
Fast Algorithm for Finding True Number of Clusters. Applications to

Control Systems

Mikhail Morozkov, Oleg Granichin, Zeev Volkovich and Xuming Zhang

Abstract— One of the most difficult problems in cluster
analysis is the identification of the number of groups in a given
data set. In this paper we offer the randomized approach in
the rate distortion framework. A randomized algorithm has
been suggested to allocate this position. The scenario approach
is used to significantly reduce the computational complexity.
With ability to determine the true number of clusters and
perform clustering in real-time operational mode we outline
several applications in control systems and decision-making
problems that can benefit from algorithm in question essentially.
We also provide simulation results to show considerable speed
optimization with guaranteed level of probability.

Index Terms— Clustering, Randomized Algorithms, Adaptive
Control, Optimitzaion

I. INTRODUCTION

More and more recently emerging prolems in control

systems require algorithms to be able to give a solution in

real-time. Such algorithms have been widely used in such

fields as robotics, model predictive control or supply chain

optimization, but sample times are measured once in several

minutes, which is not exactly a real-time operational mode.

But, of course, there are a lot of systems with much faster

dynamics, that call for the execution times to be measured in

seconds at the most, which is why the majority of nowadays

“real-time” algorithms are simply inappropriate. Such state

of affairs results in very high demand for really fast, online

approaches. Hopefully, the problem has been acknowledged,

for example, prof. Boyd concerned this problem in his

plenary speech at the last Multi-Conference on Systems and

Control [1]. Their implementation of the automatic code

generation system CVXGEN, which scans a description

of the problem family and performs much of the analysis

and optimization of the algorithm, yields an extremely fast

solution with execution times measured in milliseconds or

microseconds for small and medium size problems.

But generally one has to deal with many complex prob-

lems like disturbances, uncertainty, NP-hardness etc. In order

to significantly reduce computational costs and therefore

drastically decrease computing time, it is reasonable to

exploit stochastic and randomized approaches, such as novel
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Randomized Scenario Approach (first introduced by Campi

[2] and Calafiore [3]), which is developed for solving RCP

(Robust Convex Problem). The primary idea of this technique

is to take into account only a certain and relatively small

amount of sampled instances of uncertainty (the scenarios)

affecting the system in question and then solve corresponding

problems. The main result is that the number of samples

to be considered is reasonably small and solution obtained

from corresponding convex problems satisfies with up to a

guaranteed level of probability that can be set arbitrarily

close to one to all unseen scenarios as well.

One of a widely unsolved problem in cluster analysis

is finding the true number of clusters in given data set.

There have been suggested a great number of approaches

during recent decades, such as different index function-based

techniques (Hartigan [4], Sugar and James [5]), stability

models (Levine and Domany [6], Jain and Moreau [7]) and

probability models (Cuevas et al [8] and [9], Volkovich et al

[10]). Elbow methodology is often employed as a stopping

rule to determine the number of clusters in data set. A

number of clusters is chosen such that adding another cluster

doesnt give much better modeling of the data set. The number

of clusters is chosen at such elbow point. Unfortunately,

many of the approaches concerned were developed for a

specific problem and are somewhat ad hoc.

Recently, rate distortion theory has been applied to choos-

ing true number of clusters due to sufficient mathematical

background provided in [5]. In this version of jump method,

the procedure is based on distortion curve, which is a

measure of within cluster dispersion. The distortion curve

is then transformed by a negative power selected based on

the dimension of the data. Largest jump of obtained curve

signifies the best alternative for the true number of clusters.

Nevertheless, on top of its advantages such technique implies

high computational complexity. From future control systems

point of view it is important to develop algorithms which

are able to work in real-time. With the ability to perform

clustering in the real-time one can extend its application to

other related fields, such as logistics, multi-agent systems,

sensor networking, wireless communications, dynamic cov-

erage control, bioinfarmatics and others.

