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Multi-Agent Stochastic Systems with Switched Topology and Noise

Konstantin Amelin, Natalia Amelina, Oleg Granichin, and Olga Granichina

Abstract—In this paper the multi-agent stochastic systems
are considered under randomly switched agents communications
topology and noisy information about the current states of
neighbouring agents. We study the consensus problem for such
systems when controls actions are formed by the local voting
protocol (stochastic approximation type algorithm). This protocol
is applied to the load balancing distributed computer system and
to the system of Unnamed Aerial Vehicles (the UAVs system).

Obtained results are important for the control properties
analysis of production or logistic networks, multiprocessor or
multicomputer networks, erc.

Keywords: multi-agent stochastic systems, consensus prob-
lem, approximate consensus.

I. INTRODUCTION

The multi-agent stochastic systems are widely used and
studied in various applications in the fields of production,
logistic, multiprocessor or multicomputer networks, efc. Often
communication links between the agents may change over time
and information about the states of neighbouring agents may
be received with noise.

In [1] the author study the consensus problem for such
systems and the properties of controls obtained by the local
voting protocol (stochastic approximation type algorithm) with
step-size tending to zero. In the case of an external dynamic
changing of agents states (e. g., getting new task) the stochastic
approximation type algorithms with decreasing to zero step-
size are not applicable. In [2], [3], [4], [S] authors study
the performance of stochastic approximation type algorithms
with a constant step-size in the case of non-stationary mean-
risk quality functional. The similar approaches we apply to
considered multi-agent stochastic systems and a local voting
protocol with a constant positive step-size. In addition we
describe couple of possible applications of this protocol.

The rest of this paper is organized as follows. In the
next section, we describe a basic knowledge from a graph
theory. Section III deals with the consensus problem, main
definitions, some preliminary results for non-stochastic case.
Main theoretical result is presented in Section IV. At the end,
we consider some applications of theoretical results and we
discuss our future plan to apply obtained results to the system
of Unnamed Aerial Vehicles (the UAVs system).
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II. CONCEPTS OF GRAPH THEORY

We explain some notation used in this article. The node
index is used as a superscript but not an exponent in different
variables.

Consider a dynamic network as a set of agents (nodes) N =
{1,2,...,n}.

A directed graph (digraph) (N,E) consists of N and a set
of directed edges E. Denote the neighbour set of node i as
N'={j:(j,i) €E}. 3

Associate with each edge (j,i) € E a weight &'/ > 0.
Denote an adjacency or connectivity matrix A = [a"J] of
the graph denoted hereinafter %4. Define the weighted in-
degree of node i as the i-th row sum of A: d'(4) =Y, a"/
and D(A) = diag{d’(4),d%(A),...,d"(A)} is a corresponding
diagonal matrix. The symbol .#(A) = D(A) — A stands for
Laplacian of graph 9.

A directed path from i to i; is a sequence of nodes
i1,---,i5, § > 2, such that (ik,ik+]) € Eke {1,2,...75— 1},
Node i is said to be connected to node j if there is a directed
path from i to j. The distance from i to j is the length of the
shortest path from i to j. Graph is said to be strongly connected
if i and j are connected for all distinct nodes i, j € N.

A directed tree is a digraph where each node i, except the
root, has exactly one parent node j so that (j,i) € E. We call
Y, = (N,E) a subgraph of 4, if NCN and E CENNxN.
The digraph & is said to contain a spanning tree if there
exists a directed tree %, = (N, E,,) as a subgraph of ¥,.

The following fact from graph theory will be important.

Lemma ]: [6], [7] Laplacian .#(A) of the graph ¢, has
rank n—1 if and only if the graph %4 has a spanning tree.

We note an important corollary:

Collorary I: If the graph %, is strongly connected, then
Laplacian #(A) has rank n— 1.

The symbol dmax(A) denotes a maximal in-degree of the
graph &. In correspondence with the Gershgorin Theorem
[8], we can deduce another important property of Laplacian;
all eigenvalues of the matrix £ (A) have nonnegative real part
and belong to the circle with center on the real axis at the point
dmax(A) and with radius which equals to dipax(A).

Let Ay,...,A, denote eigenvalues of the matrix .#(A). We
arrange them in ascending order of real parts: 0 < Re(A1) <
Re(A2) < ... < Re(A,). If the graph has a spanning tree then
A1 =0 is a simple eigenvalue and all other eigenvalues of .#
are in the open right half of the complex plane.

The second eigenvalue A; of matrix % is important for
analysis in many applications. It is usually called Fiedler
eigenvalue. For undirected graph it was shown in [9] that:

Re(A) < —~

i
n—1 '.’é%'d (),
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and for the ¢connected undirected graph G,

1
Re(%2) > diamGy - volGy '’

where diamG, is the longest distance between two nodes and
volGy = Lien d'(A).

