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Abstract: We present a new modification of the gradient descent algorithm based on the
surrogate optimization with projection into low-dimensional space. It iteratively approximates
the target function in low-dimensional space and takes the approximation optimum point
mapped back to original parameter space as next parameter estimate. Main contribution of the
proposed method is in application of projection idea in approximation process. Major advantage
of the proposed modification is that it does not change the gradient descent iterations, thus it can
be used with some other variants of the gradient descent. We give a theoretical motivation for the
proposed algorithm and a theoretical lower bound for its accuracy. Finally, we experimentally
study its properties on modelled data.
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1. INTRODUCTION

Many science, engineering and control problems could be
represented as an optimization (a.k.a. mathematical opti-
mization, mathematical programming) problems. Partic-
ularly, both machine learning and optimization became
very popular and widely used in today’s control appli-
cations (see, for example Boyd (2012); Granichin et al.
(2015)). At the same time, most part of the machine
learning problems can be translated to the optimization
task of real-valued parametrized function known as loss
function Bottou (1998). Moreover, optimization plays a
crucial role in deep learning, particularly in image-related
problems (e.g., image classification Hinton and Salakhut-
dinov (2006), image recognition Dong et al. (2016)). This
is due to the fact that almost every process is essentially
about maximising or minimising some quantity: maximis-
ing revenue, accuracy, efficiency, performance or minimis-
ing errors, expenses, downtime. Most part of optimization
problems can be formulated as follows

f → min
x∈X

,

where f : X → R and X ⊂ X.

One of the most extensively studied sub-fields of op-
timization is convex programming which study convex
functions optimization under the most convex constraints
(see Boyd and Vandenberghe (2004) for an extensive

� This work was supported by Russian Foundation for Basic Re-
search, projects number 17–51–53053 and 16–01–00759, and by the
H&W program of the University of Brescia under the project “Clas-
sificazione della fibrillazione ventricolare a supporto della decisione
terapeutica — CLAFITE”.

overview). Assuming function convexity and smoothness
we can choose amongst many first-order iterative opti-
mization algorithms, e.g. gradient descent algorithm also
known as steepest descent originally proposed in Cauchy
(1847). The general idea of first-order iterative optimiza-
tion algorithms is to gradually improve current function
optimum point estimate by moving it in the direction
opposite to the function gradient. The first-order iter-
ative optimization methods are especially important in
problems with high-dimensional parameter space, where
high-order methods are inapplicable due to the curse of
dimensionality, e.g., such problems as object detection and
image super-resolution might have millions of parameters
(e.g, see Hinton and Salakhutdinov (2006); Dong et al.
(2016)).

Plenty of various modifications and extensions of the gra-
dient descent algorithm exists. Some algorithms exploit
specific function properties to improve convergence. E.g.,
for separable functions it is possible to reduce total number
of evaluations (see Davidon (1976); Boyd et al. (2011)).
Learning rate adaptation is another popular direction for
modifications (see, e.g., Duchi et al. (2011); Kingma and
Ba (2014)). Momentum methods is another approach that
reduce estimates oscillation effect by accumulating so-
called “inertion” of the estimates (see Qian (1999); Nes-
terov (1983)) . However most modifications share one but
yet important drawback: at each iteration they explicitly
consider only current and few previous points and function
values ignoring preceding history, thus, loosing potentially
important information.
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In contrast, another type of optimization algorithms —
surrogate methods — do use history of points and function
values. Surrogate optimization methods approximating
the objective function by so-called surrogate function on
the basis of set of points and corresponding function values
and takes optimum estimate based on obtained surrogate.

Most types of surrogate optimization methods conse-
quently improve function approximation by taking each
next optimum estimate into account in iterative fashion.
General surrogate-based optimization model consist of
the following steps: design of experiment, sampling new
observations, building surrogate model, evaluating surro-
gate model and returning back to design of experiments
(see Forrester and Keane (2009)). Among many surrogate
models we can mention several most common ones: radial
basis functions (Broomhead and Lowe (1988)), krigging
(Krige (1951)), support vector regression (Vapnik (1995))
and response surface methodology (Box et al. (1987)).

