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Abstract— This paper deals with a “differentiated consen-
suses” problem in a distributed stochastic network system
with priorities and cost constraints on system topology. The
network is considered as a set of heterogeneous agents that
process incoming tasks with different importance (priority)
levels. The observations about neighbors’ states are supposed
to be obtained with random noise and delays and the topology
could switch over time. Several consensus objectives are to
be achieved. To maintain almost balanced load under cost
constraints on network topology, i.e. approximate consensus for
every priority class across the network, a new family of control
protocols that use different step-size parameters for each task
class is introduced. An instrument for choosing optimal step-
sizes for the proposed control strategy is given. In addition, a
numerical example that illustrates the proposed control strategy
and the results of simulations are provided.

I. INTRODUCTION

Recently, the consensus approach was widely used to solve
numerous practical problems such as cooperative control of
multivehicle networks [1–3], distributed control of robotic
networks [4], flocking problem [5, 6], optimal control of
sensor networks [7, 8] and others. A lot of attention was
paid to obtain the corresponding consensus conditions for
such systems (see e.g. [9–16]).

One of important practical problems is a load balancing
problem. This is the problem of tasks redistribution be-
tween agents. It arises in various types of network systems,
such as computer, production, transport, logistics, and other
service networks. This could be networks consisting of
heterogeneous agents that work together to achieve some
practical goal, e.g. to process all incoming tasks as fast
as possible. However, there could be other goals as well.
In our previous work [17] it was shown that the problem
of almost optimal task distribution among agents could be
reformulated as a problem of the consensus achievement
in the network. A centralized algorithm was considered in
[18]. The multi-agent approach was developed in [17]. Some
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control strategies for the load balancing that redistribute tasks
in accordance with a current loads of agents and their pro-
ductivities were also introduced. It is also important to look
at the specifics of tasks since in real practical applications
some of the incoming tasks could be more important then
others (there could be different priorities of tasks). This
condition should also be taken into account when we build a
control strategy in [19, 20]. For such networks with tasks of
different importance (priority) levels there could be several
consensus objectives. We call this problem a differentiated
consensuses problem, which defines a consensus problem
for systems with multiple classes, where a consensus is
targeted for each class and may be different among classes.
Ultimately, the control goal of the network is to achieve
a consensus within each class separately. In [19] for a
distributed stochastic network with priorities we introduced
a control strategy that allocates the resources of the network
in a randomized way with corresponding probabilities for
each priority class. Also corresponding conditions for the
achievement of differentiated consensuses throughout the
whole network were obtained. In [21] we considered a choice
of an optimal step-size for task redistribution among agents
in a stochastic network with randomized priorities. It was
shown that while choosing the step-size one has to make a
trade-off between noise sensitivity of control protocol and
the rate of convergence it provides. We proposed a way to
choose step-size that maximizes precision of convergence.

In this paper we extend the results of our previous
work [21] and introduce a control strategy that uses different
step-size parameters for each task class under different cost
constraints on network topology for each task class. We also
provide a way to choose optimal step-sizes for the proposed
family of control protocols.

The paper is organized as follows. In Section II the
notation and the problem formulation are given. The new
family of control protocols for achieving the differentiated
consensus is introduced in Section III. In Section IV the
main assumptions and main results are presented. Simula-
tion results are included in Section V. Section VI contains
conclusion remarks.

II. PROBLEM STATEMENT

Consider a dynamic network system of n agents, which
collaborate among themselves, and a set of tasks of different
classes, which have to be executed by the system. Tasks are
fed to different agents of the system in different discrete
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time instants t = 0,1, . . .. Agents process incoming tasks in
parallel. Tasks can be redistributed among agents based on a
feedback. Note that a task cannot be interrupted if it is being
processed by an agent, i.e. the system is non-preemptive.

