Rare event probability estimation

(Brescia, May 2004)
Abstract - The paper is devoted to the estimation of the rare event probability.

Index Terms - rare event, simulation, splitting method, probability estimation, sampling per mode.

1 INTRODUCTION

2 PROBLEM FORMULATION AND NOTATIONS

Consider the initial set $S \subset \mathbb{X}$ and target set $A \subset \mathbb{X}$. Suppose that we can simulate trajectories which begin from S, and for the each trajectory the probability to reach the set A is P (e.g. $P=1.21 \cdot 10^{-8}$).

For the given level of error ϵ (e.g. $\epsilon=10^{-9}$) the objective is to find an estimate \hat{P} of P, i.e.

$$
\mathrm{P}\{|\hat{P}-P| \geq \epsilon\} \leq \epsilon
$$

Consider the standard Monte-Carlo method. Let's we have N trajectories which start from S with some initial distribution P_{0}. For each of them we define the random values $\hat{P}_{i}, i=1, \ldots, N$ which are i.i.d. and equal to 1 with probability P or 0 with probability $1-P$ depending on trajectory achievement of set A or not. We can use the estimate

$$
\hat{P}:=\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i} .
$$

By Hoeffding's inequality we need to simulate

$$
N \geq \frac{\ln 2-\ln \epsilon}{2 \epsilon^{2}}
$$

trajectories then the level of estimation error of \hat{P} is less then ϵ, e.g.

$$
\begin{aligned}
& \text { if } \epsilon=10^{-3} \text { then } N=3800500, \\
& \text { if } \epsilon=10^{-4} \text { then } N=4.9517 \cdot 10^{8}, \\
& \text { if } \epsilon=10^{-9} \text { then } N=1.0708 \cdot 10^{19} .
\end{aligned}
$$

In the last case there is no real possibility to simulate this huge amount of trajectories. But our objective is the same: we need to estimate P with the given level of error ϵ. To solve the problem we need to made additional assumptions.

Let $\{\Omega, \mathcal{F}, \mathrm{P}\}$ be a probability space, Ω be a set of all possible trajectories ω beginning from S, \mathcal{F} be a sigma-algebra of all Borel sets of Ω,
$B_{0}=\{S\}=\left\{b_{0, k}, k \in I_{X}\right\}, I_{X}=1, b_{0,1}=S, M \geq 0, B_{M+1}=A=\left\{b_{M+1,1}\right\}$
and for $j=1, \ldots, M$

$$
B_{j}=\left\{b_{j, k}: k \in I_{j},\left|I_{j}\right|<\infty, b_{j, k} \in \mathbb{X}, b_{j, k} \cap_{k^{\prime} \in I_{j}, k^{\prime} \neq k} b_{j, k^{\prime}}=\emptyset, b_{j, k} \cap \cup_{l \in I_{j+1}} b_{j+1, l}=\emptyset,\right.
$$

$\forall \omega$ which achieve some point $\delta_{j+1, k} \in \cup_{l \in I_{j+1}} b_{j+1, l}$ cross before some point $\left.\delta_{j, k} \in \cup_{l \in I_{j}} b_{j, l}\right\}$.
Note, for simplification one can consider the case when $b_{j, k}=\left\{\delta_{j, k}\right\}, \forall j, k$.
Let's $j \leq M+1$. Denote

$$
\begin{gathered}
s_{k_{1} \ldots k_{j}}=\left\{\omega: \forall i=1, \ldots, j \exists \delta_{i, k_{i}} \in \omega \cap b_{i, k_{i}}\right\}, \\
p_{k_{1} \ldots k_{j}}=\left\{\begin{array}{l}
0, \text { if } \mathrm{P}\left(s_{k_{1} \ldots k_{j}}\right)=0, \\
\mathrm{P}\left(\cup_{k_{j+1} \in I_{j+1}} \cdots \cup_{k_{M+1} \in I_{M+1}} s_{k_{1} \ldots k_{j}, k_{j+1} \ldots k_{M+1}} \mid s_{k_{1} \ldots k_{j}}\right), \text { if } \mathrm{P}\left(s_{k_{1} \ldots k_{j}}\right)>0 \\
S_{j}=\cup_{k_{1} \in I_{1}} \cdots \cup_{k_{j} \in I_{j}} s_{k_{1} \ldots k_{j}} .
\end{array}\right.
\end{gathered}
$$

and $\forall j>1$

$$
\begin{gathered}
P_{j / j-1}=\max _{k_{1} \in I_{1}} \ldots \max _{k_{j-1} \in I_{j-1}} \sum_{k_{j} \in I_{j}, P\left(s_{k_{1} \ldots k_{j-1}}\right)>0} P\left(s_{k_{1} \ldots k_{j}}\right) / P\left(s_{k_{1} \ldots k_{j-1}}\right), \\
P_{1 / 0}=\sum_{k_{1} \in I_{1}, P\left(s_{k_{1}}\right)>0} P\left(s_{k_{1}}\right), \\
P_{j, \min }=\min \left\{P\left(s_{k_{1} \ldots k_{j}}\right) / P\left(s_{k_{1} \ldots k_{j-1}}\right): P\left(s_{k_{1} \ldots k_{j}}\right)>0, k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}\right\}, \\
P_{1, \min }=\min \left\{P\left(s_{k_{1}}\right): P\left(s_{k_{1}}\right)>0, k_{1} \in I_{1}\right\}, \\
\bar{P}_{j}=P_{j, \min } / \max \left\{P\left(s_{k_{1} \ldots k_{j}}\right) / P\left(s_{k_{1} \ldots k_{j-1}}\right): k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}\right\}, \\
p_{1, \max }=P_{1, \min } / \max \left\{P\left(s_{k_{1}}\right): k_{1} \in I_{1}\right\}, \\
\left.p_{j, \min }=\min \left\{p_{k_{1} \ldots k_{j}}: k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}, p_{k_{1} \ldots k_{j}}>0\right\}\right\}, \\
\bar{p}_{j}=p_{j, \min } / \max \left\{p_{k_{1} \ldots k_{j}}: k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}\right\} .
\end{gathered}
$$