For all vectors £;-norm will be used, i. e. a square root of
the all its elements squares sum.

ITII. CONSENSUS PROBLEM IN MULTI-AGENT SYSTEMS

Consider a dynamic network of a nodes (agents) set that
cooperate to achieve a goal that one can not achieve alone.

The concepts of graph theory will be used to describe the
network topology. Let the dynamic network topology be mod-
elled by a sequence of digraphs {(N,E;)};»0, where E; C E
changes with time, and corresponding adjacency matrices are
denoted as A,. The maximal set of communication links is
Enux = {(J,1) : 50,500 > 0}. _

We assume that a time-varying state variable x; € R cor-
responds to each node i € N of the graph at time ¢ € [0,7].
Its dynamics is described for the discreet time case by the
equation

Xy =24 i), 1=0,1,2...,T 50
or for the continuous time case
x; =fi(x;'vu;.)a te [OvT]v )

with some functions f*(-,-) : R x R — R, depending on states
in the previous time x! and control actions u} € R.

To form its control strategy each node i € N uses its own
state
3

(possibly noisy) and if N/ # @, noisy measurements of its
neighbours states

B i i
Y =xntw,

=x +w}’, jeN], @

where wi wi/ is the noise.’

We consider the multi-agent system consisting of dynamic
agents i € N with inputs u, outputs y;’ and states xi.

If (j,i) € E; then node i receives information from node j
for the purposes of feedback control.

Definition 1: A feedback on observations

Kx( v]l .. i’j”'t)’ (5)

where {j1,.. ,Jm,} e {i} UN;, CN' is called a protocol
(control algorithm) with topology (N, E,)

Nodes i and j is said to agree in a network at time ¢ if and
only if xi =

Definition 2: n nodes of a network is said to reach a
consensus at time ¢ if ¥ =x] Vi,jEN,i#].

Definition 3: n nodes is said to achieve asymptotic consen-
sus if there exists a variable x* : x* = lim,_,..x! for all i € N.

Consider the local voting protocol:

=0 E bl,.l(y‘d
JjeNt

'vy

x,x) ()
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where @, > 0 are step-sizes of control protocol, b/ >0 Vj €
Ni. We set b = 0 for other pairs i, j and denote B, = [b}] as
the matrix of control protocol.

Under some general assumption in [1] the author proved
a necessary and sufficient condition for the asymptotic mean
square consensus when step-size o in (6) tends to zero and
second term in (1) has a simple form: f/(x},u}) = u]. We will
consider more general case of functions f/(x},u!) and step-sxze
¢, nondecreasing to zero.

At first, consider the particular case of dynamic systems
on graphs when the second term in (1) has a simple form:
Fi(d,u) =i, for all nodes i and all observations are made
without noise: y;’ =x/, j € {iJUN/.

Denote %, = [x,, ;3%] and & = [u};...;u?] column vectors
obtained by the vertical concatenation of n corresponding
variables. Control protocol (6) can be rewritten in a matrix
form:

@ = (04 B; — D(04B;))%; = — £ (04 B, )% )

the dynamics (1) for the discrete time case is described by:

ft+1—_‘x_t"'ﬁht=011,21.'-')Ta ®)

and for the continuous-time case is:

f =1, t€0,T]. ©®

Then the closed-loop system for the discrete time case takes
the form:

(I-Z(0uB))%, t=0,1,2,....,T,  (10)

where I is matrix of size n x n of ones and zeros on the
diagonal, and for the continuous time case is

% =—-%(B)%, t€[0,T). (¢3))

We will show that the control protocol (6) with &y = & and
B; = A provides consensus asymptotically for both discrete
and continuous-time models.

Indeed, for the discrete case the equation (10) turns into

(- Z(aA))% = P, 12)

where the Perron matrix P = I — #(aA) has one simple
eigenvalue equal to one and all others are inside the unit circle
if ., 1

< o
Since the sum of row elements of Laplacian .# equals to zero,
the sum of row elements of matrix P equals to one, i. e. vector
1 consisting of units is a right eigenvector of P corresponding
to the unit eigenvalue. The unit eigenvalue is simple if the
graph has a spanning tree. All other eigenvalues are inside the
unit circle. Let 7 = [z!,...,7"] denote the left eigenvector of
matrix P which is orthogonal to 1. Consequently, if the graph
has a spanning tree then in the limit of # — o we got

X411 =

Xep1=

(13)

% = 1(Z %), a4

i. e. an asymptotic consensus is reached. The consensus value
x* equals to the normalized linear combination of initial states



with weights equal to elements of the left eigenvector of matrix

d Zx _ Xii2x
* l'
== . (15)
1 P

This value depends on the graph topology and, consequently,
on connection links between nodes.