Despite many advantages, most surrogate models share
common drawbacks: they are memory and time consuming
and, what is most important, their quality depends on
the chosen surrogate model adequacy with respect to
original function (see, e.g., Forrester and Keane (2009)).
As example, it is impossible to approximate high-order
polynomial with linear surrogate function.

In this paper we propose a new method which is essentially
an incorporation of quadratic response surface method-
ology into the gradient descent algorithm. To neutralize
memory footprint of quadratic polynomial we use the pro-
jection trick. The general idea of the proposed algorithm is
to use a sequence of points obtained from gradient descent
iterations as follows:

1. q points used to construct orthogonal projection ma-
trix P using Gram-Schmidt orthogonalization.

2. K points used to collect training set in projected space
obtained by multiplication on the projection matrix
P.

3. Quadratic polynomial ĝ fitted to collected training set
and its argmin returned back to original space used
as next estimate of argmin f .

These steps are executed in loop producing next estimate
from which gradient descent proceeds every q + K itera-
tions. One of the main advantages of the proposed method
is that it can be used with almost any gradient descent
modification mentioned above.

The contribution of this paper in general is in application
of the projective approximation idea in optimization. Most
surrogate optimization methods use the approximation
idea without projection. Additionally, there are few works
regarding the projection idea: in Krause (2010) authors
proposed SFO method which keeps gradient and estimates
vectors not in original but projects it into low-dimensional
space. Compressed sensing is another powerful technique
for a signal recovery solely based on the projection idea
(see Donoho (2006)). As far as we know, there is currently
no work on applying the projective approximation idea
for improving zero- or first-order iterative optimization
methods convergence.

The paper is organized as follows. In Section 2 we cover
some basics and previous results required for further ex-
planation and formulating the problem statement. In Sec-
tion 3 we propose a hybrid algorithm which improves
the gradient descent by use of the projective quadratic
response surface methodology and provide theoretical mo-
tivation behind it. Further, in Section 4 we perform an
experiment on modelled data and discuss its results. Fi-
nally, Section 5 the conclusion is given.

2. PRELIMINARIES & PROBLEM STATEMENT

In this Section we briefly introduce some methods and
concepts necessary for further explanation and ending it
with the problem statement.

2.1 Notation remarks

We use small light symbols x for scalars and indexes
(mainly, small bold symbols x for vectors, capital light
symbols X for constants and sets (except parameter ma-
trix Θ), capital bold symbols X for matrices. Specifi-
cally we denote t as iteration index, T as total number
of iterations, d as the original space dimensionality, q
as dimensionality of the projected space, P ∈ Rq×d as
orthogonal projection matrix, P−1z as a set of points
{x ∈ Rd : z = Px}, I as identity matrix (its size follows
from the context), � as transpose sign,̂as estimate sign,
f as objective function and ∇xf as function gradient with
respect to parameter vector x.

2.2 Quadratic response surface methodology

Quadratic response surface methodology (QRSM) is a
surrogate optimization method where surrogate is a 2nd
order polynomial constructed via polynomial regression. It
approximates a set of points and corresponding objective
function values using polynomial least squares technique.
Then, argmin of obtained 2nd order polynomial is used
as next objective function optimum estimate. Figure 1
illustrates the idea.

Fig. 1. Quadratic response surface example. Blue circles
represents the set of points. Green gird represent
quadratic polynomial approximates these points. Blue
triangle represent the argmin of constructed polyno-
mial.
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An important drawback of the quadratic response surface
methodology is infeasibility in high-dimensional problems
(see, e.g., Box et al. (1987)): straightforward second order
polynomial reconstruction requires O

(
Nd2 + d4

)
in mem-

ory and O
(
d6 + d4N

)
in time. This is clearly inappropri-

ate in case of big d.

2.3 Gradient descent

Algorithm 1 describes the simple variant of the gradient
descent. We use the most primitive setup: static learning
rate and upper bound of total number of iterations used
as a stop rule, since it helps us to simplify the description.
Moreover, the chosen stop rule might be the best one if
number of function and/or gradient evaluations is limited.
For choice of the stop rule and learning rate strategy we
refer to Polyak (1987) and Bertsekas (1999).