Note that

$$
\begin{gathered}
p_{k_{1} \ldots k_{j}}=\mathrm{P}\left\{\omega: \omega \in s_{k_{1} \ldots k_{j}} \text { and trajectory } \omega \text { achive set } A\right\} \\
P=\sum_{k_{1} \in I_{1}} \mathrm{P}\left(s_{k_{1}}\right) p_{k_{1}}=\sum_{k_{1} \in I_{1}} \mathrm{P}\left(s_{k_{1}}\right) \sum_{k_{2} \in I_{2}}\left(\mathrm{P}\left(s_{k_{1} k_{2}}\right) / \mathrm{P}\left(s_{k_{1}}\right)\right) p_{k_{1} k_{2}}=\ldots
\end{gathered}
$$

MAIN ASSUMPTION
(A) if $P\left(s_{k_{1} \ldots k_{j}}\right)>0 j>1, k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}, \Delta^{\prime}, \Delta^{\prime \prime} \subset s_{k_{1} \ldots k_{j}}: \mathrm{P}\left(\Delta^{\prime}\right)=\mathrm{P}\left(\Delta^{\prime \prime}\right)>0$ then $\forall \bar{\Delta} \subset s_{k_{1} \ldots k_{j-1}}: \mathrm{P}(\bar{\Delta})>0$

$$
\mathrm{P}\left(\Delta^{\prime} \mid \bar{\Delta}\right)=\mathrm{P}\left(\Delta^{\prime \prime} \mid \bar{\Delta}\right) .
$$

3 AGORITHM AND UNBIASEDNESS

ALGORITHM OF SIMULATION

1. Let's start $N>0$ trajectories from S with uniform distribution, $M \geq 0, R_{j}>0, R_{j} \in \mathbb{N}, j=1, \ldots, M$.
2. $j=1$.
3. To kill all trajectories which $\notin S_{j}$.
4. Each of all rest trajectories ω_{t} cross the set B_{j} in some point $\delta_{j, k_{t}} \in b_{j, k_{t}}$. For all ω_{t} splitting $R_{j}-1$ times the trajectory ω_{t} uniformly on $b_{j, k_{t}}$. We have got the new $R_{j}-1$ trajectories for each of all rest trajectories.
5. If $j<M$ then $j=j+1$ and GOTO step 3.

ALGORITHM OF ESTIMATION

$$
\hat{P}=\frac{N_{A}}{N R_{1} \cdot R_{M}}
$$

where N_{A} is equal to all number of trajectories which achieve the set A.
Note that by the algorithm of simulation

$$
\hat{P}=\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}
$$

where \hat{P}_{i} for each of $N>0$ starting trajectories i is a fraction of the number of its sub-trajectories (include someself) which achieve the set A to the all number of its subtrajectories. Note, if $\hat{P}_{i}>0$ then

$$
\hat{P}_{i}=\frac{1}{R_{1}} \sum_{l=1}^{R_{1}} \hat{P}_{i l}
$$

where $\hat{P}_{i l}$ are equal to 1 or 0 depending on the achievement l-th sub-trajectory of set A or not.

As done in [1] \hat{P} is unbiased since

$$
E(\hat{P})=E\left(\frac{N_{A}}{N R_{1} \cdot R_{M}}\right)=\frac{1}{N R_{1} \cdot R_{M}} \sum_{k_{0}=1}^{N} \sum_{k_{1}=1}^{R_{1}} \cdot \sum_{k_{M}=1}^{R_{M}} E\left(\mathbf{1}_{k_{0}} \mathbf{1}_{k_{0} k_{1}} \ldots \mathbf{1}_{k_{0} \ldots k_{M}}\right)=P .
$$

4 ESTIMATION ERROR, CASE $M=1$

First consider the special case $M=1$.
In this case we have

$$
\begin{gathered}
B_{1}=\left\{b_{k}, k \in I_{1}\right\}, \\
P=\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) p_{k} \quad \text { and } \quad P_{1}=P_{1 / 0}=\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) .
\end{gathered}
$$

Note that

$$
\mathrm{P}\left(s_{k}\right)=\mathrm{P}\left\{\omega: \omega \text { cross } B_{1} \text { first time in the point } \delta_{k} \in b_{k}\right\}
$$

Let $\bar{\Omega}_{0}=\left\{\omega_{t}, t=1, \ldots, N\right\}$ be a set of our N initial trajectories, $T_{k}, k \in I_{1}$ be the set of indexes t of trajectories which cross B_{1} first time in the point $\delta_{k} \in b_{k}$. Denote $N_{k}=\left|T_{k}\right|, k \in I_{1} . N_{k}$ is a random variable.