Lemma 2: If the graph &, has a spanning tree and control
protocol (6) parameters B, = A and & = & are such that the
condition (13) is satisfied then the control protocol (6) provides
asymptotic consensus for the discrete system (8) and its value
x* is given by (15).

If the graph is balanced then rows sums of the Laplacian
% equal to sums of corresponding columns, and this property
is transferred to the matrix P. Then Z; = c], and consensus
value equals to the initial values average

1 ;
h g ']
x=—-2x
ni:lo

and does not depend on the topology of the graph.
For the continuous-time case we have

i=—-%x. 16)

Let Z1,2,...,2, and 71 = =1,7,..., 7, be left and right
orthonormal eigenvectors of the matrix . corresponding to its
ordered eigenvalues A1, ...,A,. If the graph has a spanning tree
then A; =0 is a simple eigenvalue and all other eigenvalues
of & are in the open right half of complex plane. Thus, the
system (16) is partially stable with one pole at the origin and
the rest are in the open left half plane.

For the first left eigenvector ; = [Z',.
we have

..,Z"] of matrix &

o %) =2k = —21.¢% =0,

i.e. ¥=21% =YL, zix! is invariant, that is constant and inde-

pendent of the states of nodes. Thus, Y7, Zix) = Y7, 7{x!, Vr.
‘We apply the modal expansion and rewrite the state vector

in terms of eigenvalues and eigenvectors of the matrix .. If all

the eigenvalues of .# are simple (in fact, it is only important

that A is simple), then

xo—Zre

X =e zxo—Z(zjxo)e Ajt rJ+

\/—-

an
In the limit of ¢ — oo we get x, — florx,—yx »I,VzeN
i. e. an asymptotic consensus is reached.

Lemma 3: If the graph ¥4 has a spanning tree then the
control protocol (6) with & = & and B, = A provides an
asymptotic consensus for the continuous-time system (9) and
its value x* is given by

* 1 &y
x=ﬁ};‘12‘1xa

with vector of initial data X3 and the orthonormal first left
eigenvector Z; of the matrix .%.

Consider the problem of reaching an approximate &-
consensus (€ > 0).

(18
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Definition 4: n nodes is said to achieve €-consensus at time
t if there exists a variable x* such that ||x —x*||? < ¢ for all
i€N.

Definition 5: T(€) is called time to e-consensus, if n nodes
achieve e-consensus for all + > T(¢).

From (17) by evaluating the square of the norm of the first
term we can obtain

[I% —x IHZ‘HZ ZiZp)e

Ajt;j”z =

e—l,t;jHZ < (n _ l)e—2Re(}q)t”io ”x*l||2_

“11E @ o—x)

j=2

From here we have the expression for the time to £-consensus
1

in system (16)
2Re(A2) In ( ) ’

Lemma 4: If the graph &4 has a spanning tree then control
protocol (6) with o = & and B; = A provides €-consensus for
the continuous-time system (9) for any ¢ > T(€), where T(g)
was defined by (19), and the consensus value x* is given by
the formula (18).

A similar estimate for the time to &-consensus can be
obtained for the discrete system (12).

(n=D)llxo —x*1)?

T(g) = p

(19)

IV. MAIN RESULT

Let (Q,%,P) be the underlying probability space. The
symbol E stands for mathematical expectation and the symbol
E, denotes conditional expectation under the condition x.

In the theoretical results obtained below, we assume that the
following conditions are satisfied.

Al. Functions f'(x,u) Vi € N are Lipschitz in x and u:
[fi(x,u) — F1(&,u)| < Ly (Lyfx — x|+ [u— o]}, the growth rate
is bounded: |f(x,u)|?> < La(L, + L|x|* + |u[?), and for any
fixed x the function f(x,-) is such that E, f* (x,u) = fi(x,Ecu);

A2. a) The noises wj’ Vi€ N,j e {i}UN' are centered,
independent and have bounded variance: E(w’/)? < 62.

b) The appearance of edges (j,i) Vi€ N,j€ N in thq graph
%,, is independent random event with probability pd’ G. e
matrices A, are independent identically distributed random
matrices). .

¢) Weights of control protocol by’ Vi € N,j € N’ are
bounded random variables: b < b;Y < b with probability 1,
and there exist b/ = Eb;’.

Moreover, all of these random variables and matrices are
independent of each other.

