Rare event probability estimation
(Brescia, May 2004)

Abstract — The paper is devoted to the estimation of the rare event proba-
bility.

Index Terms— rare event, simulation, splitting method, probability estima-
tion, sampling per mode.

1 INTRODUCTION
2 PROBLEM FORMULATION AND NOTATIONS

Consider the initial set S C X and target set A C X. Suppose that we can simulate
trajectories which begin from S, and for the each trajectory the probability to reach the
set Ais P (e.g. P=1.21-107%).
For the given level of error € (e.g. € = 107?) the objective is to find an estimate P of
P, i.e.
P{{P—P|>¢} <e

Consider the standard Monte-Carlo method. Let’s we have N trajectories which start
from S with some initial distribution F,. For each of them we define the random values
B, i= 1,..., N which are i.i.d. and equal to 1 with probability P or 0 with probability
1 — P depending on trajectory achievement of set A or not. We can use the estimate

| N
Pi= ; P
By Hoeffding’s inequality we need to simulate

In2 —1Ine
>
- €2

N

trajectories then the level of estimation error of P is less then €, €.8.
if e=10"3then N = 3800500,
if e =10"% then N = 4.9517 - 108,
if e =107" then N = 1.0708 - 10".

In the last case there is no real possibility to simulate this huge amount of trajectories.
But our objective is the same: we need to estimate P with the given level of error €. To
solve the problem we need to made additional assumptions.



Let {2, F, P} be a probability space, Q2 be a set of all possible trajectories w beginning
from S, F be a sigma-algebra of all Borel sets of €2,
BO = {S} = {bo,kv k € IX}7 IX = 17 bO,l = Sa M Z 07 BM+1 = A = {bM+1,1}
and for j=1,..., M
Bj={bji:ke€lj, [I;| <oo, bjx €X, bjx e, w2k Ujr =0, bjx N Uier,,,bj110 =0,
V w which achieve some point 0;11 € Uier,,,bj11, cross before some point 0, € Ujey, bii}.
Note, for simplification one can consider the case when b;, = {0,x}, VJ, k.

Let’'s j < M + 1. Denote

Sky..k; = {w Vi = 1, .. ,j 351,]% cwn b@ki},

P _ 0, if P(Skl...kj) =0,
k1...k}' - s
! P(Ukj+1€1j+1 T UkM+1€1M+1 Sky..kjkjt1... ka1 |3k1~~~kj)= if P(Skl.-~kj) >0

Sj = Uk1€I1 s Ukjelj Sky..kj-
and Vj > 1

Pj/j-1 = max... max g P(Sky.ky) /P (Skyky_y )
ki€l kj_lelj_l
kjelj7p(5k1...kj_1)>0

Ppo= > Pln)
ki€l P(sg,)>0
Pjmin = min{ P (s, 1)/ P(skriy 1)+ PlSwyon;) >0, ki € I, ... kj € I},
Py in = min{ P(sg,) : P(sx,) >0, ky € L1},
Pj = Pjmin/ max{P(sg,..k;)/P(Sky.k;_y) : k1€ 11,... . k; € I;},
P1max = Pimin/ max{P(sy,): ki € I},
Pjmin = Min{p, &, : k1 € I1,..., kj € I, pry..k; > 0},
Dj = Djmin/MaX{Pr, ..k, © k1 € In,... . k; € I;}.

Note that
Pry..k; = P{w: w € 83,4, and trajectory w achive set A}

P = Z P(Skl)pkl = Z P(Sk1> Z <P<5k1k2>/P(8k1))pk1k2 IR

kiel ki€l kocls

MAIN ASSUMPTION
(A) if P(sg,k;) >0 >1, kiely, ... kjel;, A, A" Cspyp, o P(A) =P(A") >0
then VA C Skykj_y - P(A) >0

P(A'|A) = P(A”|A).



3 AGORITHM AND UNBIASEDNESS

ALGORITHM OF SIMULATION

1. Let’s start N > 0 trajectories from S with uniform distribution,
M >0, Rj>0, RjEN, g=1,..., M.

2. j=1.
3. To kill all trajectories which ¢ 5.

4. Each of all rest trajectories w; cross the set B; in some point d,x, € b;x,. For all w,
splitting R; — 1 times the trajectory w; uniformly on b;;,. We have got the new
R; — 1 trajectories for each of all rest trajectories.

