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Simultaneous Perturbation Stochastic Approximation for Tracking
Under Unknown but Bounded Disturbances

Oleg Granichin, Senior Member, IEEE, and Natalia Amelina

Abstract—Multi-dimensional stochastic optimization plays an
important role in analysis and control of many technical systems.
To solve the challenging multidimensional problems of nonstation-
ary optimization, it is suggested to use a stochastic approximation
algorithm (like SPSA) with perturbed input and constant step-
size which has simple form. We get a finite bound of residual
between estimates and time-varying unknown parameters when
observations are made under an unknown but bounded noise.
Applications of the algorithm are considered for a random walk,
an optimization of UAV’s flight, and a load balancing problem.

Index Terms—Arbitrary noise, randomized algorithm, SPSA,
stochastic approximation, unknown but bounded disturbances.

I. INTRODUCTION

Stochastic approximation was introduced by Robbins and Monro
[1] and was further developed for optimization problems by Kiefer
and Wolfowitz (KW) [2]. In [3] the stochastic approximation al-
gorithm was extended to the multidimensional case. When θ ∈ R

d,
the conventional KW-procedure, which is based on finite-difference
approximations of the function gradient vector, uses 2d observations at
each iteration to construct the sequence of estimates (two observations
for approximations of each component of the gradient d-vector). Spall
[4] suggested a simultaneous perturbation stochastic approximation
(SPSA) algorithm with only two observations at each iteration which
recursively generates estimates along random directions. He demon-
strated that for a large d the probabilistic distribution of appropriately
scaled estimation errors is approximately normal. The formula ob-
tained for the asymptotic error variance and a similar characteristic
of the KW procedure are used to compare overall performances
of algorithms. It turned out that, all other things being equal, the
SPSA algorithm has the same order of convergence rate as the KW-
procedure, even though in the multidimensional case (even d → ∞)
appreciably fewer (by the factor of d) observations are used (see [5]).

The stochastic approximation method was originally introduced as
a tool for statistical computations and was further developed within
the separate field of control theory. Today this topic has a wide variety
of applications in areas such as adaptive signal processing, adaptive
resource allocation in communication networks, system identification
and adaptive control.

Initially, stochastic approximation algorithms were proven in the
case of stationary functionals minimization. In [6] for time-varying
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functionals, the Newton method and the gradient method are applied
to problems of minimization but they are applicable only in the
case of two times differentiable functionals and with known bounds
of the Hessian matrix. Both methods require the availability of a
direct measurement of a gradient at an arbitrary point. The stochastic
setting is not discussed there. The books [7], [8] address the issue
of applications of stochastic approximation with constant step-size to
tracking and time-varying systems.

Distributed asynchronous stochastic approximation algorithms were
studied in [9]. The stochastic approximation method with constant
step-size has also been used in [10] for multi-agent systems under
dynamic state changes (e.g., processing jobs and feeding new jobs in
a computer network) in the presence of stochastic disturbances and
noise. It allows one to achieve an approximate consensus which means
a load balancing in the context of computer network processing.

In this technical note, the application of the SPSA algorithm is
considered for non-constrained optimization in the context of the
minimum tracking problem. In the case of once differentiable time-
varying quality functionals and almost arbitrary external noise, the
upper bound of a mean square estimation error is derived for estimates
of SPSA type algorithms with constant step-size. It could have a
sufficiently small level compared to a significant level of noise when
the rate of parameter change is slow. The obtained result continues the
line of research on SPSA for tracking [11]–[13]. The linear case was
studied in [11]. In comparison with previous results [12], [13] for the
nonlinear case we consider a new upper bound which corresponds to
improved conditions and a generalized version of the algorithm. The
consideration of a new algorithm was introduced and motivated for
use in practice in [14] but without a theoretical study of the estimate’s
properties.

This paper is organized as follows: in Section II, we formulate
a formal problem setting of a non-constrained time-varying mean-
risk optimization and present the main assumptions. Section III in-
troduces the excitation testing perturbation and estimation algorithm.
In Section IV, we give the main result about the estimates with
respect to the SPSA algorithm in the context of the minimum tracking
problem. Section V shows some applications. And in the end, we make
conclusions.