Lemma 1: Let's $\beta>0$.

$$
\mathrm{P}\left\{\left|N_{k}-N \mathrm{P}\left(s_{k}\right)\right| \geq \beta N\right\} \leq 2 e^{-2 N \beta^{2}}, \quad \forall k \in I_{1} .
$$

Proof: Let's $v_{t k}, t=1, \ldots, N, k \in I_{1}$, are random values which are equal 1 when $t \in T_{k}$ or 0 when $t \notin T_{k} . \forall k\left\{v_{t k}\right\}_{t=1}^{N}$ i.i.d. and $\mathrm{P}\left\{v_{t k}=1\right\}=\mathrm{P}\left(s_{k}\right)$. Hence by Hoeffding's inequality we have

$$
\mathrm{P}\left\{\left|\frac{1}{N} \sum_{t=1}^{N} v_{t k}-\mathrm{P}\left(s_{k}\right)\right| \geq \beta\right\} \leq 2 e^{-2 N \beta^{2}}
$$

but by definition

$$
\sum_{t=1}^{N} v_{t k}=\sum_{t \in T_{k}} v_{t k}=N_{k}
$$

Lemma 2: Let's $\beta>0, \gamma>0, \bar{P}>0, \bar{T}$ is a random subset of $\{1,2, \ldots, N\}$, $\hat{P}_{i l}, i \in \bar{T}, l=1, \ldots, R_{1}$ are conditionally on \bar{T} i.i.d. random values which are equal to 1 with probability p or 0 with probability $1-p$,

$$
\bar{S}=\sum_{i \in \bar{T}} \sum_{l=1}^{R_{1}} \hat{P}_{i l} .
$$

A: If $\gamma \bar{P} \geq 3 \beta$ then

$$
\mathrm{P}\left\{\left.\frac{\left|\frac{1}{N P R_{1}} \bar{S}-p\right|}{p} \geq \gamma| | \frac{|\bar{T}|}{N}-\bar{P} \right\rvert\, \leq \beta\right\} \leq 2 e^{-2 R_{1} N \frac{p^{2} \gamma \bar{P}}{1+P / \beta}}
$$

B: If $\gamma \bar{P} \geq 4 \beta$

$$
\mathrm{P}\left\{\left.\frac{\left|\frac{1}{N P R_{1}} \bar{S}-p\right|}{p} \geq \gamma| | \frac{|\bar{T}|}{N}-\bar{P} \right\rvert\, \leq \beta\right\} \leq 2 e^{-R_{1} N \frac{p^{2} \gamma^{2} \bar{P}^{2}}{\frac{1}{4} \gamma \bar{P}+\bar{P}}} \leq 2 e^{-4 R_{1} N \frac{p^{2} \gamma^{2} \overline{\bar{P}}}{\gamma+4}}
$$

Proof:

$$
\mathrm{P}\left\{\left.\left|\frac{1}{N \bar{P} R_{1}} \bar{S}-p\right| \geq \gamma p| | \frac{|\bar{T}|}{N}-\bar{P} \right\rvert\, \leq \beta\right\}=\sum_{T_{k}:\left|\frac{\left|T_{k}\right|}{N}-\bar{P}\right| \leq \beta} \mathrm{P}\left\{T_{k}\right\} \mathrm{P}\left\{\left.\left|\frac{1}{N \bar{P} R_{1}} \sum_{i \in T_{k}} \sum_{l=1}^{R_{1}} \hat{P}_{i l}-p\right| \geq \gamma p \right\rvert\, T_{k}\right\}
$$

Note that

$$
\sum_{T_{k}:\left|\left|T_{k}\right|-N \bar{P}\right| \leq \beta N} \mathrm{P}\left\{T_{k}\right\} \leq 1 .
$$

Since

$$
\mathrm{P}\left\{\left.\left|\frac{1}{N \bar{P} R_{1}} \bar{S}-p\right| \geq \gamma p \right\rvert\, \bar{T}\right\}=\mathrm{P}\left\{\left.\frac{1}{N \bar{P} R_{1}} \bar{S}-p \geq \gamma p \right\rvert\, \bar{T}\right\}+\mathrm{P}\left\{\left.\frac{1}{N \bar{P} R_{1}} \bar{S}-p \leq-\gamma p \right\rvert\, \bar{T}\right\}
$$

we consider this two items separately.
First item:

$$
\begin{gathered}
\mathrm{P}\left\{\left.\frac{1}{N \bar{P} R_{1}} \bar{S}-p \geq \gamma p \right\rvert\, \bar{T}\right\}=\mathrm{P}\left\{\left.\frac{1}{R_{1}} \bar{S}-p N \bar{P} \geq p \gamma N \bar{P} \right\rvert\, \bar{T}\right\}= \\
=\mathrm{P}\left\{\left.\frac{1}{R_{1}} \bar{S}-p|\bar{T}| \geq p \gamma N \bar{P}+p(N \bar{P}-|\bar{T}|) \right\rvert\, \bar{T}\right\} \leq \\
\mathrm{P}\left\{\left.\frac{1}{|\bar{T}| R_{1}} \bar{S}-p \geq p \frac{\gamma N \bar{P}+(N \bar{P}-|\bar{T}|)}{|\bar{T}|} \right\rvert\, \bar{T}\right\} \leq
\end{gathered}
$$

by Hoeffding's inequality

$$
\leq e^{-2|\bar{T}| R_{1}\left(p \frac{\gamma N \bar{P}+(N \bar{P}-|\bar{T}|)}{|T|}\right)^{2}} \leq e^{-2 R_{1} p^{2} \gamma N \bar{P} \frac{\gamma N \bar{P}-2|N \bar{P}-|\bar{T}||}{|\bar{T}|}} .
$$