5. If 7 < M then j = j + 1 and GOTO step 3.

ALGORITHM OF ESTIMATION

Na

P=_——"
NR; - Ry

where N4 is equal to all number of trajectories which achieve the set A.

Note that by the algorithm of simulation
|
P==N P
2

where P, for each of N > 0 starting trajectories 7 is a fraction of the number of its
sub-trajectories (include someself) which achieve the set A to the all number of its sub-
trajectories. Note, if P; > 0 then

. 1 .
PZ-:R—IZPM

where P, are equal to 1 or 0 depending on the achievement [-th sub-trajectory of set A
or not. .
As done in [1] P is unbiased since

N R Ry

; Ny 1
E(P)=£ = : Bl 1pp, ... 1 _p
( ) (NRI : RM) NR; - Ry Z Z Z ( ko Lkok1 ko...kM)

ko=1k1=1 kp=1




4 ESTIMATION ERROR, CASE M =1

First consider the special case M = 1.
In this case we have

B1 = {bk, ke [1},
P= Z P(si)pr and P, = Py = Z P(sk).
kel kel
Note that
P(sx) = P{w : w cross By first time in the point d; € by }.

Let Q= {w;, t =1,..., N} be a set of our N initial trajectories, Ty, k € I; be the
set of indexes t of trajectories which cross B first time in the point d; € b;. Denote
Ny = |Ty|, k € I;. Ny, is a random variable.

Lemma 1: Let’s § > 0.

P{|N, — NP(s;)| > BN} < 22N Vike I.
Proof: Let’s vy, t = 1,...,N, k € I;, are random values which are equal 1 when

t € T or 0O whent ¢ Ty. Vk {vg}Y, ii.d. and P{vy = 1} = P(sy). Hence by Hoeffding’s
inequality we have

N
1
P{ly D v — Pls)| 2 B} < 2072V
t=1

but by definition

=2

g Vgt = g Vg = N
t=1

teTy,

~ Lemma 2: Let’s 3 > 0, v > 0, P > 0, T is a random subset of {1,2,..., N},
Py, 1e€T,l=1,..., Ry are conditionally on 7" i.i.d. random values which are equal to 1
with probability p or 0 with probability 1 — p,

Ry
S-Y YR
ieT =1
A: If yP > 33 then
,;S'_ T _ p2~ P
P{|NPR1 Pl > 7‘ |@ _pl<pb< 26—2R1Nﬁ.

B: If yP > 453

1 S - T =
P {—' 2T tl I%l - P| < B} < 9¢ MVERE < gemimNEE
p



Proof:

1 _
Pllypg Sl 2w 1l |—PIS6}= > P{Tk}P{‘—ZZPZl p|>/yp‘ ).
Ty ZEl_pi<3 €Ty, 1=1
Note that
> P{T,} < 1.
il T |~ N P|<BN
Since
_ 1 - .
P S>‘TP S—>‘TP—7S—<—T.
{INPR p| > p| T} {N PRSPz b+ {NPR1 p<—yp| T}

we consider this two items separately.
First item:

P{ 5 - p>’yp‘T} P{ 5 - pNP>p7NP‘T}—

NPR1
1 - _ _ I
= P{=-S = p|T| = pyNP +p(NP \T|)‘ T <
1

P{ T} <

5o NP+ (VP [T) |
T\ Ry - T
by Hoeffding’s inequality

<e

= NPH(NP—|T SyNP_2INP_|T
_2|T‘R1(p’Y +(|T| | ‘))2 < 6_2R1p2,yNP’Y “Tl [T

Second item:

P{

1
< Ty =P S NP < NP‘ T —
NpR S TP b= { p —py b=

1 - _ _ _ _ _
= P{R—s ~pIT| < —p NP+ p(NP — |T])| T} <

17

—YNP + (NP —|T))| ~
i = ‘ T} <
!TIR T
by Hoeffding’s inequality and condition of Theorem
—2|T|R1(p —WNP-‘r(NP |T\))2 72R1p2’pr’yNP_2uVP_|TH