II. MEAN-RISK OPTIMIZATION AND ASSUMPTIONS

Many practical applications need to optimize one or another mean
risk functional. Although the extremal values can sometimes be estab-
lished analytically, engineering systems often deal with an unknown
functional whose value or gradient can be calculated at the given
points.

Let Ξ be a set, {fξ(θ)}ξ∈Ξ, be a family of differentiable functions:
fξ(θ) : R

d → R, and let x1,x2, . . . be a sequence of measurement
points chosen by the experimenter (observation plan), where the values
y1, y2, . . . of functions fξ(·) are accessible to observations at every
time instant t = 1, 2, . . ., with additive external noise vt

yt = fξt(xt) + vt (1)
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where {ξt} is a non-controllable sequence: ξt ∈ Ξ (e.g., Ξ = N and
ξt = t, or Ξ ⊂ R

p and {ξt} is a sequence of some random elements).
Let Ft−1 be the σ-algebra of all probabilistic events which hap-

pened up to time instant t = 1, 2, . . .. Hereinafter EFt−1
is a symbol of

the conditional mathematical expectation with respect to the σ-algebra
Ft−1, E is a symbol of the mathematical expectation.

Non-Stationary Problem Formulation: The time-varying point of
minimum θt of the function

Ft(θ) = EFt−1
fξt(θ) → min

θ
(2)

needs to be estimated.
More precisely, using the observations y1, y2, . . . , yt and inputs

x1,x2, . . . ,xt, construct an estimate θ̂t of an unknown vector θt

minimizing the time-varying mean-risk functional (2).
Minimization of the function Ft(θ) is usually studied with simpler

observation models

yt = Ft(xt) + vt or yt = fξt(xt).

The generalization used in the formulation (1) allows separation of
observation disturbances with “good” (e.g., zero-mean and indepen-
dent and identically distributed—i.i.d.) statistical properties {ξt} and
arbitrary additive external noise {vt}. Of course, this separation is not
needed when we can assume that {vt} is a random zero-mean and
independent and identically distributed as well.

Let us formulate Assumptions about disturbances and functions
fξ(x), Ft(x).

1) For n = 1, 2, . . . , the successive differences v̄n = v2n − v2n−1

of observation noise are bounded: |v̄n| ≤ cv < ∞, or Ev̄2n ≤ c2v
if a sequence {vt} is random.

2) The drift is bounded: ‖θt − θt−1‖ ≤ δθ < ∞, or E‖θt −
θt−1‖2 ≤ δ2θ and E‖θt − θt−1‖‖θt−1 − θt−2‖ ≤ δ2θ if a se-
quence {ξt} is random.

3) The rate of drift is bounded in a such way that for
any arbitrary point x: ‖EF2n−2

∇ϕn(x)‖ ≤ a1‖x− θ2n−2‖+
a0, EF2n−2

ϕn(x)
2 ≤ a2‖x− θ2n−2‖2 + a3, where ϕn(x) =

fξ2n(x)− fξ2n−1
(x).

4) Functions Ft(·) have unique minimum points θt and

∀x ∈ R
d〈x− θt, EFt−1

∇fξt(x)〉 ≥ μ‖x− θt‖2

with a constant μ > 0. Here and further 〈·, ·〉 is a scalar product
of two vectors.

5) The gradient ∇fξt is uniformly bounded in the mean-
squared sense at the minimum points θt: E‖∇fξt(θt)‖2 ≤ g2,
E〈∇fξt(θt),∇fξt−1

(θt−1)〉 ≤ g2 (g = 0 if ξt is not a random
parameter, i.e. fξt(x) = Ft(x)).

6) ∀ξ ∈ Ξ the gradient ∇fξ(x) satisfies the Lipschitz condition:
∀x′,x′′ ∈ R

d

‖∇fξ(x
′)−∇fξ(x

′′)‖ ≤ M‖x′ − x′′‖

with a constant M ≥ μ.