Second item:

$$
\begin{gathered}
\mathrm{P}\left\{\left.\frac{1}{N \bar{P} R_{1}} \bar{S}-p \leq-\gamma p \right\rvert\, \bar{T}\right\}=\mathrm{P}\left\{\left.\frac{1}{R_{1}} \bar{S}-p N \bar{P} \leq-p \gamma N \bar{P} \right\rvert\, \bar{T}\right\}= \\
=\mathrm{P}\left\{\left.\frac{1}{R_{1}} \bar{S}-p|\bar{T}| \leq-p \gamma N \bar{P}+p(N \bar{P}-|\bar{T}|) \right\rvert\, \bar{T}\right\} \leq \\
\mathrm{P}\left\{\left.\frac{1}{|\bar{T}| R_{1}} \bar{S}-p \leq p \frac{-\gamma N \bar{P}+(N \bar{P}-|\bar{T}|)}{|\bar{T}|} \right\rvert\, \bar{T}\right\} \leq
\end{gathered}
$$

by Hoeffding's inequality and condition of Theorem

$$
\leq e^{-2|\bar{T}| R_{1}\left(p \frac{-\gamma N \bar{P}+(N \bar{P}-|\bar{T}| \mid}{|T|}\right)^{2}} \leq e^{-2 R_{1} p^{2} \gamma N \bar{P} \frac{\gamma N \bar{P}-2|N \bar{P}-|\bar{T}||}{|T|}} .
$$

Thus we have

$$
A: \mathrm{P}\left\{\left.\left|\frac{1}{N \bar{P} R_{1}} \bar{S}-p\right| \geq \gamma p| | \frac{|\bar{T}|}{N}-\bar{P} \right\rvert\, \leq \beta\right\} \leq 2 e^{-2 R_{1} p^{2} \gamma N \bar{P} \frac{\beta N}{N P+\beta N}} \leq 2 e^{-2 R_{1} N \frac{p^{2} \gamma \bar{P}}{1+P / \beta}}
$$

$B: \mathrm{P}\left\{\left.\left|\frac{1}{N \bar{P} R_{1}} \bar{S}-p\right| \geq \gamma p| | \frac{|\bar{T}|}{N}-\bar{P} \right\rvert\, \leq \beta\right\} \leq 2 e^{-2 R_{1} p^{2} \gamma N \bar{P} \frac{1}{2} \gamma N \bar{P}} N \overline{N P+\beta N} \quad \leq 2 e^{-R_{1} N \frac{p^{2} \gamma^{2} \bar{P}^{2}}{4} \gamma \bar{P}+\bar{P}} \leq 2 e^{-4 R_{1} N \frac{p^{2} \gamma^{2} \bar{P}}{\gamma \gamma 4}}$.
Theorem 1: If Assumption (A) holds and

$$
A: N \geq 9 \frac{\ln 2-\frac{1}{2} \ln \epsilon}{\alpha^{2} \bar{p}_{1}^{2} P_{1, \text { min }}^{2}} \quad \text { and } \quad N R_{1} \geq \frac{\left(\ln 2-\frac{1}{2} \ln \epsilon\right)\left(\alpha \bar{p}_{1}+3 \bar{P}_{1}^{-1}\right)}{\alpha^{2} \bar{p}_{1}^{2} P_{1, \min } p_{1, \text { min }}^{2}}
$$

or

$$
B: N \geq 8 \frac{2 \ln 2-\ln \epsilon}{\alpha^{2} \bar{p}_{1}^{2} P_{1, \min }^{2}} \quad \text { and } \quad N R_{1} \geq \frac{(2 \ln 2-\ln \epsilon)\left(\alpha \bar{p}_{1}+4\right)}{4 \alpha^{2} \bar{p}_{1}^{2} P_{1, \min } p_{1, \min }^{2}}
$$

then

$$
\mathrm{P}\left\{\left|\frac{\hat{P}-P}{P}\right| \geq \alpha\right\} \leq \epsilon
$$

Remind that

$$
\begin{gathered}
P_{1, \min }=\min \left\{P\left(s_{k_{1}}\right): P\left(s_{k_{1}}\right)>0, k_{1} \in I_{1}\right\}, \bar{P}_{1}=P_{1, \min } / \max \left\{P\left(s_{k_{1}}\right): k_{1} \in I_{1}\right\}, \\
\left.p_{1, \min }=\min \left\{p_{k_{1}}: k_{1} \in I_{1}, p_{k_{1}}>0\right\}\right\}, \bar{p}_{1}=p_{1, \min } / \max \left\{p_{k_{1}}: k_{1} \in I_{1}\right\} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}\left\{\left|\frac{\hat{P}-P}{P}\right| \geq \alpha\right\}=\mathrm{P}\left\{\left|\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}-P\right| \geq P \alpha\right\}=\mathrm{P}\left\{\left|\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}-\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) p_{k}\right| \geq P \alpha\right\}= \\
= & \mathrm{P}\left\{\left|\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right)\left(\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right)\right| \geq P \alpha\right\} \leq \mathrm{P}\left\{P_{1} \max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq P \alpha\right\} \leq \\
\leq & \mathrm{P}\left\{\max _{k \in I_{1}} \frac{1}{p_{\max }}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \frac{P}{P_{1} p_{\max }} \alpha\right\} \leq \mathrm{P}\left\{\max _{k \in I_{1}} \frac{1}{p_{k}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \alpha \bar{p}_{1}\right\} .
\end{aligned}
$$

Here we use notation $p_{\max }=\max \left\{p_{k_{1}}: k_{1} \in I_{1}\right\}$.
Let's denote $\beta=\frac{1}{3} \alpha \bar{p}_{1} P_{1, \min }$, for the case A or $\beta=\frac{1}{4} \alpha \bar{p}_{1} P_{1, \min }$ for B . Define the random variable

$$
k_{m}=\operatorname{argmax}\left\{\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right|\right\}
$$

and two random sets

$$
U=\left\{\left|\frac{N_{k_{m}}}{N}-\mathrm{P}\left(s_{k_{m}}\right)\right|<\beta\right\}, \bar{U}=\left\{\left|\frac{N_{k_{m}}}{N}-\mathrm{P}\left(s_{k_{m}}\right)\right| \geq \beta\right\}
$$