In this paper we spread the ideas of scenario approach

to one of this challenging problem of finding true number

of clusters in order to significantly reduce computational

costs and introduce applications of our algorithm to control

systems as a decision-making tool. The paper is organized

as follows: we describe our implementation of randomized

algorithm of finding true number of clusters in Section II.
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Then in Section III we provide different applications of

algorithm in question. Further we introduce obtained results

in Section IV and briefly list the conclusions and future work

directions in Section V.

II. RANDOMIZED ALGORITHM

Based on the inner index approach proposed by Sugar and

James [5] in the framework of rate distortion theory, the task

of determining the true number of clusters can be formally

be represented as follows. Let x be a n-dimensional random

variable having a mixture distribution of k∗ components,

each with covariance Γ. Then the minimum achievable

distortion associated with fitting k centers to the data is

Gk =
1

n
min

C1,...,Ck

E
[
(x− Cx)

T
Γ (x− Cx) ,

]
,

where C1, . . . , Ck is a set of k cluster centers obtained by

running a standard clustering procedure; Cx is the nearest

cluster center to x. Note that in the case where Γ is the

identity matrix distortion is simply mean squared error.

Given the distortions Gk, a “jumping differential” curve is

constructed according to the following rule:

Jk = G−λ
k −G−λ

k−1,

where λ is the transformation power. According to asymp-

totic results obtained from distortion rate theory [5], its

preferred value is

λ = n/2.

Moreover, for rather high values of n, the differential distor-

tion Jk asymptotically tends to zero subject to the number of

clusters k is less than the number of components k∗. Thus,

for big n, transformed distortion Jk is almost zero when

k < k∗, then the value jumps abruptly and increases linearly

when k ≥ k∗. The Sugar and James’ “jump” algorithm

exploits such behavior in order to determine the most likely

value of k as the true number of clusters. The estimated

number of clusters corresponds to the index of maximal value

of transformed distortion function Jk:

k∗ = argmax
k

Jk.

Thus, the problem of finding the true number of clusters

can be interpreted as a particular case of more general prob-

lems, namely, the fault detection or the problem of locating

the discontinuity points of an implicitly defined function.

Generally, the problem can be formulated as follows. Let us

take a real-valued function f on the interval [0; 1] having no

more than one jump discontinuity x∗ ∈ (0; 1). The problem

concerned in [11] consists in finding confidence interval for

x∗ subject to:

1) The function f(·) is Lipschitz continuous with a Lips-

chitz’s constant C on the intervals (0;x∗) and (x∗; 1);

A1 : C ≥ max
j=2,...,k∗−1,k∗+1,...,kmax

|I (j)− I (j − 1)| ,

2) If jump discontinuity exists at the point x∗, then the

jump size at this point is above a certain constant value

B > 0.

A2 : B ≤ |I (k∗)− I (k∗ − 1)| .

To implement the above methodology in the framework of

the clustering concept, consider the transformed “distortions”

I(·), proposed by Sugar and James [5]. Without loss of gen-

erality, assume that I (0) = I(1) and introduce a continuous

piecewise linear function f as follows:

fI

(
k

kmax

)
= I (k) ,

fI(x) = I(k) +

(
x− k

kmax

)
(I(k + 1)− I(k)),

for

k

kmax
≤ x ≤ k + 1

kmax
, k = 0, . . . , k∗ − 2, k∗, . . . , kmax − 1,

fI(x) = I(k∗ − 1),

for
k∗ − 1

kmax
≤ x ≤ k∗

kmax
.

An algorithm which implements the approach in question

can be described as follows:

1) Choose the reliability parameter β ∈ (0, 1).
2) Choose the parameters N,T so that:

T =

[
4
√
2Ckmax√

1− βBN
− 1

N

]
+ 1. (1)

3) Choose randomly T groups of N points from interval

(0, 1):

Zt = {ztn, n = 1, ..., N} , t = 1, . . . , T.

and denote

Z =
⋃
t

Zt.

Below in the proof of Theorem 1 it will be shown

that the largest distance between two sequential points

belonging to Z does not exceed B
4C with probability

of 1− β.