Algorithm 1 Gradient Descent (f,x0, λ, T )

for t ← 1 to T do
xt ← xt−1 − λ∇xf(xt−1)

end for
return xT

Despite its simplicity, gradient descent algorithm suffers
from variety of drawbacks. On of the main problem relates
to the learning rate parameter: if it is chosen to be too
big the estimate will dangle around the optimal point,
not approaching it. On the other hand, if it is too small,
convergence might take vast amount of iterations and we
won’t approach optimum for T iterations. Second problem
relates to the second parameter — initial estimate x0: if
it chosen far away from the optimum the path would be
very long and we will need a lot of iterations to converge.

In this paper we address the first two problems. Both of
them can be reformulated as one: how to improve the
convergence of gradient descent algorithm.

2.4 Problem statement

Assume that starting point choice was unsuccessful and/or
learning rate is to small. This will result in large number
of iterations. The problem statement is:
how to reduce total number of gradient descent iterations
without modification of learning rate and gradient update
policy at each gradient descent step?

3. ALGORITHM

Any variation of the gradient descent algorithm generates
a sequence of optimum point estimates {x0,x1, . . . ,xn, . . .}
that can converge to local or even global minimum of f .
At the same time, most iterative optimization algorithms
use only few previous points at each step explicitly, thus,
loosing potentially important information.

One can try to fix it by retaining last K points in addition
to the current one (e.g. points xt−K , . . . ,xt at iteration
number t) and use them to obtain next estimate through
some estimator G:

xt+1 ← G(f, {xt−K , . . . ,xt})

However, if x is high-dimensional, then maintaining K +
1 points would require O(dK) memory, which might be

critical in some situations. This is even more important
if G produce estimate using quadratic response surface
methodology, hence amount of required memory will raise
to O

(
d2K

)
.

In this paper we suggest an algorithm which use the
same strategy of retaining last K points, but projected in
low-dimensional space, thus significantly reducing memory
footprint.

3.1 Algorithm description

Algorithm 2 Proposed gradient descent modification

Require:
1: f — function to be optimized
2: x0 — initial parameter value
3: λ — step size
4: T — number of iterations

Additional parameters:
5: q — projected space dimensionality
6: K — number of points for surrogate construction

7: t ← 1
8: while t ≤ T do
9: P ← x�

t � projection matrix initialization
10: for k ← 1 to q − 1 do
11: xt ← xt−1 − λ∇xf(xt−1)

12: P ←
[
P�;xt

]�
13: t ← t+ 1
14: end for
15: P ← Gram-Schmidt (P1,·, . . . ,Pq,·) �

orthogonalization
16: x ← 0d
17: for k ← 1 to K do
18: xt ← xt−1 − λ∇xf(xt−1)
19: x ← x+ xt

20: zk ← Pxt

21: yk ← f(xt)
22: t ← t+ 1
23: end for
24: x ← x/K

25: Â, b̂, ĉ ← QuadraticLeastSquares
(
{zk, yk}K1

)
26: if Â positive definite then

27: ẑ ← − 1
2Â

−1b̂

28: xt ← − 1
2P

�ẑ + (I−P�P)x � “backward”
projection

29: end if
30: end while

See Algorithm 2 for pseudo-code of our proposed algo-
rithm. It modifies a gradient descent algorithm by adding
a projective quadratic response surface methodology pro-
cedure on top of gradient descent iterations. Keeping in
mind that gradient descent iterations produce sequence
of optimum point estimates we now describe proposed
modification in details.

(0) Initially, we run a gradient descent algorithm and
start obtaining optimum point estimates xt, forming
a sequence x0,x1, . . . ,xt, . . .. Assume that we have
just obtained a point xt+1.