Examples:

1) Assumption 2 about the drift holds for the drift with model

θt = θt−1 + ζt−1, θt ∈ R
d

when {ζt} is a sequence of random i.i.d. vectors which
have symmetrical distribution on the ball: ‖ζt‖ ≤ δθ , Eζt =
0, E‖ζt‖2 = σ2

ζ , E‖ζt‖4 = M4
ζ . If at time instant t we can

measure the squared distance ‖x− θt‖2 between a chosen point
x and θt with additive bounded non-random noise vt: ‖vt‖ < 1,

then we have Ξ = N and Ft(x) = ‖x− θt‖2. Assumptions 3–6
hold with constants a1 = 0, a0 = σ2

ζ , a2 = 8σ2
ζ , a3 = 8σ2

ζδ
2
θ +

M4
ζ , g = 0, μ = M = 2.

2) The next example is inspired by the application in a physical
experiment [15]. If at time instant t we can measure with
additive bounded non-random noise vt(‖vt‖ < 1) the squared
distance ‖x− θ�‖2 between a target θ� and chosen point x
which is corrupted by a random i.i.d. perturbation ξt ∈ Ξ ⊂
R

d distributed symmetrically around zero: Eξt = 0, E‖ξt‖2 =
σ2
ξ , E‖ξt‖4 = M4

ξ , then we have fξt(x) = ‖x+ ξt − θ�‖2.
Assumptions 2–6 hold with constants δθ = 0, a1 = a0 = 0,
a2 = 8σ2

ξ , a3 = 2M4
ξ − 2σ4

ξ , g = 0, μ = M = 2.

III. EXCITATION TESTING PERTURBATION AND

ESTIMATION ALGORITHMS

Let Δn, n = 1, 2, . . . be an observed sequence of independent
random vectors in R

d, called the simultaneous test perturbation, with
symmetrical distribution functions Pn(·), and let Kn(·) : Rd → R

d,
n = 1, 2, . . ., be a set of vector functions (kernels).

Let us take a fixed nonrandom initial vector θ̂0 ∈ R
d, a positive

step-size α, and choose sequences of such non-negativenumbers {β+
n }

and {β−
n } that βn = β+

n + β−
n > 0.We consider the algorithm with

two observations for constructing sequences ofpoints of observations
{xt} and estimates {θ̂t}:⎧⎨⎩

x2n = θ̂2n−2 + β+
n Δn, x2n−1 = θ̂2n−2 − β−

n Δn,

θ̂2n−1 = θ̂2n−2,

θ̂2n = θ̂2n−1 − αKn(Δn)
y2n−y2n−1

βn
.

(3)

Assume that the following conditions hold:
7) For any n = 1, 2, . . .,

a) Δn and ξ2n−1, ξ2n (if they are random) do not depend on
the σ-algebra F2n−2.

b) If ξ2n−1, ξ2n are random, then random vectors Δn and
elements ξ2n−1, ξ2n are independent.

c) If v̄n is random, then v̄n and vector Δn are independent.

8) For n = 1, 2, . . ., vectors Δn and Kn(Δn) are bounded:
‖Δn‖ ≤ cΔ < ∞, ‖Kn(Δn)‖ ≤ κ < ∞, and vector functions
Kn(·) along with simultaneous perturbation symmetrical distri-
bution functions Pn(·) satisfy the conditions∫

Kn(x)Pn(dx) = 0,

∫
〈Kn(x),x〉Pn(dx) = I (4)

where I is the identity matrix.
The same assumptions were made in previous work [11]–[13], [16]

when observations under almost arbitrary external noise and SPSA
methods are considered.

For example, we can choose a realization of a sequence of in-
dependent Bernoulli random vectors from R

d with each component
independently taking values ±1 with probabilities 1/2 as a sequence
{Δn} and Kn(x) ≡ x as kernel functions. The case β+

n = β−
n and

decreasing to zero sequence αn instead constant step-size α corre-
sponds with the SPSA algorithm in [4]. The similar algorithm with
randomly varying truncations and randomized difference was studied
in [17] where the case β−

n = 0 was additionally considered.

