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Abstract: Due to significant advancements in embedded systems, sensor devices and wireless
communication technology, sensor networks have been attracting widespread attention in areas
such as target tracking, monitoring, and surveillance. Technological advancements made it
possible to deploy a large number of inexpensive but technically advanced sensors to cover wide
areas. However, when a tracking system has to track a large number of targets, the computation
and communication loads arise. In this paper we propose a task assignment algorithm based on
linear matrix inequalities (LMI) to reduce the computational complexity and communication
load. Simulation results and a comparison with the Kalman filtering strategy confirm the
suitability of the approach.
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1. INTRODUCTION

Due to significant advancements in embedded systems,
sensor devices and wireless communication technology,
sensor networks have been attracting widespread atten-
tion in areas such as target tracking, monitoring, and
surveillance. Technological advancements made it possi-
ble to deploy a large number of inexpensive but techni-
cally advanced sensors to cover wide areas (Dargie and
Poellabauer (2010)). Applications in these fields include,
for example, intelligent video surveillance at cluttered
and crowded places, air traffic control, space situational
awareness and animal tracking (see Hanif et al. (2017);
Thite and Mishra (2016); Jia et al. (2016)). Deployment
of multiple sensors provides more advantages over a single
node. In particular, each sensor mostly receives incomplete
observations (measurements) because of the noisiness of
an environment and inaccuracy inherent to the sensor
devices. Thanks to the use of multiple sensors one might
obtain more accurate estimation of the measured value
through the information fusion. In other words, multi-
sensor networks can be used to reduce uncertainties.

Sensor networks that contain multiple nodes with sens-
ing, processing and communication capabilities are ubiq-
? This work was supported by Russian Science Foundation (project
16-19-00057).

uitous in tracking systems (Wei et al. (2016)). In gen-
eral, sensor networks perform estimates of some state of
a dynamic process through communication between the
network nodes. Currently, three communication schemes
are used for multi-sensor networks: centralized, distributed
and hybrid. Centralized systems have the most accurate
estimation since they are aware of all or almost all mea-
surements obtained by the sensors. In turn, distributed
systems have such properties as robustness to failures and
scalability as well as less throughput requirements com-
pared to centralized ones. Hybrid systems provide a trade-
off between the properties of centralized and distributed
systems. In such systems one may combine a distributed
control strategy with local fusion centers.

The use of the tracking systems, which are comprised of
multiple inexpensive and small sensors, brings new chal-
lenges due to resource limitations of the network. Each sen-
sor has limited sensing coverage and it might be ineffective
for a target to be tracked by all available sensors or by a
fixed subset of sensors through the entire tracking process.
Moreover, sensors deployed in a large area of interest may
not contribute much to the tracking quality since sensors
might be far away from the targets. Nevertheless, they
consume their own and network resources collecting the
data and communicating with the other nodes. These
issues gave rise to the sensor selection problem, in which
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the best subset of the available sensors needs to be chosen
according to given performance constraints.

In general, the sensor selection problem is expressed as
follows (Chepuri and Leus (2015)):

arg min
q∈{0,1}N

h(Q(q)) s.t. 1T
Nq = K, (1)

where q is a selection vector of length N , h(Q(q)) is a
scalar cost function related to the error covariance matrix
Q. The error covariance matrix is optimized to select the
best subset of K sensors out of N available sensors. The
problem (1) is combinatorial and one needs to do

(
K
N

)
searches to find the solution. In the multi-target case this
problem becomes even worse because we need to find a
selection vector for every target.

1.1 Related Works

There are various algorithms available in literature to solve
the problem of sensor selection or resource allocation.
In Masazade et al. (2012) the authors propose a target
tracking algorithm based on extended Kalman filtering,
in which the selection process is performed by designing
a sparse gain matrix. Heuristic Yu and Prasanna (2005),
stochastic heuristic Jin et al. (2012) and meta-heuristic
intelligent optimization algorithms Yang et al. (2014) have
also been considered to solve this problem. Exhaustive
search Kaplan (2006), greedy search Kalandros (2002),
auction algorithm Chen et al. (2006), are some other
algorithms that are applied to resource allocation. Consid-
ered algorithms tend to be computationally expensive. To
address the complexity issues, sparse convex optimization
approaches are used in Joshi and Boyd (2009).