A3. The graph %, has a spanning tree where elements
of matrix Amay size of n x n are alhy = pi’bii, i €N, j€
N, diy=0,i€N.

Deﬁmtlon 6: n nodes is said to achieve mean square &-
consensus at time ¢ > 0 if E[[x}|[? < o0, i € N, and there exists
a random variable x* such that E||xi —x*||? < & for all i € N.

Consider the discreet time case and rewrite the dynamics of
the nodes in vector-matrix form:

Tyt =%+ F(04, %, W1), (20)



here F(ay,%,w,) is the vector of size n: F(az,%,W;) =

_| fda X b7 ((d =)+ (W —wr')) @n
jen;

The method of continuous models [10], [11], (also called
DE approach [12], or Derevitskii-Fradkov-Ljung (DFL)-
sheme [13]) consists on the approximate replacement of ini-
al stochastic difference equation (20) by ordinary differential
juation

% = R(a,%), (22)
there
x!
R(a,¥)=R| a, =| ifi(d,as’(®) |, (23
o
=Y aid (o — &) = —d (Amax)*' + i akf X/, ieN.
JENkax j=1

"For a finite time interval trajectories {% } from (20)-(21)
nd {#(%)} from (22)-(23) closeness conditions follow from
11]. Here and further 7, = 09+ @ + ...+ 0;_1, (in particular,
i =Ta if Vt &y = a = const).

Theorem I: [14] Let the conditions A1, A2a—c be satisfied,
i€ N function fi(x,u) is smooth in u, f'(x,0) =0 for any x
nd 0 < ¢4 < @&, then there exists & such that for @ < & the
»llowing inequality holds:

E max (24)

0<% <Tma
there C; > 0, C; > 0 are some constants.

We assume that in the continuous model (22)-(23) the
-consensus is reached over time, i. e. all components of
1e vector %(7) become close to some common value x*
sonsensus value) for all i € N.

Theorem 2: [14] Let the conditions A1, A2a—c be satisfied,
i € N functions f'(x,u) are smooth by u, f(x,0) =0 for
ny x, 0 < oy < @&, for the continuous model (22)-(23) §-
onsensus is achieved for time Z(%), consensus protocol
arameters {0y} are chosen so that Tmax = L0 > T (§)
nd for constants C;,C, the following inequality holds

1% — %()|I* < Cre2™ @,
X

max

G £C2Tmax
0% < Tmax

€
o< Z»
hen mean square £-consensus is achieved in the stochastic
liscrete system (20)-(21) at any time ¢: 7 (§) <t < Tmax
Consider an important particular case Vi € N f*(x,u) = u.
The upper bound was obtained:

- (4(n — Do =4

4 2Re(A2) £

or the time to %-conscnsus in the continuous model (22)-(23).
From Theorem 2 we can get the important consequence.
Theorem 3: [14] Let the conditions A2a—c, A3 be satisfied,

fi(x,u) =ufor any i € N, then at any time 7 : 7 (§) <t < Tmax

25

7(

in the stochastic discrete system (20)-(21) n nodes achieve
mean square g£-consensus. for any arbitrarily small positive
number € >0 and for any Tmax > 7 (§) denoted in (25) when
selecting sufficiently small oy

max

£
o < .
0% < Tmax 4C; €C2tmax

Here C1,C,, & are some constants and A, is the closest to the
imaginary axis eigenvalue of matrix % with nonzero real part.

Consider the case of an infinite time interval, i. e. T = oo,

Definition 7: n nodes is said to achieve asymptotic mean
square e-consensus if E|jxl||? < oo, t =0,1,...,i € N, and
there exists a random variable x* such that fim,,.E|jxi —
¥|P<eforieN.

In [10] the mean square model (22) accuracy estimates were
obtained for both cases of infinite and finite time intervals.
For example, in [10] for independent w; and in {11] for W,
satisfying the strong mixing conditions the following fact was
obtained.

Lemma 5: If w, are independent (or w; satisfy the strong
mixing conditions), Lipschitz:

[IR(et,2) ~ R(@,Z)|| < Li|lz- 7], (26)
IR(ee,2) —R(&,D)|| < Li(1+ [zl ]e—a'l, @7
and growth conditions:
Bl L R(azm) -R@ DI <L+ [P, @9
satisfy then the following inequality holds:
E max_ % — 2(w)|? < €127 @, (29)

where C; > 0, C; > 0 are some constants, & = 1ma.xToc,, Tr <
<<

7.

If the continuous model (22) is exponentially stable then it
was shown in [10], [11] that the approximation accuracy for
an infinite time interval has an order of &Y for some 0 < @ < 1.