IV. UPPER BOUND OF RESIDUALS OF ESTIMATION

To analyze the quality of estimates we apply the following definition
for the problem of minimum tracking for mean-risk functional (2):

Definition: A sequence of estimates {θ̂2n} has an asymptotically
efficient upper bound L̄ > 0 of residuals of estimation if ∀ε > 0 ∃N
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such that ∀n > N √
E‖θ̂2n − θ2n‖2 ≤ L̄+ ε.

Denote βmax = maxn βn, β̄ = maxn(1/βn), β̄+ =
maxn(β

+
n /βn), β̄− = maxn(β

−
n /βn), k = 2μ− 6ακ2(a2β̄

2 +
c2ΔM2), h = (2δθ/αk)− δθ + ((β̄−a1 + 6αc2ΔM2(cΔ +
β̄−σθ))/k), c1 = M((β̄+)2 + 3(β̄−)2), c2 = g +M2(c2Δ +
(β̄+)2σ2

θ + 2β+βmaxσθ(cΔ + σθ)), l̄ = 2(β̄−a0 + 3κ2αa3β̄
2 +

κc2Δ(βmaxc1 + κα(3c2 + c2v))). The following theorem shows the
asymptotically efficient upper bound of estimation residuals by
algorithm (3).

Theorem 1: If Assumptions 1–8 hold, βmax + β̄ < ∞, and the
constant α is sufficiently small

kα < 1 and α <
μ

3κ2
(
a2β̄2 + c2ΔM2

) (5)

then the sequence of estimates provided by the algorithm (3) has an
asymptotically efficient upper bound which equals to

L̄ = h+
√

h2 + l̄/k. (6)

See the proof of Theorem 1 in Appendix.
Remarks: The observation noise vt in Theorem 1 can be said to

be almost arbitrary since it may either be nonrandom but bounded or
it may also be a realization of some stochastic process with arbitrary
internal dependencies. In particular, to prove the results of Theorem 1,
there is no need to assume that vt and Ft−1 are not dependent.

The proof of Theorem 1 allows for consideration of the random
sequences {β+

n } and {β−
n } whose values at time instant n are measur-

able under the corresponding σ-algebra F2n−2. This fact is sometimes
useful from a practical point of view.

The result of the Theorem 1 shows that for the case with-
out drift (δθ = a0 = . . . = a3 = 0) the asymptotic upper bound
is L̄ = (cΔ/

√
μ)(3

√
α((cv + g)κ+M) +

√
βmax

√
κc1)+o(

√
α+√

βmax). This bound can be made infinitely small under any noise
level cv , simply by choosing α and β±

n to be sufficiently small. At
the same time in the case of drift, the bigger drift norm δθ can be
compensated by choosing a bigger step-size α and β±

n . This leads to a
tradeoff between making α smaller because of noisy observations and
making α bigger due to the drift of optimal points.

V. APPLICATIONS

Most stochastic approximation algorithm applications are con-
cerned with adaptive systems based on the fact that SA algorithms
have properties useful for uncertain environments. These important
properties allow these algorithms to track the typical behavior of such
systems. Furthermore, these algorithms are memory and computa-
tionally efficient, which makes them applicable to real time dynamic
environments. Due to these properties, the algorithms are applicable
in such new fields as soft computing, where they are used for “pa-
rameter tuning” (see, e.g. [7]). Notable among these are algorithms
for neural network training and for reinforcement learning. They are
used in popular learning paradigms for autonomous software agents,
with applications in e-commerce, robotics and other fields. They are
also widely applied in economic theory, providing a good model for
collective phenomena when the algorithms are used to model the
behavior of individual bounded rational agents.