In Botts et al. (2016) the authors consider a stochas-
tic multi-agent and multi-target surveillance problem and
apply to it a cyclic stochastic optimization algorithm.
Recently, researchers have been actively developing ap-
proaches based on randomization (see Tempo et al. (2012);
Granichin et al. (2015)). Event-based tracking technologies
are also widely considered due to throughput constraints
and difficulty in analyzing a large amount of data Batmani
et al. (2017).

The existing works mainly address the problem of choosing
K sensors from a set of available sensors in order to
obtain the best tracking accuracy. However, in large-
scale networks it is important to find a trade-off between
accuracy and resource utilization.

1.2 Contribution

In this work we suggest to use of a hybrid system scheme
and propose a task assignment algorithm based on linear
matrix inequalities (LMI) to deal with the computational
complexity problem. The selection problem is formulated
as the design of a sparse resource allocation matrix Gt to
choose the most informative sensors. The entries of Gt are
designed to be as sparse as possible such that the tracking
error and the amount of used sensors are minimized.

Mathematically, it means we should minimize the sum of
non-zero entries of the vector g defined by the l0-(quasi)

norm: ‖g‖0 =
∑N
j=1 |sign gj |. Since the l0-(quasi) norm

optimization is NP-hard and nonconvex, one should use
the convex surrogate, i.e. the l1-norm heuristic, that gives
the best approximation of the sparse solution (Barabanov
and Granichin (1984); Polyak et al. (2014)):

‖g‖1 =

N∑
j=1

|gj |.

In essence, we seek a sparse matrix Gt consisting of vectors
g (i.e., vector with many zeros and a few non-zero entries)
that minimizes the quality functional presented in the next
section.

1.3 Outline and Notations

The remainder of the paper is organized as follows. In
Section 2, we introduce the problem of multiple target
tracking by a sensor network, consisting of identical de-
vices. Section 3 provides the technique of finding an in-
tersection of the ellipsoids corresponding to the sensors
measurements. In Section 4, we propose an algorithm
based on LMI approach to find sensor subsets. Finally,
in Section 5 a simulation experiment is provided.

The notation used in this paper can be described as
follows. Upper and lower bold face letters are used for
matrices and column vectors, respectively. E{·} is the
expectation operation. Ik is a k × k identity matrix with
ones on the main diagonal and zeros elsewhere. 4 is
a non-strict inequality for symmetric matrices that is
understood in the sense of inequalities for quadratic forms.
(·)T denotes transposition. |U| denotes the cardinality of
the set U . ‖ · ‖ is the Euclidean norm. tr{·} is the matrix
trace operator. det{·} is the matrix determinant.

2. PROBLEM STATEMENT

Consider a distributed network of n sensors, randomly
located in an area of interest. Let N = {1, 2, . . . , n} be

the set of sensors and sjt ∈ Rd be the state of the sensor j.
In the line of sight of the sensors are movingm targets. Our
goal is to assign sensors to the targets in such a way that
we could accurately predict the movement trajectories of
the targets and use as less sensors as possible.

Let M = {1, 2, . . . ,m} be the set of targets, {rit}t=0,1,2,...,
rit ∈ Rp, i ∈M be the movement trajectory of the target i,
whose state changes according to the following equation:

rit+1 = f i(rit) + wi
t, (2)

where f i(·) is a state-transition function, {wi
t} is the white

Gaussian noise with zero mathematical expectation and
covariance matrix Ri

w: Ewi
t = 0, Ewi

t(w
i
t)

T = Ri
w 4 σ2

wIk.

The sensors estimate the state rit of the object i based on
measurements received in accordance with the following
observation model

zi,jt = ϕ(sjt , r
i
t) + εi,jt , (3)

where zi,jt ∈ Rq is a measurement of the state of the
object i available to the sensor j at time instant t, ϕ(·, ·) :
Rd × Rp → Rq is an observation function, which depends
on the current state of the object i and sensor j, {εi,jt } is

the additive external noise with zero mean Eεi,jt = 0 and

the error covariance matrix Eεi,jt (εi,jt )T = Σi,jt .
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We assume that for any i ∈ M , j ∈ N and independent
centered εi,jt with the error covariance matrix Σi,jt there

exists an inverse function ϕ−1(sjt , ·) : Rq → Rp:

ϕ−1(sjt , ϕ(sjt , r
i
t) + εi,jt ) = rit + ξi,jt , (4)

where ξi,jt is an independent component with zero mean

Eξi,jt = 0, the error covariance matrix Eξi,jt (ξi,jt )T = Ξi,jt
and the bounded fourth central moment E‖ξi,jt ‖4 ≤M4.