(1) First, q points from xt+1 to xt+q are used to construct
projection matrix P ∈ Rq×p using Gram-Schmidt
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Algorithm 2 Proposed gradient descent modification

Require:
1: f — function to be optimized
2: x0 — initial parameter value
3: λ — step size
4: T — number of iterations

Additional parameters:
5: q — projected space dimensionality
6: K — number of points for surrogate construction

7: t ← 1
8: while t ≤ T do
9: P ← x�

t � projection matrix initialization
10: for k ← 1 to q − 1 do
11: xt ← xt−1 − λ∇xf(xt−1)

12: P ←
[
P�;xt

]�
13: t ← t+ 1
14: end for
15: P ← Gram-Schmidt (P1,·, . . . ,Pq,·) �

orthogonalization
16: x ← 0d
17: for k ← 1 to K do
18: xt ← xt−1 − λ∇xf(xt−1)
19: x ← x+ xt

20: zk ← Pxt

21: yk ← f(xt)
22: t ← t+ 1
23: end for
24: x ← x/K

25: Â, b̂, ĉ ← QuadraticLeastSquares
(
{zk, yk}K1

)
26: if Â positive definite then

27: ẑ ← − 1
2Â

−1b̂

28: xt ← − 1
2P

�ẑ + (I−P�P)x � “backward”
projection

29: end if
30: end while

See Algorithm 2 for pseudo-code of our proposed algo-
rithm. It modifies a gradient descent algorithm by adding
a projective quadratic response surface methodology pro-
cedure on top of gradient descent iterations. Keeping in
mind that gradient descent iterations produce sequence
of optimum point estimates we now describe proposed
modification in details.

(0) Initially, we run a gradient descent algorithm and
start obtaining optimum point estimates xt, forming
a sequence x0,x1, . . . ,xt, . . .. Assume that we have
just obtained a point xt+1.

(1) First, q points from xt+1 to xt+q are used to construct
projection matrix P ∈ Rq×p using Gram-Schmidt
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orthogonalization.
Update t ← t+ q.

(2) Next, K points together with corresponding function

values used to collect an average x = 1
K

∑K
1 xt+k and

a training set in projected space: {zk, yk}Kk=1, where
zk = Pxt+k and yk = f(xt+k).
Update t ← t+K.

(3) A quadratic surrogate function fitted to the training

set in projected space ĝ(z) = z�Âz + b̂
�
z + ĉ using

quadratic least squares estimate.

(4) If matrix Â turns to be positive definite, do
(a) Calculate surrogate minimum in projected space:

ẑ ← argmin ĝ.
(b) Return the surrogate minimum back to original

space: x̂ ← P�ẑ + x.
(c) Use x̂ as next gradient descent optimum point

estimate.
(5) Go back to (1)

One can be confused by “backward projection” step of
transforming ẑ from low-dimensional space to x̂ in high-
dimensional space (line 28 in Algorithm 2). This transform
motivated by Proposition 1. As for the choice of the
consecutive points orthogonalization as a tool for the
orthogonal projection construction, this choice is rather
motivated by intuition and practice.

It is worth noting, that described modification does not
violate gradient descent iterations, but produces an addi-
tional optimum point estimate every qK iterations (actu-

ally, it may fail, since matrix Â might be not a positive
definite one). Accordingly, its not a modification but more
a complement on top of gradient descent. Thereby, gra-
dient descent steps might be replaced by any variation
of it: stochastic gradient descent, AdaGrad, momentum
method, etc.

As one can see, this modification utilize:

• O
(
q2d

)
operations and O (qd) memory at step (1),

• O (Kqd) operations and O (Kq) memory at step (2),
• O

(
Kq2 + q3

)
operations andO

(
Kq + q2

)
memory at

step (3).

Hence, maximum addition per single gradient descent iter-
ation with the modification described above is O

(
qd+ q3

)
in number of operations and O

(
q2 + qd+Kq

)
in memory

consumption.

3.2 Theoretical ground

In this Section we give several results regarding motivation
of the proposed algorithm and its quality.

Lets start with abstracting from particular problem. Con-
sider an orthogonal projection matrix P ∈ Rq×d and a
sequence of points {x1, . . . ,xK} ⊂ Rd representing some
kind of “trace” (e.g. a gradient descent estimates) to-
gether with corresponding function values {yt}K1 , where
yt = f(xt). Applying projection we obtain points images
in low-dimensional space: {z1, . . . ,zK}, zt = Pxt. Then,
we obtain a continuation of this sequence ẑ using quadratic
least squares. Two questions arises here.

1 How to perform “backward projection” of the esti-
mate ẑ from the low-dimensional space back to the
high-dimensional space Rd?

