 2bk
√
kδθ +

1− αm

α
δ2θ

)

.
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If condition (2) is satisfied, in our notation the application of Lemma 1 to the last inequality
completes the proof of Theorem 1.

Proof of Theorem 2. To prove Theorem 2, in our notation it suffices to verify assumptions 1–7
of Theorem 1 for the functions F jt (A

j
tx) and f jt (A

j
tx). To do this, first compute the gradient

components of the function F jt (A
j
tx):

∂

∂xi,l
∇F jt (Ajtx) = EFt−1

∂

∂xi,l
∇f jt (Ajtx)

= EFt−1

∑

i∈Mj
t

K

2n(σi,jt )2
(xi,l + ξi,l − ri,l)× 1 =

∑

i∈Mj
t

K

2n(σi,jt )2
xi,l − ri,l.

From the last formula it is clear that

assumption 1 holds with μj = K
2nmaxi,t(σ

i,j
t )2

,

assumption 2 holds with M j = K
2nmini,t(σ

i,j
t )2

,

assumption 3 holds with c1 = 0 and cj2 =
K
2n maxi,t

trace(Ξi,j
t )

(σi,jt )2
.

assumption 4 on the drift holds for δjθ = kj maxi,t
∑
i∈Mj

t
δir.

Let us verify that assumption 5 holds for c3 = 0 and cj4 = maxt
K
2n

∑
i∈Mj

t

(
M4

(σi,jt )4
+ M4

(σi,jt−1)
4
− 2

)

.

For the corresponding difference we have

EFt−2

(
f̄ jwt

(Atθt)− f̄ jwt−1
(Atθt−1)

)2

=
K

2n
EFt−2

∑

i∈Mj
t

⎛

⎝

∥
∥
∥
∥
∥

ξi,jt

(σi,jt )
‖2 − ‖ ξi,jt−1

(σi,jt−1)

∥
∥
∥
∥
∥

2
⎞

⎠

2

� K

2n

∑

i∈Mj
t

(
M4

(σi,jt )4
+

M4

(σi,jt−1)
4
− 2

)

� cj4.

Since in our problem vt = 0 then cv = 0 in assumption 6, and assumption 7 holds because the noise
are independent in our observation model.

This completes the proof of Theorem 2.
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