2.1 Confidence Region

Let a confidence region be represented as an ellipsoid
around the point ηi,jt = ϕ−1(sjt , z

i,j
t ). The confidence

region with the user-defined significance level p would
include the point representing the “true” value rit with
the probability 1− p. We define this ellipsoid as follows:

E i,jt = {rit : (rit − η
i,j
t )T(Ξi,jt )−1(rit − η

i,j
t ) ≤ χ2

p,d}, (5)

where χ2
p,d is the p-value matching to the χ2 distribution

for d degrees of freedom.

Example 1. Let one specify an ellipsoid around the point
ηi,jt ∈ R2, i.e. d = 2. Let this ellipsoid include the value rit
with the 95% probability. In accordance with the table of
χ2 values vs p-values, one should set the p-value to 0.05.

For each target i we have a set of points ηit =

{ηi,1t , . . . ,ηi,nt } and corresponding to them ellipsoids E it =

{E i,1t , . . . , E i,nt }. We assume that the “true” value rit be-
longs to the intersection of the ellipsoids contained in E it
and we would like to find this intersection region. However,
it is hard to achieve if the value n is large enough. In this
case the intersection region becomes too complex. In order
to find it, we are going to adopt the technique of linear
matrix inequalities described in the next section.

2.2 Quality Function

We denote by θt = col(r1t , . . . , r
m
t ) the joint vector of all

target states. Let r̂it be an estimate of the state of target

i at time instant t and θ̂t = col(r̂1t , . . . , r̂
m
t ) be the joint

vector of all estimates.

In general, the main goal of the tracking process can be
achieved by minimizing the following quality function:

F̄t(θ̂t) =
1

2

∑
i∈M
‖rit − r̂it‖2 → min

θ̂t

. (6)

Let Êt = {Ê1t , . . . , Êmt } be the set of ellipsoids that approx-
imate the intersections of ellipsoids contained in {E it}i∈M .
Equivalently, the problem (6) may be represented as fol-
lows:

Φt(Êt) =
∑
i∈M

vol(Ê it )→ min
Êt
, (7)

where vol(·) is the volume.

In order to reduce the processing and communications
loads, we are also going to minimize the number of selected
sensors. We denote by Gt the resource allocation matrix
that needs to be as sparse as possible. The entities gi,jt of
this matrix indicate whether the sensor j is assigned to

the target i or not. Lastly, our quality function takes the
following form:

Φ̄t(Gt) = Φt(Ê) +
∑
i∈M
‖G(i,·)

t ‖1 → min
Gt

, (8)

where G
(i,·)
t is the i-th row of the matrix Gt.

3. AN INTERSECTION REGION OF ELLIPSOIDS

In Subsection 2.1, we mentioned the problem of finding the
intersection region of ellipsoids. In this section we provide
an explanation of how we can do that. Let the fusion center
receive a set of points ηit = {ηi,1t , . . . ,ηi,nt } of the i-th
target at time instant t. In Boyd et al. (1994) there are
several methods that approximate the intersection region
of ellipsoids. We are going to use outer approximation to
find an ellipsoid Ê it such that

Ê it ⊇
n⋂
j=1

E i,jt . (9)

For this purpose we apply the S-procedure, which could
be used to obtain a linear matrix inequality (LMI) that is
sufficient for (9) to hold. Before the S-procedure applica-
tion, we should convert the ellipsoid (5) into the following
form:

E i,jt = {x | Hi,j(x) ≤ 0},
Hi,j(x) = xTAi,j

t x + 2xTbi,jt + ci,jt , (10)

where Ai,j
t = (Ξi,jt )−1, bi,jt = −(Ξi,jt )−1ηi,jt , ci,jt =

(ηi,jt )T(Ξi,jt )−1ηi,jt − 1.

Each of these forms of representing an ellipsoid can be
afterwards converted into each other. In this paper we
are considering a special case of an ellipsoid, which is
referred to as an ellipse, i.e. when a 2-D plane is considered.
Nevertheless, the approach we are going to use is suitable
for ellipsoids in higher dimensions as well.