Lemma 6: [10], [11] If the conditions of Lemma 5 are
satisfied and the continuous model (22) is exponentially stable
then there exists & > 0 such that for 0 < o < @ < & the
following inequalities hold

E|l% —i(w)|? < Gal, t=1,2,..., (30)
where values C3 > 0, ¥ > 0 do not depend on «.

Theorem 2 does not give the information about the asymp-
totic behavior of the system. Conditions for achieving asymp-
totic mean-square €-consensus are given in the next theorem.

Theorem 4: [14] Let the conditions A1, A2a-b be satis-
fied, Vi € N functions fi(x,u) are smooth by u, fi(x,0)=0
for any x, 0 < & < & and the continuous model (22)-(23) is
exponentially stable, then n nodes achieve asymptotic mean
square £-consensus with £ =C3&* for some independent from
@ constants C3 and p: 0 (4 <1 from Lemma 6.



V. CONCLUSION

The theoretical results can be applied in transport and
logistics networks, production networks, computer networks,
and other networks. Consider some practical applications.

In [15], [16] load balancing algorithms are presented for a
decentralized computer network with incomplete information
about current nodes states and changing set of communication
links. A load balancing problem is reformulated as a consensus
problem in a noisy model with a switching topology. The
local voting protocol was used to provide uniform loading of a
network. Evaluating performance of the system was presented
for simulation results.

The simulation was carried out for the system shown in Fig.
1 consisting of 6 computing blocks.

Fig. 1. Network topology.
To estimate convergence to consensus under the using of
the local voting protocol (6), we introduce error of estimation

Err=Y%; (—xiif—)i Fig. 2 shows plots of the estimation error
for different constant step-sizes a. One can see that if we
increase the step-size o then the states of nodes reach a
consensus faster but up to a point [17].
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Fig. 2. Dependence on the step-size .

In [18] there was an attempt to compare different protocox
for trucks loading. And in [19] the formation control proble;
is considered. It also can be presented as consensus problem
in network.
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In the future work we plan to use above theoretical results
in our practical project: multi-agents group of UAVs (Fig. 3)
[21].

Fig. 3.  Group of UAVs.

We get a new three levels of the UAV-agents control system
(Fig. 4). Upper layer is also software base station. But it
creates global tasks for group of UAV. It is goals, initial
conditions, adjustment or modification of the initial problems.
Also the base station receives and processes data from the
group of UAVs. Base station is the computer (server) with
different communication modules (modems, radio receivers,
etc).

Fig. 4. Three levels of the UAVs control system.

Communication with the base station carried out due to
separate channel or via GPRS over GSM modem. A GSM
modem can be easily integrated with a microcomputer but
data packets should be compressed.

Connection between microcomputers of different UAVs
carried out due to FM radio with a frequency of 2.4 GHz



and the communication protocol 802.11 n (Wi-Fi) which uses
technology that connects the two nearest channels into one.
Thus microcomputers in the UAVs will be able simultaneously
receive and send information to each other. Communication
with the base station carried out due to individual channel or
via GPRS over GSM modem [20].

Due to the small UAV's weight the takeoff is carried out with
human hands or with a catapult. Landing is carried out either
through the built-parachute, or due to “takeover of control” of
the operator to manual control.

Middle control layer carries out by autopilot of UAV-agent.
Autopilot is a set of devices with a microcontroller with the
real-time system. The main task of the autopilot is to control
the actuators (servos, engine, additional equipment) based on
given flight program and data from sensors (inertial, infrared
sensors, pressure and velocity sensors, efc). Interoperability
between the main microcomputer and autopilot is organized
by SIP.

Lower layer controls the actuators and processes sensor data
to achieve the goal. But microcomputer generates the program
for autopilot rather than the base station.

For our UAV-agent we use the model of lung glider “PA-
PRIKA”. It is 1.2 m in length, 2 m wing span, 2-2.1 kg
max take of weight, 600 g payload, 40-120 km/h velocity
and 200 km range. On the middle layer we use the micro-
computer Gumstix. It is 17mm x 58mm x 4.2mm sizes, Linux
operating system, ARM Cortex-A8 processor with 600 Mhz
clock frequency, 256 MB RAM and 256 MB NAND Flash.
Microcomputer is the main on board device in the control
system of UAV-agent [20].

One of the important task in the development of UAVs
control programs is an optimization of flight algorithms. In
[22] there is a description of multi-agent technology possible
effective application to accumulate energy and increase the
flight range by using the thermal updrafts which are formed
in the lJower atmosphere due to disruption of warm air from
the surface when it is heated by sunlight.

The authors would like to thank the SPRINT laboratory of
SPbSU and Intel Corp. for supporting the project.
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