<e

Thus we have

A P{|

_ 7 -
~F R S—pl>p I‘% _P| < B} < 2e RN PREGy < 90 RINTER



p2"/ P2

b P{|NPR 5-p) 2| L -P| < 9 < g I INPRE < 90 FIVERT < g imN i
Theorem 1: If Assumption (A) holds and
4. N291n2—11n6 and  NR > (ln2—%_lne)(oz}31+3pfl)

P 12 min OéQP%P l,minpimin

or
5. N>821n§];21ne and  NR, > (21n22j2lne)(04§1+4)
1 min 40Pt P1 minP7 pmin
then .
PP > 0} <

Remind that
Py in = min{ P(sy,) : P(sg,) >0, ky € I}, P = Py imin/ max{P(sg,) : k1 € I},

P1min = Min{pg, : Ky € I1, pr, > 0}}, P1 = Dimin/max{pr, : k1 € I1}.
Proof:

P{]

P_P|> } P{\—1 ENP P| > Pa} P{|—1 ENP § P(s;,)pi| > Pa}
Qy = i Z I"ay = i S > Pa} =
= N & N & k)Pk

kel

) | > Pa} < P{P max|

=P{|)_P(st) (

kel 1€T zET
1 1 R P 1 1 R
< P{max —_— P,—pi| > ot < P{max —E P—pL| > apy}.
{keh pmax’NP<Sk> zeZTk pk| Plpma } {kEI pk‘NP(8k> et pk‘ pl}

Here we use notation ppa, = max{pg, : k1 € I }.
Let’s denote ( = %aﬁl P 1yin, for the case A or 5 = }LaﬁlPl,min for B. Define the random

variable
1 .

el

and two random sets

N,
U={ ]f[m P(sy, )| < 8}, U= { — P(s,,)| > B}
We have
P{|f3_ il >a} < P{U}P{max—\ g P —pil > op | U3+
P kel py, NP b P

1€T



—i—P{U}P{maX\ ZP —pi| > apl‘U} ) < P{U}+P{max| Z Pi—pi| > apy |U}.

By virtue Lemma 1 and the condition on N we get

CI (L

> a) < £ 4 P{max — 2 > ‘
005+ K S 2 o)

By Lemma 2 and the condition on R; we have

2.2 2 )
2NR; o plpl,minplwmm

AP{|p—P|Z&P}§§+26_ ap1+3P; S%—f—%:e’
~ € ANR an%p% mint1,min € €
B:P{|P—P|204P}§§+2_ ! apy 14 §§+§:€.
5 ?ESTIMATION ERROR, CASE M > 1
Theorem 2: If Assumption (A) holds and pjmin >0, j =1,..., M
N> 2ln22— lne)
pl,min
, i +1)In2 —1
NRlRQ"'Rj22j+1 (]‘l’ )Il ne 71§]<M

P1,minP2,min * ** pj,minpj-i-l,min
and

NRBoo o R 2M+1((M+1)ln2 lne)P]@/M 1P1\2/1 M2 P12/0
1o - M =

2
P1,minP2min * * * PM min¥

then )
P{|P—-P|>a} <e.

Proof: The relative error of estimator P is derived by induction whose principle is the
following: if in a simulation with M tresholds, the retrials generated in the first level are
not taken into account except one, we have a simulation with M — 1 tresholds.

By Theorem 1 the result of Theorem 2 holds in the case M=1.

To go from K to K + 1, assume that the result of Theorem 2 holds in the case M=K.
Thus we have to prove it for K + 1 tresholds.

Let’s go back to the proof of Theorem 1. Main path of that proof till point (x) holds
in our new case. We continue the proof from (x). Consider the last item in (x)

(+) P{max — Z Z Py — pr| > api (U}

kel pg NP Sk Ty, 1=1



We need to prove that it is not great then €/2. In the conditions of Theorem 2 we have

1112—1115

2 )
2,min

NiRy > prminNR1 /2 > 2

, In2 —1In §
NpRiRy - Rj 2 prmnNRiRy - R /2 > 27 2 2

5 ,2<7< M
P2,min * - 'pj,minpj+1,min

and

MIn2 —In &)P? p? N
NiRiRy - Ry > prawnNRi Ry -+ R; /2 > g D iy Moy oA
P2,min " *° pM,minPT
1/0
Thus we can to apply Theorem 1 to the case

€ (0%

M:K,€:§, N:Nle, R]:RJ+1,j:1,,K—1

and for (+) we get that it is not great then €/2. The proof by induction is completed.