From the S-procedure the following condition could be
obtained: there exist positive scalars τ i,1, . . . , τ i,n such
that[

Âi b̂i

(b̂i)T (b̂i)T(Âi)−1b̂i − 1

]
−

n∑
j=1

τ i,j
[

Ai,j bi,j

(bi,j)T ci,j

]
≤ 0,

(11)

which can be written as the LMI (in variables Âi, b̂i,

ĉi = (b̂i)T(Âi)−1b̂i − 1, and τ i,1, . . . , τ i,n). Finally, we

will be able to find the ellipsoid Ê it , which has the smallest
volume, by solving the following convex problem:

minimize log det(Âi)−1

s. t. Âi > 0, τ i,1 ≥ 0, . . . , τ i,n ≥ 0, (12) Âi b̂i 0

(b̂i)T −1 (b̂i)T

0 b̂i −Âi

− n∑
j=1

τ i,j

 Ai,j bi,j 0
(bi,j)T ci,j 0

0 0 0

 ≤ 0.

Listing 1 demonstrates the example of a procedure that
finds outer approximation of the intersection of ellipsoids.
In the code below we utilize the CVX library (see Grant
et al. (2008)).
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Listing 1. Outer approximation of the intersection of
ellipsoids in Matlab

1 cvx begin sdp
2 variable A(n,n) symmetric;
3 variable b(n,1);
4 variable tau(1,p);
5

6 minimize(-log det(A));
7 subject to
8 A > 0;
9 hat ellipse = zeros(2*n+1, 2*n+1);

10 for i = 1:p
11 tau(i) ≥ 0;
12 hat ellipse = hat ellipse + tau(i) * ...

[ellipses(i).A ellipses(i).b ...
zeros(n, n); ellipses(i).b' ...
ellipses(i).c zeros(1, n); zeros(n, ...
n) zeros(n, n) zeros(n, 1)];

13 end
14 [A b zeros(n, n); b' -1 b'; zeros(n, n) b ...

-A] - hat ellipse ≤ 0;
15 cvx end

In the next section we describe how to solve problem (8)
using linear matrix inequalities.

4. LMI-BASED SOLUTION

In order to solve problem (8) we need to modify (12) in
such a way that the method takes into account the resource
allocation matrix Gt. We made a slight change in the
problem (12), adding the new conditions as follows:

minimize δ

s. t. ∀i Â > 0, gi,1 ≥ 0, . . . , gi,n ≥ 0, (13) Âi b̂i 0

(b̂i)T −1 (b̂i)T

0 b̂i −Âi

− n∑
j=1

gi,j

 Ai,j bi,j 0
(bi,j)T ci,j 0

0 0 0

 ≤ 0.

m∑
i=1

log det(Âi)−1 + α

m∑
i=1

‖G(i,·)
t ‖1 ≤ δ,

where α is the regularization coefficient.

The problem (13) means that we would like to find an
ellipsoid with the volume as small as possible while using
as few sensors as possible. In that case, we agree to get an
estimation with some quality loss, but instead we reduce
computational and communication loads.

Let us consider two examples that show the difference
between (12) and (13), see Fig. 1-2. We set m = 1 and
n = 3, i.e. one target and three sensors. In Fig. 1 we use
α equal to 1 and get an ellipse with the volume equal
to 0.1715 and τ 1 = [0.4122, 0.5225, 0.1896]T. In turn, in
figure 2 we use α equal to 1 and get an ellipse with the
volume equal to 0.1865 and g1 = [0.4827, 0.5173, 0.0000]T.
In other words, in the first case we calculate the estimate
using all sensors and in the second one using all except the
last one.

In real applications there may be some restrictions regard-
ing the maximum number of targets that can be tracked by
each sensor, i.e. |Gjt | ≤ gjmax. The solution of (13) does not
guarantee that this restriction will hold. It only minimizes
the value of |Gjt |. To deal with this issue one may use
the tracking algorithm that holds this restriction, like the

parameter estimation method presented in Granichin and
Erofeeva (2018).

Fig. 1. Outer approximation based on all measurments

Fig. 2. Outer approximation based on some part of mea-
surment set

Now, we formulate the tracking algorithm with LMI based
task assignment. Consider a hybrid network scheme, which
consists of a fusion center and a sensor network. We assume
that the solution of (13) is suboptimal during the time
period T.

Algorithm 1. Task assignment

Input: α > 0, ηit = {ηi,1t , . . . ,ηi,nt }, i ∈M
Output: Gt

1. Initialization. Associate each point ηi,jt with the ellip-

soid E i,jt .