A. Random Walk

A rather simple application of the SPSA algorithm to minimize
the aforementioned nonstationary functional was considered in [13]

in the context of coordinate estimation of a point moving in the
multidimensional space. There the single possible measurement is the
squared distance to it which is measured with noise (see Example 1 in
Section II). By virtue of Theorem 1, the estimates made by algorithm
(3) will stabilize along the drift trajectory, provided that the norm of
the extremum drift is bounded. Simulation results in the hundred-
dimensional space were presented in [13] for the case cv = 1 and
σθ = 0.01. With such a dimension, the standard algorithms based on
approximation of the gradient vector use, at each step, 101 or 200
observations; that is, the drift during one iteration is sufficiently appre-
ciable. In the typical cases, the estimates of the SPSA algorithm (3),
with only two measurements per iteration, demonstrate the sufficiently
good behavior after 2000 iterations.

B. UAV Soaring

Extending the endurance of the flight of UAVs (Unmanned Air
Vehicles) is currently an area of major research interest because
these vehicles are very popular for aircraft missions that would be
too dangerous or too boring for human pilots. The importance of
this problem was highlighted in our previous works [14], [18]. This
subsection presents a SPSA-based algorithm for quick and precise
detection of the center of a thermal updraft where the vertical velocity
of the air stream is the highest. It allows maximization of the flight
duration of a single UAV and of UAV groups using the thermal model
developed by Allen at NASA Dryden [19].

The main assumption of the experiment was that SPSA-like meth-
ods are effective approaches for updraft center detection. The method
takes into account the unstable behavior of updraft dynamics and
the drift of its center over time. This method is permitted for an
effective treatment of the updraft center drift because of the tracking
properties of SPSA shown above. It also helps in compensating the
effect of horizontal wind considered as systematic (arbitrary) noise.
The physical characteristics of considered UAV were described in [14].
The objective of our UAV is to conserve battery energy and soar as long
as possible over the test area.

The following step-by-step summary shows how SPSA iteratively
produces a sequence of updraft center estimates.

Algorithm:

1) Initialization and coefficient selection. Set a counter index n =

0. Select an initial guess θ̂0 ∈ R
2 and a fairly small non-negative

coefficient α > 0. The initial guess in our implementation of
the algorithm is the point where a positive updraft was first
measured.

2) Iteration n → n+ 1. Set n := n+ 1.
3) Generation of the simultaneous perturbation vector. Use Monte

Carlo to generate a 2-dimensional random perturbation vector
Δn whose components are independently generated from a zero
mean probability distribution satisfying the preceding condi-
tions. A common choice for each component of Δn is to use
a Bernoulli ±1 distribution with probability of 1/2 for each ±1
outcome.

4) Proceeding to the new waypoints. Proceed to next two points
x2n−1 and x2n. They are intersections of the UAV trajectory
projection on the 2D plain and the line which goes through
the point of the previous estimate θ̂2n−2 in the direction of the
vector Δn.

5) Velocity function evaluations. Obtain two measurements at
the points x2n−1 and x2n of the velocity function y2n−1 =
F (x2n−1) and y2n = F (x2n).

6) Computing the values β±
n . Measure the distances from the point

of the previous estimate θ̂2n−2, and points x2n−1 and x2n and
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compute two values β±
n such that x2n−1 = θ̂2n−2 − β−

n Δn,
x2n = θ̂2n−2 + β+

n Δn.
7) Quasigradient calculation. Calculate the quasigradient:

ĝ = Δn
y2n − y2n−1

β+
n + β−

n

.

8) Updating center estimation. Use the standard stochastic approx-
imation form θ̂2n = θ̂2n−2 + αĝ to update the current center
estimation (sign plus is used because we would like to find the
point of function F maximum).

9) Iteration or termination. Return to Step 2 or terminate the
algorithm if there is little change in the estimations obtained on
several successive iterations or if the maximum allowed number
of iterations has been reached.

10) Climbing in the updraft. Circle around the estimated updraft
center in order to climb.

This method provides a good approximation of the updraft center
using a small number of measurements and no a priori knowledge
on updraft location (see simulation results in [18] for the case β+

n =
β−
n ). Step 6 shows the advantage of the new generalized scheme of

algorithm (3) when we can choose different algorithm parameters β±
n

based on the current “free” trajectory. In [18] authors consider the
algorithm which calculates the way point of a second measurement
and UAV needs to go to it.