4) Choose D,M > 0. For each one of the groups Zt, t =
1, . . . , T construct uniform approximation for fI(x):

gt(x) =

M∑
m=0

dtmpm(x), t = 1, . . . , T, (2)

minimizing the error

γt = max
x∈Zt

|gt(x)− fI(x)|

subject to

|dtm| ≤ D, m = 0, . . . ,M, t = 1, . . . , T.

Here a convex optimization MATLAB TOOLBOX

(YALMIP, SeDuMi or cvx) can be applied.
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If one of the approximation problems is not resolved

then one has to return to step 1 and to start over.

5) The the set

Δ = {x̃ = xkmax : x ∈ (0; 1), χ(x) > L(x)} (3)

where

χ(x) = max
t=1,...,T

gt(x)− min
t=1,...,T

gt(x), x ∈ (0; 1) (4)

L(x) = B − B

4Ckmax
h(x)− 2γ,

h(x) = max
z∈[zl(x),zr(x)]

max
t=1,...,T

|g′t(z)|, (5)

is a confidence interval fo rx∗ and following theorem

holds:

Theorem 1: If conditions A1 and A2 formulated above

are satisfied, then the set Δ defined in (3) is not empty

and contains the point x∗kmax, equal to the true number

of clusters with probability of at least p = β.

III. APPLICATIONS

From future control systems point of view it is important to

develop algorithms which are able to work in real-time. With

the ability to perform clustering in the real-time operation

mode one can extend its appliance to other related fields,

such as logistics distribution, various graph theory problems,

multi-agent and mobile systems, networking, wireless com-

munications, dynamic coverage control, bioinformatics and

medicine. In this section we provide three possible applica-

tions of our fast randomized algorithm for determining the

true number of clusters, and explain how some decision-

making problems in control systems can benefit essentially.

A. Dynamic Coverage Control

In the most general sense, the Dynamic Coverage Problem

main objective can be summarized as: identify clusters of

mobile objects and determine the optimal locations and

dynamics of resources such that these resources continuously

provide adequate coverage of the mobile objects, throughout

the time horizon of interest.

Dynamic coverage problems inherit the comuptational

complexity of facility location problems that arise in a variety

of static applications such as locational optimization, facility

location, optimal coding, pattern recognition and learning,

and data clustering and classification [12]. The static cov-

erage problems are known to be NP-hard [13], where the

cost functions are non-convex and are typically riddled

with multiple local minima. This complexity is compounded

further by the inclusion of dynamics of constituent elements.

Even in the static setting, there are relatively few algorithms

that develop mechanisms to inhibit getting trapped at local

minima and reduce sensitivity to initial conditions.Therefore,

it makes related problems a perfect opportunity to expand

basic ideas of our algorithm in order to significantly reduce

computational costs with guaranteed probability level of

success.

Problems related to dynamic coverage are considered

in [14], [15] where the emphasis is on distributed imple-

mentations, i.e., under limited information flow between

individual elements. These algorithms have the advantage

of distributed implementation, however they are sensitive

to the initial placement of the resources and suffer from

drawbacks analogous to those found in Lloyds algorithm. In

contrast to this distributed approach, there is scant research

that addresses the development of algorithms for problems of

a non-distributed nature, or that aim simultaneously to attain

global solutions and maintain low computational expense.

In [16], [17], a maximum entropy principle (MEP)-based

approach is discussed where dynamic coverage of mobile

objects under given velocity fields is achieved by designing

corresponding velocity fields for the resources.

Recent work of Yunwen Xu, S. Salapaka and C. L. Beck

[18] was on the the first, which considered tracking cluster

centers when site dynamics involve accelerations.

Fig. 1. Clustering moving objects in a given area. The squares and stars
denote the positions of the sites and resources respectively. Sites x1 and
x2 reside in the same cluster at the time instance shown in the left figure.
A split occurs and causes them to reside in different clusters at the time
instance shown in the right figure.