2. Convert the ellipsoids to the form (10).

3. Solve the problem (13).

4. If the problem (13) is feasible. For i← 1 to m:

4.1 For j ← 1 to n:

4.1.1 If gi,j > 0: assign the sensor j to the target i.
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5. For each sensor j form the neighbors set N j
t , i.e. sensors

that track the same targets. Send assignments to the
sensors.

Algorithm 2. Tracking process on each sensor

Input: the neighbors set N j
t

Output: θ̂
j

t

1. Initialization. Set counter n = 0.

2. Iteration n→ n+ 1.

3. If n % T == 0:

3.1 Send own measurements to the fusion center.

4. Perform the estimation process based on a predefined
algorithm (e.g. Cyclic Simultaneous Perturbation Stochas-
tic Approximation Granichin and Erofeeva (2018)).

5. Read the message queue: if there is a message from the
fusion sensor go to step 5.1; else go to step 2.

5.1 Update the neighbor set and assignments.

5.2 Go to step 2.

5. SIMULATION RESULTS

5.1 Observation Model

We consider a 2D-plane, in which the state of the target i
is rit = [ri,1t ri,2t ṙi,1t ṙi,2t ]T and the state of the sensor j

is sjt = [sj,1t sj,2t ṡj,1t ṡj,2t ]T. Each state consists of position
and velocity components at time instant t. Suppose the
sensors are able to determine the angle and distance to
the objects, then:

ϕ(sjt , r
i
t) =

[
ψ(sjt , r

i
t)

ρ(sjt , r
i
t)

]
∈ R2, (14)

where

ψ(sjt , r
i
t) = arctg

[
ri,1t − s

j,1
t

ri,2t − s
j,2
t

]
(15)

is the angle to the object i,

ρ(sjt , r
i
t) =

√(
ri,1t − s

j,1
t

)2
+
(
ri,2t − s

j,2
t

)2
(16)

is the distance to the object i.

In this case, the inverse function ϕ−1(sjt , ·) is as follows

ϕ−1(sjt , z
i,j
t ) = sjt +

[
zi,j,2t sin zi,j,1t

zi,j,2t cos zi,j,1t

]
, (17)

where zi,j,1t and zi,j,2t are the first and second coordinates

of the vector zi,jt , respectively. If the covariance matrices

εi,jt are equal to Σi,jt =

[
σ2
ψ 0

0 (zi,j,2t σρ)
2

]
, then the covari-

ance of ξi,jt is

Ξi,jt = R(zi,j,1t )

[
(zi,j,2t σψ)2 0

0 (zi,j,2t σρ)
2

]
R(zi,j,1t )T, (18)

where R(ψ) =

[
sinψ − cosψ
cosψ sinψ

]
is the rotation matrix

through the angle ψ.

5.2 Experiments

Next, we consider one possible experiment setting. Six
targets move uniformly and rectilinearly in a square area
of interest with identical and constant velocities. The area
is of size 300×300 km2 and velocities ṙi,1t and ṙi,2t are equal
to 2500 km/h. We define the state-transition function as
follows

f(rit) = Dirit; Di =

1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1

 ; δt = 1 sec.

In the area of interest we randomly locate six sensors. The
noise in the measurements obtained by each sensor is set
to the following values:

Σi,jt =

[
σ2
ψ 0

0 (zi,j,2t σρ)
2

]
=

0.72 0

0

(
zi,j,2t

100

)2


The targets begin their movement starting at the initial
positions, which are defined as r10 = [270, 295]; r20 =
[240, 290]; r30 = [210, 285]; r40 = [180, 280]; r50 = [150, 275];
r60 = [120, 270]. We assume that the sensor network is
homogeneous, i.e. the characteristics of each sensor are the
same. By characteristics we mean, for example, the field
of view, which is assumed to be 360 degrees. The field of
view also covers the whole considered area of interest. The
duration of experiments is 200 iterations.

For simplicity, instead of visualizing all targets we show
only one target with id #1 in figures 3 and 4. We use the
following notation for the figures: the dotted line is the
trajectory of a target’s movement; the solid line with the
marker “square” is an estimation of the trajectory; the
circle is a sensor.

Figure 3 demonstrates the estimation of the movement
trajectory with task assignment process based on LMI
approach discussed above. In turn, for comparison we
provide the estimation based on Kalman Filter performed
on the fusion center, see Fig. 4. The main difference
between these two cases is that in the second case the
measurements from all sensors were used. In contrast to
this case, LMI-based solution was obtained with the use
of formed sensor subsets only.
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