C. Load Balancing

Let the system consist of m computing nodes (processors) and
it must process the jobs package of a known size z. Suppose that
the entire package z can be arbitrarily divided into m tasks xj , j =
1, . . . ,m, (hereinafter the upper index j is not a power, but it is instead
the number of the node, x = col(x1, x2, . . . , xm))

‖x‖1 =

m∑
j=1

xj = z

for all nodes, and the computation time of the node j is defined
by tj(xj) = xj/θj , where θj ∈ R is a value which equals to the
productivity (performance) of the node j.

The problem is to minimize the total time of processing the jobs
package z:

T (x) = max
j∈{1,...,m}

tj(xj) → min
x

. (7)

An ideal scheduling algorithm is one which keeps all the nodes busy
executing essential tasks, and minimizes the internode communication
required to determine the schedule and pass data between tasks. The
scheduling problem is particularly challenging when the tasks are
generated dynamically and unpredictably in the course of executing
the algorithm. This is the case with many recursive divide-and-conquer
algorithms, including backtrack search, game tree search and branch-
and-bound computation.

When the productivities (performance) of nodes are known, then the
best control strategy is a proportional distribution of tasks such that
x1/θ1 = x2/θ2 = · · · = xm/θm. The proof of this result is not hard
and can be found (see, e.g., in [10]) This control strategy is called load
balancing and defined as follows:

x = U(θ, p, z) : xj =
θj

p
z, j = 1, 2, . . . ,m (8)

where p = ‖θ‖1. In the case when p �= ‖θ‖1 we assume that a discrep-
ancy is added or subtracted for a randomly chosen node.

Let the system works iteratively by processing at the iteration i the
jobs package of a known size zi > 0. In practice, the productivity
(performance) of nodes may be unknown θ ∈ R

m. Moreover, they
may be distorted because of side jobs, that is, θi = θ + ξi, or change
with time: θi = θi−1 + ξi, where ξi ∈ R

m are vectors of independent
random variables.

The usual way is to use estimates of the productivity (performance)
θ̂i at each iteration i which are defined in a such a way that ‖θ̂i −
θi‖2 → min in some reasonable sense, and to compute xi at the
iteration i as xi = U(θ̂i, p, zi).

One of the reasonable quality functions is

fi(θ̂i) =
1

2z2i

m∑
j,k=1

(
t̄ji − t̄ki

)2 → min
θ̂i

(9)

where t̄ji = tj(Uj(θ̂i), ‖θ̂i‖1, zi)/zi, j = 1, 2, . . . ,m. Function

fi(θ̂i) has a minimum point θ̂i = θi which corresponds to the
optimal control strategy minimized (7).

To track changes θi, it is advisable to use the SPSA algorithm.

Algorithm:
1) Initialization and coefficient selection. Set a counter index n = 0.

Choose initial guess θ̂0 ∈ R
m and fairly small step-sizes α > 0

and β > 0.
1) Iteration n → n+ 1. Set n := n+ 1.
a. Generate the random vector Δn according to the Bernoulli

distribution of i.i.d. components that are equal to ±1 with
probability 1/2.

b-1. Obtain the next jobs package z2n−1.
c-1. Compute the next inputs by the rule: x2n−1 = U(θ̂2n−2 −

βΔn, ‖θ̂2n−2‖, z2n−1).
d-1. Start the cluster with input x2n−1 and wait until all tasks are

finished.
b-2. Obtain the next jobs package z2n.
c-2. Compute the next inputs by the rule: x2n = U(θ̂2n−2 +

βΔn, ‖θ̂2n−2‖, z2n)
d-2. Start the cluster with input x2n and wait until all tasks are

finished.
e. Calculate the quasigradient: ĝ = (1/2β)Δn(f2n(x2n)−

f2n−1(x2n−1)).
f. Get the new estimate:

θ̂2n = θ̂2n−2 − αĝ. (10)

3) Repeat Step 2.