2 How projection procedure (both forward & back-
ward) affects optimum point estimate accuracy?

The answer on the first question is given by Propositions 1
and 2. The second question is answered by Theorem 3.

If the matrix P is invertible, we may simply set x̂ = P−1ẑ.
Unfortunately, it isn’t: any point z ∈ Rq corresponds to
the entire set {x ∈ Rd : Px = z}. Hence we need
to impose additional restrictions to pick some specific
point from this set. Since we extending original sequence
{xt}K−1

1 the following idea sounds reasonable: lets pick a
point closest to the original sequence in terms of euclidean
distance:

x̂ ← argmin
{x∈Rd :Px=ẑ}

K∑
t=1

‖xt − x‖22 . (1)

Proposition 1. In the notation described above, x̂ from (1)
can be explicitly expressed as:

x̂ =
(
I−P�P

) 1

K

K∑
t=1

xt +P�ẑ.

See the Proposition proof in appendix A. This Proposition
provides a recipe how to choose an estimate x̂ in original
space Rd from set P−1ẑ if low-dimensional estimate ẑ is
already known.

Further, to measure the effect that projection procedure
have on the optimum point estimation accuracy we need
a ground true answer to compare with. Assume that
function f is itself a convex polynomial of degree two:
f(x) := x�Ax + b�x + c. Therefore, its argmin is
− 1

2A
−1b. Despite the fact, that this case is trivial, it serves

as a good example and function approximation in small
neighbourhood of particular point. Keeping in mind that
x can be represented as a sum P�Px+ (I−P�P)x, and
function f can be considered as a function of z = Px,
the following Proposition gives explicit expression for its
argmin in terms of z.

Proposition 2. Consider function f(x) = x�Ax+b�x+c,
where A ∈ Rd×d, A � 0, b ∈ Rd, c ∈ R and orthogonal
projection matrix P ∈ Rq×d, q < d. Define z = Px,
z = (I−P�P)x and g(z | v) = f(x) = f(P�z + v).

Then, the following holds true:

• argmin
z

g(z | v) does not depend on v;

• argmin
z

g(z | v) = − 1
2PA

−1b;

See the Proposition proof in appendix A

Finally, the following Theorem provides the main theo-
retical result of the paper: an estimate of the difference
between the true argmin of f and its estimate obtained
with the proposed projection procedure (single loop of an
Algorithm 2, lines 9–30).

Theorem 3. Consider function f(x) = x�Ax + b�x + c,
where A ∈ Rd×d, b ∈ Rd, c ∈ R and A � 0, orthogonal
projection matrix P ∈ Rq×d, q < d, sequence of gradient
descent estimates {xt}K1 ⊂ Rd, their projections {zt}K1 ⊂
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Rq, zt = Pxt and corresponding function values {yt}K1 ,
yt = f(xt).
Then, the difference between argmin f and its estimate x̂
obtained via single loop of the proposed Algorithm 2 is
equal to:

‖argmin f − x̂‖22 =

∥∥∥∥(I−P�P)

(
1

2
A−1b− x

)∥∥∥∥
2

2

.

See the Theorem proof in appendix A

This Theorem implies the following important facts.

1 The difference between the optimum point and ob-
tained estimate lies in kernel of orthogonal projection
P. Hence, estimate Px̂ is a best estimate in terms of
this projection.

2 The closer the averaged gradient descent estimates
to the optimum points, the smaller the error. Hence,
we x̂ benefits from precision of gradient descent
estimates.

4. MODELLING

This Section contains experiments results and analysis.
First of all, we describe the modelling strategy.

For modelling purposes we use the following defaults:

• f(x) = x�Id −1T
d x, where d is a variable parameter;

• d ← 10, T ← 50, x0 ∼ U [0, 1]
d
, λ = 10−5;

• q ← 1, q ← 10, K ← 5.

We vary parameters T , d, q and K independently (with
other parameters fixed) in following ranges:

• T ∈ [25, 30, 50, 100];
• d ∈ [5, 10, 20, 50, 100];
• K ∈ [2, 5, 10, 20].