6 NUMERICAL EXAMPLE

6.1 Monte Carlo simulation

To find the probability that from uniformly distributed random variables we can get the
value beginning from 0.123 with accuracy ¢ = 1073. We simulate 3800500 sample on
Pentium 800MHz during 1 minute

P =9.7750-10"%,

6.2 One level splitting

We can randomly chose the value from [0, 1] with uniform distribution.

Rare event is A = { the value beginning from 0.1234 or 0.9876 }, P = 0.0002. Let’s
e=10"%

Consider B; = { the value beginning from 0.12 or 0.98 }. It is easy to get that
Pimin = 001, P, =1, p; = 1 and Pimin = 0.01. From Theorem 1 conditions (A) for
a = 0.5 we can find

N =1907400, and Ry =39.

The duration of simulation was 1 minute 30 seconds and the result was
P =20034-10""*

and by the result of Theorem 1
P<P<2P.

Wl Do



There were made 3 350 868
case (B):
N =3390900, and R, =16.

The duration of simulation was 2 minutes and the result was
P=1.9875-10"*

There were made 3 350 868 samples which (?)approximately equal to N + 0.01NR;(=
3 867 800).

(?)Note that for Monte Carlo simulation we need to use N = 4.9517 - 10® and the
duration of simulation would be approximately 130 minutes.

6.3 Multilevel splitting

a).
b). Consider the rare event A = { the value beginning from 0.123456789 or 0.987654321
boe=107".
Consider M =4, B; = { the value beginning from 0.12 or 0.98 },
By = { the value beginning from 0.1234 or 0.9876 },
Bs = { the value beginning from 0.123456 or 0.987654 },
B, = { the value beginning from 0.12345678 or 0.98765432 }.
It is easy to get that pimin = DP2.min = P3.min = 0.01, pgymin = 0.1 and
P1 = 002, Pg/l = P3/2 = P4/3 = 0.01.

From Theorem 2 conditions for a = 107 we can find
N = (7)198070, Ry = 207, Ry = 206, R3 = 206 and Ry = 9.
The duration of simulation was 6 minutes and the result was
P =1.9422-107°.

There were made 13 889 000 samples. Note that for Monte Carlo simulation we need to
use 1.0708 - 10%.

6.4 Brown motion
6.5 Brown motion with switching
6.6 Diffusion process

6.7 Diffusion with switching
7 HYBRID SYSTEMS

Let’'s X = Ujer X : X;NX; =0, i #j, e.g. in ATM problem with switching we need to
consider X = R? x M where M is a finite set of modes.



Suppose we have a probabilitistic measure yu(-) on X. Now we can not use the uniform
distribution for the simulation and we need to generalize notations and main assumption
from section II.

We define for j =1,... M +1

(G0---i5-1)

g(kl k) = {w € Sky.. kj c V= 1,...,7 first of {5l7k1 cwn blykl} cwn bl,kl ﬂXiH},

zo ZJ 1)

p(kzlk) = — (10 dj-1) _(ig.-15-1)
’ P<U’“ﬂ'+1€5‘+1' U’“MHEIMH kg KO gy TR ) P54, 75,)) >0

and Vj > 1

Pj/j-1 = max... max Z P(Sky.ky)/ P(Skyky_y)s

ki€lr kj_1€lj1
kj€lj, P(sky..kj_1)>0

P =1,
Pjmin = Min{ P(sg,.k; )/ P(Skyky_y) © P(Skyn;) >0, ki € Iy, ..k € I,
Plmin = Min{P(s,) : P(sg,) >0, ky € I }.
Note that

P = Z Skl pkzl Z P(Skl) Z (P(Sk1k2)/P(Sk1))pk1k2 =

ki€l ki€l ko€l
MAIN ASSUMPTION
(A) if P(sgy 1) > 05> 1, ki €Ly, ...k € I, NV, A" C sy, 4+ P(A') = P(A") > 0
then VA C Skykj_y - P(A) >0
P(A'|A) = P(A”]|A).

ALGORITHM OF SIMULATION

1. Vi € Ix : u(SNX;) > 0 let’s start N@ trajectories from S N X; with uniform
distribution, ’
M>0,R">0, RN, j=1,...,M, i€ Ix.