We have

$$
\mathrm{P}\left\{\frac{|\hat{P}-P|}{P} \geq \alpha\right\} \leq \mathrm{P}\{\bar{U}\} \mathrm{P}\left\{\left.\max _{k \in I_{1}} \frac{1}{p_{k}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \alpha \bar{p}_{1} \right\rvert\, \bar{U}\right\}+
$$

$\left.+\mathrm{P}\{U\} \mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \alpha \bar{p}_{1} \right\rvert\, U\right\}\right) \leq \mathrm{P}\{\bar{U}\}+\mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \alpha \bar{p}_{1} \right\rvert\, U\right\}$.
By virtue Lemma 1 and the condition on N we get

$$
\mathrm{P}\left\{\left|\frac{\hat{P}-P}{P}\right| \geq \alpha\right\} \leq \frac{\epsilon}{2}+\mathrm{P}\left\{\left.\max _{k \in I_{1}} \frac{1}{p_{k}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right) R_{1}} \sum_{i \in T_{k}} \sum_{l=1}^{R_{1}} \hat{P}_{i l}-p_{k}\right| \geq \alpha \bar{p}_{1} \right\rvert\, U\right\}
$$

By Lemma 2 and the condition on R_{1} we have

$$
\begin{aligned}
& A: \mathrm{P}\{|\hat{P}-P| \geq \alpha P\} \leq \frac{\epsilon}{2}+2 e^{-2 N R_{1} \frac{\alpha^{2} \bar{p}_{1}^{2} p_{1}^{2} \text { min } P_{1, \text { min }}}{\alpha \bar{p}_{1}+3 P_{1}}} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon, \\
& B: \mathrm{P}\{|\hat{P}-P| \geq \alpha P\} \leq \frac{\epsilon}{2}+2 e^{-4 N R_{1} \frac{\alpha^{2} \bar{p}_{1}^{2} p_{1, \text { min }}^{2} P_{1, \text { min }}}{\alpha \bar{p}_{1}+4}} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

5 ?ESTIMATION ERROR, CASE $M>1$

Theorem 2: If Assumption (A) holds and $p_{j, \min }>0, j=1, \ldots, M$

$$
\begin{gathered}
N \geq 2 \frac{\ln 2-\ln \epsilon}{p_{1, \min }^{2}} \\
N R_{1} R_{2} \cdots R_{j} \geq 2^{j+1} \frac{(j+1) \ln 2-\ln \epsilon}{p_{1, \text { min }} p_{2, \text { min }} \cdots p_{j, \min } p_{j+1, \min }^{2}}, 1 \leq j<M
\end{gathered}
$$

and

$$
N R_{1} R_{2} \cdots R_{M} \geq 2^{M+1} \frac{((M+1) \ln 2-\ln \epsilon) P_{M / M-1}^{2} P_{M-1 / M-2}^{2} \cdots P_{1 / 0}^{2}}{p_{1, \min } p_{2, \min } \cdots p_{M, \min } \alpha^{2}}
$$

then

$$
\mathrm{P}\{|\hat{P}-P| \geq \alpha\} \leq \epsilon
$$

Proof: The relative error of estimator \hat{P} is derived by induction whose principle is the following: if in a simulation with M tresholds, the retrials generated in the first level are not taken into account except one, we have a simulation with $M-1$ tresholds.

By Theorem 1 the result of Theorem 2 holds in the case $\mathrm{M}=1$.
To go from K to $K+1$, assume that the result of Theorem 2 holds in the case $\mathrm{M}=\mathrm{K}$. Thus we have to prove it for $K+1$ tresholds.

Let's go back to the proof of Theorem 1. Main path of that proof till point ($*$) holds in our new case. We continue the proof from (\star). Consider the last item in (\star)

$$
\begin{equation*}
\mathrm{P}\left\{\left.\max _{k \in I_{1}} \frac{1}{p_{k}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right) R_{1}} \sum_{i \in T_{k}} \sum_{l=1}^{R_{1}} \hat{P}_{i l}-p_{k}\right| \geq \alpha \bar{p}_{1} \right\rvert\, U\right\} \tag{+}
\end{equation*}
$$

We need to prove that it is not great then $\epsilon / 2$. In the conditions of Theorem 2 we have

$$
\begin{gathered}
N_{k} R_{1} \geq p_{1, \min } N R_{1} / 2 \geq 2 \frac{\ln 2-\ln \frac{\epsilon}{2}}{p_{2, \min }^{2}}, \\
N_{k} R_{1} R_{2} \cdots R_{j} \geq p_{1, \min } N R_{1} R_{2} \cdots R_{j} / 2 \geq 2^{j} \frac{j \ln 2-\ln \frac{\epsilon}{2}}{p_{2, \min } \cdots p_{j, \min } p_{j+1, \min }^{2}}, 2 \leq j<M
\end{gathered}
$$

and

$$
N_{k} R_{1} R_{2} \cdots R_{j} \geq p_{1, \min } N R_{1} R_{2} \cdots R_{j} / 2 \geq 2^{M} \frac{\left(M \ln 2-\ln \frac{\epsilon}{2}\right) P_{M / M-1}^{2} P_{M-1 / M-2}^{2} \cdots P_{2 / 1}^{2}}{p_{2, \min }^{\cdots p_{M, \min \frac{\alpha^{2}}{P_{1 / 0}^{2}}}} . . . \text {. }{ }^{2}}
$$

Thus we can to apply Theorem 1 to the case

$$
M=K, \epsilon=\frac{\epsilon}{2}, \alpha=\frac{\alpha}{P_{1 / 0}}, N=N_{k} R_{1}, R_{j}=R_{j+1}, j=1, \ldots, K-1
$$

and for $(+)$ we get that it is not great then $\epsilon / 2$. The proof by induction is completed.