For every parameters values combination we execute Algo-
rithms 1 and 2 with same initial estimate x0 for 103 times
and calculate their errors as euclidean distance from real
optimum to point to algorithm estimate. Then we calculate
simple statistics ξ — a ratio of times when the modified
gradient descent error was less than error of the original
gradient descent.

Table 1. Modelling results

Parameter name Parameter value ξ

T 25 0.90
T 30 0.89
T 50 0.81
T 100 0.53
d 5 0.82
d 10 0.80
d 20 0.81
d 50 0.79
d 100 0.81
K 2 0.11
K 3 0.81
K 5 0.82
K 10 0.79

Table 1 contains results of the experiment described above.
We will discuss them per parameter varied.

• Results on the parameter T may seem confusing:
ξ monotonically decreases with T increased. It can

be explained by the fact that the proposed gradient
descent modification doing a good job at start (when
gradient descent steps are large and function is steep),
but it fails to build a surrogate model when gradient
descent oscillates near the optimum point.

• Situation with the parameter q is even more sur-
prising: there no strict dependency. This might be
explained by the fact that in case of the particular
function f , gradient descent estimates lie on a straight
line. Thereby, they are perfectly described by a single
dimension.

• K is another parameter which results may seem
confusing at first, but then become quite obvious:
huge difference in quality between K = 2 and K =
3 is explained by the fact that one need at least
three points in one-dimensional space to construct the
second order polynomial.

5. CONCLUSION

We propose a novel modification of the gradient descent
based on the quadratic response surface methodology with
the projection trick. We provide few theoretical results
regarding the proposed modification and perform an ex-
perimental study of it. We show that the proposed mod-
ification provides the best optimum approximation with
respect to given projection matrix. Experiments on toy
example demonstrates that the modified gradient descent
might be superior to the original one in terms of the
the optimum point estimation error. This modification
is potentially rather important, because it may be used
with almost every gradient descent variation . Further
developments may include approbation of the proposed
modification in real world problems, its adaptation to
other iterative optimization algorithms and study of the
projective response surface methodology applicability to
other optimization problems. An application of the pro-
posed modification on top of the stochastic approximation
algorithms (see Granichin and Polyak (2003)) in context
of object detection and image super-resolution problems
seems to be the most promising one.
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Rq, zt = Pxt and corresponding function values {yt}K1 ,
yt = f(xt).
Then, the difference between argmin f and its estimate x̂
obtained via single loop of the proposed Algorithm 2 is
equal to:

‖argmin f − x̂‖22 =

∥∥∥∥(I−P�P)

(
1

2
A−1b− x

)∥∥∥∥
2

2

.

See the Theorem proof in appendix A

This Theorem implies the following important facts.

1 The difference between the optimum point and ob-
tained estimate lies in kernel of orthogonal projection
P. Hence, estimate Px̂ is a best estimate in terms of
this projection.

2 The closer the averaged gradient descent estimates
to the optimum points, the smaller the error. Hence,
we x̂ benefits from precision of gradient descent
estimates.

4. MODELLING

This Section contains experiments results and analysis.
First of all, we describe the modelling strategy.

For modelling purposes we use the following defaults:

• f(x) = x�Id −1T
d x, where d is a variable parameter;

• d ← 10, T ← 50, x0 ∼ U [0, 1]
d
, λ = 10−5;

• q ← 1, q ← 10, K ← 5.

We vary parameters T , d, q and K independently (with
other parameters fixed) in following ranges:

• T ∈ [25, 30, 50, 100];
• d ∈ [5, 10, 20, 50, 100];
• K ∈ [2, 5, 10, 20].

For every parameters values combination we execute Algo-
rithms 1 and 2 with same initial estimate x0 for 103 times
and calculate their errors as euclidean distance from real
optimum to point to algorithm estimate. Then we calculate
simple statistics ξ — a ratio of times when the modified
gradient descent error was less than error of the original
gradient descent.

Table 1. Modelling results
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d 50 0.79
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Table 1 contains results of the experiment described above.
We will discuss them per parameter varied.

• Results on the parameter T may seem confusing:
ξ monotonically decreases with T increased. It can

be explained by the fact that the proposed gradient
descent modification doing a good job at start (when
gradient descent steps are large and function is steep),
but it fails to build a surrogate model when gradient
descent oscillates near the optimum point.