2. j—=1.
3. To kill all trajectories which ¢ S;.

4. Each of all rest trajectories w; cross the set B; in some point d;x, € b;x,. For all w,
splitting R; — 1 times the trajectory w; uniformly on b;;,. We have got the new
R; — 1 trajectories for each of all rest trajectories.

10



5. If < M then j = j + 1 and GOTO step 3.

ALGORITHM OF ESTIMATION

Na

P=_——"—
NR; - Ry

where N4 is equal to all number of trajectories which achieve the set A.

Note that by the algorithm of simulation

PoLisp

=
i1

where P; for each of N > 0 starting trajectories ¢ is a fraction of the number of its
sub-trajectories (include parent) which achieve the set A to the all number of its sub-
trajectories. Note, if P; > 0 then

)

1 1

PZ' T -pia
R l

1

where Py are equal to 1 or 0 depending on the achievement [-th sub-trajectory of set A
or not.
P is unbiased since

N Ry R
?E(P)=E Na ZZ i E(Lgy Lok, - Ligon,) = P.
NRi - Ry NR1 RM oo O M

=1ki=1 kpy=1

First consider the case M = 1.
In this case we have
Bl - {bk7 ke -[l}a

P =Y P(sp)pr and Py =Pyg=» P(sp).
kel kely
Note that
P(sx) = P{w : w cross By first time in the point d; € by }.

Let Qo = {wy, t =1,...,N} be a set of our N initial trajectories, Ty, k € I; be the
set of indexes t of trajectories which cross Bj first time in the point d, € b,. Denote
Ny = |Ty|, k € I;. Ny is a random variable.

Theorem 3: If Assumption (A’) holds and py i, > 0,

n2—1 2102 — In€) P?
NzoETe g g, > B27OR
pljmin pl,mina

11



then )
P{|P—-P|>a} <e.

Note that by Lemma 1 V& € I; we have P{NN; < Npj min/2} < § in Theorem 1 conditions
and for R; when oo = € we have

P}(In4 —Ine)
€2\/2N(In2 —Ine)

Proof:

N N
. 1 . 1 -
P{[P — P| ZQ}ZP{’NZB—H ZQ}ZPHNZB—ZP(SMPH > af =
i=1 i—1

kely

=P{|> P(si) ( >Zl5i—pk>|Za}§P{P1r&aI?|mZE—pk|za}.

kel 1€Ty, 1€T),

Denote

za—pkr},

k., = argmax {max\
€Ty,

kel NP(sy)

(kp is the random variable). We have

R . o
_pPl> < . o | > .
P{|P—P| > a} < P{N;, < pl,mmN/Q}P{lgleaic\ E P—pg| > 2 |km < P1minN/2}+

€Ty,

1
NP(Sk>

+P{Nkm > b1 m1nN/2}P{maX |

N a
P, — > —| Nk, > prminlV/2}) <
| s 3 = el = Vi > prinV/2)

€Ty,

1 A o
< P{N, minlV/2 P P, — > —|Np > p1mnlN/2F <
< P{N, <p1, /2} + {rlgea}i(’NP(sk) EET Dr| P1| km = D1, /2}
€Ty,

By virtue Lemma 1 and the condition on N we get

Nk A «
> < g — > — > : =

—S4p > 5N 2 Prin /2
(%) S+ {Igleé}lele; NP — el = [Nk, 2 PrainN/2).

Since F (%[f’u) = pi then by Lemma 2 and the condition on R; we have

[

PP~ Pl > e} < G aemon Vet < Sy S

[\]
[\]

12



Theorem 4: If Assumption (A’) holds and pjmim > 0,7 =1,..., M

S 21n2—1n6

sl B ;
pl,min

(j+1)In2 —1Ine

NR\Ry--- R; > 271! L 1<j<M

P1,minP2,min * ** pj,minpj-l,-Lmin

and
NR{Ry--- Ry > 2M+1((M—|- 1)In2— lne)P]@/J\LleLl/J\L2 ) ..p12/0

P1,minP2,min * ** pM,minO[2
then
P{|IP—-P|>a} <e.

8 CONCLUDING REMARKS
9 APPENDIX
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