6 NUMERICAL EXAMPLE

6.1 Monte Carlo simulation

To find the probability that from uniformly distributed random variables we can get the value beginning from 0.123 with accuracy $\epsilon=10^{-3}$. We simulate 3800500 sample on Pentium 800 MHz during 1 minute

$$
\hat{P}=9.7750 \cdot 10^{-4} .
$$

6.2 One level splitting

We can randomly chose the value from $[0,1]$ with uniform distribution.
Rare event is $A=\{$ the value beginning from 0.1234 or 0.9876$\}, P=0.0002$. Let's $\epsilon=10^{-4}$.

Consider $B_{1}=\{$ the value beginning from 0.12 or 0.98 \}. It is easy to get that $P_{1, \min }=0.01, \bar{P}_{1}=1, \bar{p}_{1}=1$ and $p_{1, \min }=0.01$. From Theorem 1 conditions (A) for $\alpha=0.5$ we can find

$$
N=1907400, \quad \text { and } \quad R_{1}=39 .
$$

The duration of simulation was 1 minute 30 seconds and the result was

$$
\hat{P}=2.0034 \cdot 10^{-4}
$$

and by the result of Theorem 1

$$
\frac{2}{3} \hat{P} \leq P \leq 2 \hat{P}
$$

There were made 3350868
case (B):

$$
N=3390900, \quad \text { and } \quad R_{1}=16
$$

The duration of simulation was 2 minutes and the result was

$$
\hat{P}=1.9875 \cdot 10^{-4}
$$

There were made 3350868 samples which (?)approximately equal to $N+0.01 N R_{1}(=$ 3867 800).
(?)Note that for Monte Carlo simulation we need to use $N=4.9517 \cdot 10^{8}$ and the duration of simulation would be approximately 130 minutes.

6.3 Multilevel splitting

a).
b). Consider the rare event $A=\{$ the value beginning from 0.123456789 or 0.987654321 $\}, \epsilon=10^{-9}$.

Consider $M=4, B_{1}=\{$ the value beginning from 0.12 or 0.98$\}$,
$B_{2}=\{$ the value beginning from 0.1234 or 0.9876$\}$,
$B_{3}=\{$ the value beginning from 0.123456 or 0.987654$\}$,
$B_{4}=\{$ the value beginning from 0.12345678 or 0.98765432$\}$.
It is easy to get that $p_{1, \min }=p_{2, \min }=p_{3, \min }=0.01, p_{4, \min }=0.1$ and $P_{1}=0.02, P_{2 / 1}=P_{3 / 2}=P_{4 / 3}=0.01$.

From Theorem 2 conditions for $\alpha=10^{-9}$ we can find

$$
N=(?) 198070, R_{1}=207, R_{2}=206, R_{3}=206 \text { and } R_{4}=9
$$

The duration of simulation was 6 minutes and the result was

$$
\hat{P}=1.9422 \cdot 10^{-9}
$$

There were made 13889000 samples. Note that for Monte Carlo simulation we need to use $1.0708 \cdot 10^{19}$.

6.4 Brown motion

6.5 Brown motion with switching

6.6 Diffusion process

6.7 Diffusion with switching

7 HYBRID SYSTEMS

Let's $\mathbb{X}=\cup_{i \in I_{X}} \mathbb{X}_{i}: \mathbb{X}_{i} \cap \mathbb{X}_{j}=\emptyset, i \neq j$, e.g. in ATM problem with switching we need to consider $\mathbb{X}=\mathbb{R}^{3} \times \mathbb{M}$ where \mathbb{M} is a finite set of modes.

Suppose we have a probabilitistic measure $\mu(\cdot)$ on \mathbb{X}. Now we can not use the uniform distribution for the simulation and we need to generalize notations and main assumption from section II.

We define for $j=1, \ldots, M+1$

$$
\bar{s}_{\left(k_{1} \ldots k_{j}\right)}^{\left(i_{0}, i_{j-1}\right)}=\left\{\omega \in s_{k_{1} \ldots k_{j}}: \forall l=1, \ldots, j \text { first of }\left\{\delta_{l, k_{l}} \in \omega \cap b_{l, k_{l}}\right\} \in \omega \cap b_{l, k_{l}} \cap \mathbb{X}_{i_{l-1}}\right\}
$$