B. Medical Image Segmentation

As the technique used to create images of the human body,

medical imaging plays an important role in medical diagnosis

and surgical guidance. Medical image segmentation is very

critical in the quantification process in that it can assist

clinicians by extracting boundaries, surfaces or volumes of

organs. However, uncertainty is widely present in medical

images because of noise and other imaging artifacts, poor

contrast and intensity variations. Among the various clus-

tering methods, the unsupervised fuzzy clustering methods,

particularly fuzzy C-means (FCM) algorithm, have been

widely used for medical image segmentation in that they

are effective in dealing with uncertainty.

Despite its popularity in medical image segmentation, the

traditional FCM has many problems to be settled for accurate

and robust medical image segmentation. It has been well

known that the traditional FCM algorithm is sensitive to

noise inherent in medical images because it does not take into

account the spatial dependencies between the clustered data.

To overcome the disadvantageous influence of noise, Shen et

al [19] introduced the feature difference between neighboring

pixels in brain magnetic resonance (MR) images and the rela-

tive locations of neighboring pixels to modify similarity mea-

sure in FCM. Yu et al [20] have proposed 2DFCM method

in which the spatial constraints provided by the denoising
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data and the Gabor wavelet based textural information are

introduced to produce satisfactory segmentation results for

corrupted images with intensity variations. To address the

ignorance of the spatial neighborhood information in FCM

, an improved spatial FCM algorithm has been proposed,

which incorporates the spatial neighborhood information into

the traditional FCM algorithm based on the membership

function of the center pixel and its neighboring pixels [21].

Zhang et al [22] have proposed the kernelized fuzzy C-

means (KFCM) algorithm, which is realized by modifying

the objective function in the conventional FCM algorithm

using a kernel-induced distance metric and a spatial penalty

on the membership functions.

Additionally, the FCM has the drawback that the desired

number of clusters must be specified in advance. This is

a disadvantage for medical image segmentation in that the

ground truth is always not available for medical imagery.

To address this problem, Li et al [23] have proposed a

modified fast FCM algorithm for automatic MR brain image

segmentation. The advantage of this algorithm is that it can

determine the number of clusters automatically by combining

the Otsu algorithm [24] with fast FCM algorithm. Hung et al

[25] have presented the modified suppressed fuzzy c-means

method. This method performs clustering and parameter

selection for the suppressed FCM algorithm simultaneously

and it can easily select the parameter in the suppressed FCM

based on exponential separation strength among clusters.

Owing to the iterative nature, the FCM method is computa-

tionally intensive. To increase its implementation efficiency, a

high speed parallel fuzzy C means algorithm for brain tumor

image segmentation has been presented by S. Murugavalli et

al [26]. The algorithm is highly efficient in that it has the

advantages of both the sequential FCM and parallel FCM

for the clustering process in the segmentation techniques.

Zhou et al [27] have introduced a mean shift based fuzzy c-

means algorithm by introducing mean field term into FCM.

This algorithm requires less computational time than the

traditional FCM and therefore it can be effectively used for

extracting skin lesion borders from dermoscopic images.

Apart from the modification of the FCM method, it has

been combined with other methods to realize medical image

segmentation. S. Pradhan et al [28] have combined FCM

with the hidden Markov random field (HMRF) model for

brain MR image segmentation. The proposed algorithm uses

the HMRF model to model the image class labels and

offers an FCM-type treatment of the HMRF model. This

MRF-FCM algorithm provides an effective means for brain

MR image segmentation in that it integrates the spatial

coherency modeling capabilities of the HMRF model with

the flexibility of FCM-type method. Li et al [29] combines

spatial fuzzy clustering with level set methods for automated

medical image segmentation. Here the initial segmentation

is produced by spatial fuzzy clustering. The fuzzy level

set algorithm directly evolves from it and the controlling

parameters of level set evolution are also estimated from the

results of fuzzy clustering.

C. Genomes Classification

The problem of bacteria classification arose long before

the start of the Genomic Era. The approach that existed at

that time is known as species categorization. Bacteria were

divided into groups on the basis of one or more traits such as

morphological, physiological and environmental. Using the

Compositional Spectrum method, it is possible to investigate

the connection between the frequency pattern and various

natural bacteria classifications established on the basis of

categorization or phylogeny. The goal of the study is in

finding the answer to the question as to whether entire

genomes or their large parts reflect the latter classifications.