Simulation: Now let us present the simulation results of the algo-
rithm described above. We consider m = 100 computational nodes. At
the initial time we chose their productivities θ1, θ2, . . . , θ100 randomly
by the uniform distribution over the interval (0.5, 1.5). At iteration
i the productivity θji of a randomly chosen node j changes slowly
by a random value from (-0.05, 0.05) and the system (computer
network) receives the job package zi which was simulated by a Poisson
distribution with mean value 100.

Fig. 1 shows the typical behavior of normalized run-times T (xi)/zi
of the processing of packages zi when we use xj

0 = 1, j =
1, 2, . . . ,m, α = 0.001 and β = 0.01 in the algorithm (10). As one
can see, the performance of computer networks converges over time to
an optimal value.
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Fig. 1. Load balancing adaptation for 100 computing nodes.

VI. CONCLUSION

In the design of optimization or estimation algorithms, some useful
statistical characteristics are usually attributed to noise, errors in
measurements and model properties. They are used in demonstrating
the validity of the algorithm. For example, noise is often assumed
to be random and centered. Algorithms based on the ordinary least-
squares method are typically used in engineering practice for simple
averaging of observation data. If noise is assumed to be centered
without any valid justification, such algorithms are unsatisfactory
in practice and may even be harmful. Such is the state of affairs
under “opponent” counteraction. In particular, if noise is defined by
a deterministic unknown function (opponent suppresses signals) or
measurement noise is a dependent sequence, averaging of observations
does not yield any useful result.

To solve the challenging problems of nonstationary optimization un-
der observations with an unknown but bounded noise, it was suggested
to use a modified simultaneous perturbation stochastic approximation
algorithm with a constant step-size. This has a simple form and
provides a finite bound of residual between estimates and time-varying
unknown parameters.

APPENDIX

The following Lemma 1 in [12] is instrumental to the proof of
Theorem 1.

Lemma 1: If en > 0, k, α > 0, kα > 0 < 1, h, l̄ ≥ 0,

e2n ≤ (1− kα)e2n−1 + 2hkαen−1 + αl̄, n = 1, 2, . . .

then ∀ε > 0 ∃N such that ∀n > N en ≤ h+
√

h2 + l̄/k + ε.
Proof of Lemma 1: See [12].
Proof of Theorem 1: Denote νn = ‖θ̂2n − θ2n‖, sn =

(α/βn)(y2n − y2n−1)Kn(Δn), f̄n = fξ2n(x2n)− fξ2n−1
(x2n−1),

F̃n−1 = σ{Fn−1,v2n−1,v2n, ξ2n−1, ξ2n}, dt = θ̂2�(t−1)/2� − θt,
where �·� is a celling function. According to the observation model
(1) and algorithm (3), we obtain

ν2
n = ‖d2n‖2 + s2n − 2〈d2n, sn〉. (11)

By virtue of Assumptions 7,8 we have EF̃n−1
v̄nKn(Δn) =

EF̃n−1
v̄nEF̃n−1

Kn(Δn)= EF̃n−1
v̄n · 0 = 0. Hence, taking the

conditional expectation over σ-algebra F̃n−1 of both sides of the
inequality (11) and using Assumption 8, we can bound EF̃n−1

ν2
n as

follows:

EF̃n−1
ν2
n ≤ ‖d2n‖2 − 2

〈
d2n,

α

βn

EF̃n−1
f̄nKn(Δn)

〉
+2κ2 α

2

β2
n

(
v̄2n +EF̃n−1

f̄2
n

)
(12)

since sn = (α/βn)(f̄n + v̄n)Kn(Δn).

By virtue of the representation of fξt(xt) for t± = 2n− (1/2)±
(1/2) as a Taylor series we have

fξ
t±

(xt±) = fξ
t±

(θ̂2n−2)±
〈
∇±

ξ
t±

(
ρ±ξ

t±

)
, β±

n Δn

〉
where ρ±ξ

t±
∈ (0, 1), ∇±

ξ
t±

(ρ±ξ
t±

) = ∇fξ
t±

(θ̂2n−2 ± ρ±ξ
t±

β±
n Δn).