• Situation with the parameter q is even more sur-
prising: there no strict dependency. This might be
explained by the fact that in case of the particular
function f , gradient descent estimates lie on a straight
line. Thereby, they are perfectly described by a single
dimension.

• K is another parameter which results may seem
confusing at first, but then become quite obvious:
huge difference in quality between K = 2 and K =
3 is explained by the fact that one need at least
three points in one-dimensional space to construct the
second order polynomial.

5. CONCLUSION

We propose a novel modification of the gradient descent
based on the quadratic response surface methodology with
the projection trick. We provide few theoretical results
regarding the proposed modification and perform an ex-
perimental study of it. We show that the proposed mod-
ification provides the best optimum approximation with
respect to given projection matrix. Experiments on toy
example demonstrates that the modified gradient descent
might be superior to the original one in terms of the
the optimum point estimation error. This modification
is potentially rather important, because it may be used
with almost every gradient descent variation . Further
developments may include approbation of the proposed
modification in real world problems, its adaptation to
other iterative optimization algorithms and study of the
projective response surface methodology applicability to
other optimization problems. An application of the pro-
posed modification on top of the stochastic approximation
algorithms (see Granichin and Polyak (2003)) in context
of object detection and image super-resolution problems
seems to be the most promising one.
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Appendix A. PROOFS

Proof. (of Proposition 1)
Since matrix (I−P�P) projects Rd into null space of P,
(1) can be reformulated as follows:

x̂ ← argmin
x∈Rd

K∑
t=1

∥∥xt −
(
ẑ +

(
I−P�P

)
x
)∥∥2

2
.

Differentiating the sum above with respect to x we obtain:

∂x

K∑
t=1

∥∥xt −
(
ẑ +

(
I−P�P

)
x
)∥∥2

2

=

K∑
t=1

2(I−P�P)
(
xt −

(
ẑ +

(
I−P�P

)
x
))

=
K∑
t=1

2(I−P�P)
(
(I−P�P)xt −

(
I−P�P

)
x
)

= 2(I−P�P)

K∑
t=1

xt − 2K
(
I−P�P

)
x

Equating the derivative to zero we obtain:

(I−P�P)x = (I−P�P)
1

K

K∑
1

xt.

Since (I − P�P) is not invertible the above equation has
infinite number of solutions. Hence, we are free to choose

any one of them, e.g. x = 1
K

∑K
1 xt.

�

Proof. (of Proposition 2)

f(x) =
(
P�z + v

)�
A

(
P�z + v

)
+ b�

(
P�z + v

)
+ c

= z�PAP�z + b�z + v�AP�z − b�v + v�Av + c

= z�PAP�z +
(
b� + v�A

)
P�z

+
(
v�Av − b�v + c

)

Substituting v back and taking derivative with respect to
z, we’ve got:

0 = 2PAP�ẑ +
(
b� + x� (

I−P�P
)�

A
)
P�

� ẑ = −1

2

(
PAP�)−1

((
b� + x� (

I−P�P
)�

A
)
P�

)�

= −1

2
PA−1(P�P)−1P�P

(
b+A

(
I−P�P

)
x
)

= −1

2
P
(
A−1b+

(
I−P�P

)
x
)

= −1

2
PA−1b

�

Proof. (of Theorem 3)
As mentioned above, argmin f = − 1

2A
−1b. From Propo-

sition 2 we know that ẑ obtained from at line 27 of
Algorithm 2 equals to − 1

2PA
−1b. Moreover, using the

result of Proposition 1 we now that the best x in P−1ẑ ={
P�ẑ + (I−P�P)x : x ∈ Rd

}
is x = x.

Hence x̂ =
(
I−P�P

)
x− 1

2P
�PA−1b, and

‖argmin f − x̂‖22 =

=

∥∥∥∥
1

2
PA−1b− x̂

∥∥∥∥
2

2

=

∥∥∥∥−
(
I−P�P

)
x+

1

2
P�PA−1b− 1

2
A−1b

∥∥∥∥
2

2

=

∥∥∥∥(I−P�P)

(
1

2
A−1b− x

)∥∥∥∥
2

2

.

�
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