$\bar{p}_{\left(k_{1} \ldots k_{j}\right)}^{\left(i i_{1} \ldots i_{j-1}\right)}=\left\{\left.\begin{array}{l}0, \text { if } \mathrm{P}\left(\bar{s}_{\left(k_{1} \ldots k_{j}\right)}^{\left(i_{0} \ldots i_{j-1}\right)}\right)=0, \\ \mathrm{P}\left(\cup_{k_{j+1} \in I_{j+1}} \cdots \cup_{k_{M+1} \in I_{M+1}} \bar{s}_{k_{1} \ldots k_{j}, k_{j+1}}^{\left(i_{0} \ldots i_{j-1}\right)} \ldots k_{M+1}\right.\end{array} \right\rvert\, s_{k_{1} \ldots k_{j}}^{\left(i_{1} \ldots i_{j-1}\right)}\right)$, if $\mathrm{P}\left(\bar{s}_{\left(k_{1} \ldots k_{j}\right)}^{\left(i_{1} \ldots i_{j-1}\right)}\right)>0$
and $\forall j>1$

$$
\begin{gathered}
P_{j / j-1}=\max _{k_{1} \in I_{1}} \ldots \max _{k_{j-1} \in I_{j-1}} \sum_{k_{j} \in I_{j}, P\left(s_{k_{1} \ldots k_{j-1}}\right)>0} P\left(s_{k_{1} \ldots k_{j}}\right) / P\left(s_{k_{1} \ldots k_{j-1}}\right), \\
P_{1 / 0}=1, \\
p_{j, \min }=\min \left\{P\left(s_{k_{1} \ldots k_{j}}\right) / P\left(s_{k_{1} \ldots k_{j-1}}\right): P\left(s_{k_{1} \ldots k_{j}}\right)>0, k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}\right\}, \\
p_{1, \min }=\min \left\{P\left(s_{k_{1}}\right): P\left(s_{k_{1}}\right)>0, k_{1} \in I_{1}\right\} .
\end{gathered}
$$

Note that

$$
P=\sum_{k_{1} \in I_{1}} \mathrm{P}\left(s_{k_{1}}\right) p_{k_{1}}=\sum_{k_{1} \in I_{1}} \mathrm{P}\left(s_{k_{1}}\right) \sum_{k_{2} \in I_{2}}\left(\mathrm{P}\left(s_{k_{1} k_{2}}\right) / \mathrm{P}\left(s_{k_{1}}\right)\right) p_{k_{1} k_{2}}=\ldots
$$

MAIN ASSUMPTION

(A') if $P\left(s_{k_{1} \ldots k_{j}}\right)>0 j>1, k_{1} \in I_{1}, \ldots, k_{j} \in I_{j}, \Delta^{\prime}, \Delta^{\prime \prime} \subset s_{k_{1} \ldots k_{j}}: \mathrm{P}\left(\Delta^{\prime}\right)=\mathrm{P}\left(\Delta^{\prime \prime}\right)>0$ then $\forall \bar{\Delta} \subset s_{k_{1} \ldots k_{j-1}}: \mathrm{P}(\bar{\Delta})>0$

$$
\mathrm{P}\left(\Delta^{\prime} \mid \bar{\Delta}\right)=\mathrm{P}\left(\Delta^{\prime \prime} \mid \bar{\Delta}\right)
$$

ALGORITHM OF SIMULATION

1. $\forall i \in I_{X}: \mu\left(S \cap \mathbb{X}_{i}\right)>0$ let's start $N^{(i)}$ trajectories from $S \cap \mathbb{X}_{i}$ with uniform distribution, $M \geq 0, R_{j}^{(i)}>0, R_{j}^{(i)} \in \mathbb{N}, j=1, \ldots, M, i \in I_{X}$.
2. $j=1$.
3. To kill all trajectories which $\notin S_{j}$.
4. Each of all rest trajectories ω_{t} cross the set B_{j} in some point $\delta_{j, k_{t}} \in b_{j, k_{t}}$. For all ω_{t} splitting $R_{j}-1$ times the trajectory ω_{t} uniformly on $b_{j, k_{t}}$. We have got the new $R_{j}-1$ trajectories for each of all rest trajectories.
5. If $j<M$ then $j=j+1$ and GOTO step 3.

ALGORITHM OF ESTIMATION

$$
\hat{P}=\frac{N_{A}}{N R_{1} \cdot R_{M}}
$$

where N_{A} is equal to all number of trajectories which achieve the set A.
Note that by the algorithm of simulation

$$
\hat{P}=\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}
$$

where \hat{P}_{i} for each of $N>0$ starting trajectories i is a fraction of the number of its sub-trajectories (include parent) which achieve the set A to the all number of its subtrajectories. Note, if $\hat{P}_{i}>0$ then

$$
\hat{P}_{i}=\frac{1}{R_{1}} \sum_{l=1}^{R_{1}} \hat{P}_{i l}
$$

where $\hat{P}_{i l}$ are equal to 1 or 0 depending on the achievement l-th sub-trajectory of set A or not.
\hat{P} is unbiased since

$$
? E(\hat{P})=E\left(\frac{N_{A}}{N R_{1} \cdot R_{M}}\right)=\frac{1}{N R_{1} \cdot R_{M}} \sum_{k_{0}=1}^{N} \sum_{k_{1}=1}^{R_{1}} \cdot \sum_{k_{M}=1}^{R_{M}} E\left(\mathbf{1}_{k_{0}} \mathbf{1}_{k_{0} k_{1}} \ldots \mathbf{1}_{k_{0} \ldots k_{M}}\right)=P .
$$

First consider the case $M=1$.
In this case we have

$$
\begin{gathered}
B_{1}=\left\{b_{k}, k \in I_{1}\right\}, \\
P=\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) p_{k} \quad \text { and } \quad P_{1}=P_{1 / 0}=\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) .
\end{gathered}
$$

Note that

$$
\mathrm{P}\left(s_{k}\right)=\mathrm{P}\left\{\omega: \omega \text { cross } B_{1} \text { first time in the point } \delta_{k} \in b_{k}\right\} .
$$

Let $\bar{\Omega}_{0}=\left\{\omega_{t}, t=1, \ldots, N\right\}$ be a set of our N initial trajectories, $T_{k}, k \in I_{1}$ be the set of indexes t of trajectories which cross B_{1} first time in the point $\delta_{k} \in b_{k}$. Denote $N_{k}=\left|T_{k}\right|, k \in I_{1} . N_{k}$ is a random variable.