An important part of a genomes classification is the de-

termination of the natural number of groups where genomes

belonging to same group are more similar one to another

in comparison of genomes found in different subsets. This is

also essential for our purposes since we are going to compare

a formally obtained categorization with the biological one,

which implies that the number of groups must be determined

in a formal way using only the Compositional Spectrum

distances, without any additional biological information in

the dataset. The estimation of the number of groups presents

an ill-posed problem of crucial relevance in cluster analysis.

The correct number of clusters in a dataset can depend on the

scale at which the elements are measured. The approaches

for solving this problem apply, in particular, the following

two methodologies. The first one is based on the geometrical

features, such as dispersion within and between the clusters.

The second one, based on the cluster stability properties,

considers the closeness of repeated results of the algorithm.

The closeness can be characterized by means of statistical

stability.

However, in the case when the expected number of clusters

is relative big, the accepted methods possess frequently

very high computational complexity. Such a problem arises

naturally in problems connected to the separation of bacteria

mixtures ones the number of bacteria is unknown and has to

be estimated using only the data itself.

IV. SIMULATION RESULTS

To check whether the proposed algorithm can be applied

to a large number of clusters, a synthetic dataset was gen-

erated. It contained 3100 clusters, each composed of 8 - 19

instances. Instances in each cluster were generated according

to a Gaussian distribution on the unit square [0, 1] × [0, 1]
with a random center for each cluster.

We consider the interval [1, 8000] which contains the real

number of clusters. For each point the transformed distortion

function I(k) is calculated using the algorithm of Sugar

and James. Note, for each k = 1, . . . , 8000 we proceed the

clustering algorithm (k-means) and after that computed I(k).
The results are presented in Fig. 2.

The scenario approach which was described above allows

us to significantly reduce the number of clustering algorithm

computation. Assuming that B > 1.0 and C < 0.002, we

choose β = 0.9; M = 20; N = 29; D = 0.6. Hence, subject

to (1) T = 10. Thus, having computed only 290 values of
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Fig. 2. Index function for initial data set.

I(k), we reduced interval of uncertainty 14 times, instead of

computing 7400 values, as traditional deterministic approach

implies, in order to obtain the confidence interval Δ with

probability of at least β = 0.9. Three approximation curves

gt(·) are shown on Fig. 3 along with the resulting function

χ(·).
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Fig. 3. Approximation curves.

With the assumption B > 1.0 and C < 0.002 we

obtain the level of decision making, which is shown in

Fig. 4 along with the resulting function χ(·). A peak near

the point x∗ = 3200 can be observed. So if we consider

segment [2750, 3410] to be the confidence interval Δ, then

for obtainig eventual solution one needs to perform 660
computations of index function I(x). Thus the total number

of index function computations equals to 950, which is

considerably less than initial number of 8000.
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Fig. 4. Resulting function and confidence level.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A new randomized algorithm of stable clustering has

been suggested. The algorithm is based on randomized

approach and ideas of scenario approach along with well-

known algorithms of cluster number determination using

inner index functions. Significant decrease of computational

complexity is theoretically proved for sufficiently generalized

case. Given the speed optimization of the proposed algorithm

allows to determine the true number of clusters in real-time,

several possible applications for the algotirhm in question

have been outlined.

B. Future Works

In future work, it will be of interest to further develop our

randomized approach. The choice of clustering algorithm is

subject to investigation. Originally we opted for k-means

due to its simplicity, but there is a major drawback of

all techniques similar to k-means, they often converge on

local minima rather than the global minimum. For example,

Rose in [30] and [31] proposed an algorithm based on

a deterministic annealing optimization method, which was

shown to be capable of avoiding local minima in situations

where descent minimization algorithms (i.e k-means) failed

to do so.

The major future challenge is to apply our algorithm to

actual problems in the field of control systems and decision-

making as we listed in Section III. It is necessarily specify

more precisely proper metrics for each case, pick and deploy

faster and more correct clustering algorithm.
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