Using the definition of ϕn(x2n−1) and its representation as a
Taylor series: ϕn(x2n−1)=ϕn(θ̂2n−2)+∇ϕn(ρφ), where ∇ϕn(ρφ)=

∇ϕn(θ̂2n−2 + ρφβ
−
n Δn), ρφ ∈ (0, 1), we derive for the dif-

ference f̄n:

f̄n = fξ2n(x2n)− fξ2n(x2n−1) + ϕn(x2n−1) = ϕn(θ̂2n−2)

+
〈
∇ϕn(ρφ)−∇ϕn(0), β

−
n Δn

〉
+
〈
∇ϕn(0), β

−
n Δn

〉
+
∑
t±

β±
n

(〈
∇±

ξ2n

(
ρ±ξ2n

)
−∇±

ξ2n
(0),Δn

〉
+
〈
∇±

ξ2n
,Δn

〉)
.

Since EF̃n−1
ϕn(θ̂2n−2)Kn(Δn) = 0 by virtue of Assumptions 7

and 8, for the second term in (12), applying Assumptions 6 and 8,
we have

−2

〈
d2n,

α

βn

EF̃n−1
f̄nKn(Δn)

〉
≤ 2

α

βn

β−
n (a1νn−1 + a0)

+ 2
α

βn

((
β+
n

)2
+3

(
β−
n

)2)
Mc2Δκ− 2

∑
t±

〈
d2n,∇fξ2n(θ̂2n−2)β

±
n

〉
.

Taking the conditional expectation over σ-algebra Fn−1 and using
Assumption 3, we get

−EFn−1
2

〈
d2n,

α

βn

f̄nKn(Δn)

〉
≤ −2αEFn−1

μ‖d2n−1‖2

+2α
(
β̄−(a1νn−1 + a0) + βnc

2
Δκc1

)
. (13)

Consider the squared difference f̄2
n. Using representations f̄n =

f+
n +f−

n +ϕn(θ̂2n−2), f±
n = β±

n (〈∇±
n (ρ

±
n )−∇fξ

t±
(θt±),Δn〉+

〈∇fξ
t±

(θt±),Δn〉), the symmetrical property of Δn distribution
(Assumption 8) and Assumptions 6 make it possible to derive for the
last term in (12)

EF̃n−1
f̄2
n ≤ 3ϕn(θ̂2n−2)

2 + 3c2Δ

(∑
t±

β±
n ∇fξ

t±
(θt±)

)2

+ 3c2ΔM2

(∑
t±

β±
n

(
‖dt±‖+ β±

n cΔ
))2

.

Taking the conditional expectation over σ-algebra Fn−1 and using
Assumptions 2, 3, 5, 6, we obtain

EFn−1
f̄2
n ≤ 3

(
a2ν

2
n−1 + a3 + c2Δβ2

ng
)

+ 3c2ΔM2
(
β2
nc

2
Δ +

(
β+
n σθ

)2
+ 2β2

nβ
+
n σθ(cΔ + σθ)

+β2
nEFn−1

‖d2n−1‖2+2
(
β2
ncΔ+βnβ

+
n σθ

)
νn−1

)
.

(14)

According to the first part of Assumption 2, we get

EFn−1
‖d2n‖2 ≤ EFn−1

‖d2n−1‖2 + 2δθνn−1 + 3δ2θ. (15)

Summing up the findings bounds (13)–(15) and taking the condi-
tional expectation over σ-algebra Fn−1, we derive the following from
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the (12) by virtue of Assumption 1

EFn−1
ν2
n ≤ (1− kα)EFn−1

‖d2n−1‖2

+ 3δ2θ + 2α

(
δθ
α

+ β̄−a1 + 6αc2ΔM2(cΔ + β̄−σθ)

)
νn−1

+ αl̄ ≤ (1− kα)ν2
n−1 + 2hkανn−1 + αl̄. (16)

Taking the unconditional expectation of both sides of (16), we see
by virtue (5) that all conditions of Lemma 1 hold for en =

√
Eν2

n.
This completes the proof of Theorem 1.
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