Theorem 3: If Assumption (A') holds and $p_{1, \min }>0$,

$$
N \geq 2 \frac{\ln 2-\ln \epsilon}{p_{1, \min }^{2}} \quad \text { and } \quad N R_{1} \geq \frac{(2 \ln 2-\ln \epsilon) P_{1}^{2}}{p_{1, \min } \alpha^{2}}
$$

then

$$
\mathrm{P}\{|\hat{P}-P| \geq \alpha\} \leq \epsilon
$$

Note that by Lemma $1 \forall k \in I_{1}$ we have $\mathrm{P}\left\{N_{k}<N p_{1, \text { min }} / 2\right\} \leq \frac{\epsilon}{2}$ in Theorem 1 conditions and for R_{1} when $\alpha=\epsilon$ we have

$$
R_{1} \geq \frac{P_{1}^{2}(\ln 4-\ln \epsilon)}{\epsilon^{2} \sqrt{2 N(\ln 2-\ln \epsilon)}}
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}\{|\hat{P}-P| \geq \alpha\}=\mathrm{P}\left\{\left|\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}-P\right| \geq \alpha\right\}=\mathrm{P}\left\{\left|\frac{1}{N} \sum_{i=1}^{N} \hat{P}_{i}-\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right) p_{k}\right| \geq \alpha\right\}= \\
= & \mathrm{P}\left\{\left|\sum_{k \in I_{1}} \mathrm{P}\left(s_{k}\right)\left(\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right)\right| \geq \alpha\right\} \leq \mathrm{P}\left\{P_{1} \max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \alpha\right\} .
\end{aligned}
$$

Denote

$$
k_{m}=\operatorname{argmax}\left\{\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right|\right\},
$$

(k_{m} is the random variable). We have

$$
\begin{aligned}
& \mathrm{P}\{|\hat{P}-P| \geq \alpha\} \leq \mathrm{P}\left\{N_{k_{m}}<p_{1, \min } N / 2\right\} \mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \frac{\alpha}{P_{1}} \right\rvert\, k_{m}<p_{1, \min } N / 2\right\}+ \\
& \left.\quad+\mathrm{P}\left\{N_{k_{m}} \geq p_{1, \min } N / 2\right\} \mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \frac{\alpha}{P_{1}} \right\rvert\, N_{k_{m}} \geq p_{1, \min } N / 2\right\}\right) \leq \\
& \quad \leq \mathrm{P}\left\{N_{k_{m}}<p_{1, \min } N / 2\right\}+\mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N \mathrm{P}\left(s_{k}\right)} \sum_{i \in T_{k}} \hat{P}_{i}-p_{k}\right| \geq \frac{\alpha}{P_{1}} \right\rvert\, N_{k_{m}} \geq p_{1, \min } N / 2\right\} \leq
\end{aligned}
$$

By virtue Lemma 1 and the condition on N we get

$$
\mathrm{P}\{|\hat{P}-P| \geq \alpha\} \leq \frac{\epsilon}{2}+\mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N_{k}} \sum_{i \in T_{k}} \frac{N_{k}}{N \mathrm{P}\left(s_{k}\right)} \hat{P}_{i}-p_{k}\right| \geq \frac{\alpha}{P_{1}} \right\rvert\, N_{k_{m}} \geq p_{1, \min } N / 2\right\}=
$$

$$
=\frac{\epsilon}{2}+\mathrm{P}\left\{\left.\max _{k \in I_{1}}\left|\frac{1}{N_{k} R_{1}} \sum_{i \in T_{k}} \sum_{l=1}^{R_{1}} \frac{N_{k}}{N \mathrm{P}\left(s_{k}\right)} \hat{P}_{i l}-p_{k}\right| \geq \frac{\alpha}{P_{1}} \right\rvert\, N_{k_{m}} \geq p_{1, \min } N / 2\right\} .
$$

Since $E\left(\frac{N_{k}}{N \mathrm{P}\left(s_{k}\right)} \hat{P}_{i l}\right)=p_{k}$ then by Lemma 2 and the condition on R_{1} we have

$$
\mathrm{P}\{|\hat{P}-P| \geq \epsilon\} \leq \frac{\epsilon}{2}+2 e^{-p_{1, \min } N R_{1} \alpha^{2} P_{1}^{-2}} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Theorem 4: If Assumption (A') holds and $p_{j, \text { min }}>0, j=1, \ldots, M$

$$
N \geq 2 \frac{\ln 2-\ln \epsilon}{p_{1, \min }^{2}}
$$

$$
N R_{1} R_{2} \cdots R_{j} \geq 2^{j+1} \frac{(j+1) \ln 2-\ln \epsilon}{p_{1, \text { min }} p_{2, \text { min }} \cdots p_{j, \min } p_{j+1, \min }^{2}}, 1 \leq j<M
$$

and

$$
N R_{1} R_{2} \cdots R_{M} \geq 2^{M+1} \frac{((M+1) \ln 2-\ln \epsilon) P_{M / M-1}^{2} P_{M-1 / M-2}^{2} \cdots P_{1 / 0}^{2}}{p_{1, \min } p_{2, \min } \cdots p_{M, \min } \alpha^{2}}
$$

then

$$
\mathrm{P}\{|\hat{P}-P| \geq \alpha\} \leq \epsilon .
$$

8 CONCLUDING REMARKS
 9 APPENDIX

REFERENCES

[1] A. Lagnoux, "Rare event simulation," 2003.