Without loss of generality, agents in the system are num-
bered. Assume, that N = {1, . . . ,n} denotes the set of agents
in the network system. Let i ∈ N be the number of an agent.
The network topology may switch over time. Let the dynamic
network topology be modeled by a sequence of digraphs
{(N,Et)}t≥0, where Et ⊂ E denotes the set of edges at time t
of topology graph (N,Et). The corresponding adjacency
matrices are denoted as At = [ai, j

t ], where ai, j
t > 0 if agent j

is connected with agent i and ai, j
t = 0 otherwise. Here and

below, an upper index of agent i is used as the corresponding
number of an agent (while not as an exponent). Denote GAt

as the corresponding graph.
To introduce some properties of the network topology, the

following definitions from the graph theory will be used.
Define the weighted in-degree of node i as the sum of i-th row
of matrix A: indegi(A) = ∑

n
j=1 ai, j; D(A) = diag{indegi(A)}

is the corresponding diagonal matrix; indegmax(A) is the
maximum in-degree of graph GA. Let L (A) = D(A)− A
denote the Laplacian of graph GA; ·T is a vector or matrix
transpose operation; ||A|| is the Euclidian norm: ||A|| =√

∑i ∑ j(ai, j)2; Re(λ2(A)) is the real part of the second
eigenvalue of matrix A ordered by the absolute magnitude;
λmax(A) is the maximum eigenvalue of matrix A.

It is said that digraph GB is a subgraph of a digraph GA if
bi, j ≤ ai, j for all i, j ∈ N.

Digraph GA is said to contain a spanning tree if there exists
a directed tree Gtr = (N,Etr) as a subgraph of GA which
includes all vertices of GA.

Let (Ω,F ,P) be the underlying probability space corre-
sponding to the sample space, the collection of all events,
and the probability measure respectively, and E be a mathe-
matical expectation symbol.

We suppose that tasks (jobs) belong to different classes
k = 1, . . . ,m and every agent has m queues — one for each
task class.

The behavior of agent i∈N is described by characteristics
of two types:
• lengths of m queues of tasks of each class k at time

instant t: qi,k
t , k = 1, . . . ,m,

• productivity: pi.
Each agent should distribute its own productivity among

all task classes in such a way that, on the one hand the
priorities for task classes are provided and on the other hand
the “starvation problem” is taken into account i.e. tasks of the
lower priority classes do not wait for execution for too long.
This is achieved by making use of the probabilistic priority
discipline [22]. Each task class is given a productivity
fraction Pk, k = 1, . . . ,m which is the same for a certain
class k on every agent in the system. On each agent the tasks
from its queues are chosen for execution randomly according

to the following formula: p̃i,k
t =

{ Pk
∑

qi,l
t >0

Pl
, if qi,k

t > 0;

0, otherwise,

where p̃i,k
t is the probability of choosing a task of class k

for execution on agent i at a time instant t. Therefore the
bigger fraction Pk corresponds to the higher chance of that
a task of class k to be executed. Thus agent’s productivity is
distributed among all classes of tasks in the following way:
pi,k

t = p̃i,k
t pi. Here pi,k

t is a number of operations allocated
for tasks of class k on agent i at a time instant t if the
productivity pi means the whole number of operations which
agent i is able to proceed during the time from t till t + 1.
Note that according to the definition of p̃i,k

t if at certain time
instant t ′ the queue of tasks of class k′ on the agent i′ is
empty, no operations would be allocated for tasks of class
k′. Instead pi′,k′

t ′ operations would be distributed among other
task classes in proportions of their productivity fractions
Pk, k 6= k′.

For all i ∈ N, t = 0,1, . . ., the dynamics of the network
system in a vector form is as follows

qi
t+1 = qi

t −pi
t + zi

t +ui
t , (1)

where qi
t = [qi,k

t ] is a vector whose k-th element is defined
by the amount of tasks of k-th class; pi

t = [pi,k
t ], and zi

t =

[zi,k
t ] is an m-vector whose k-th element zi,k

t is the amount
of new tasks of class k, which came to the system and were
received by agent i at time instant t; ui

t ∈ Rm is a vector of
control actions (redistributed tasks of class k to agent i at time
instant t), which could (and should) be chosen based on some
information about queue lengths of neighbors q j

t , j ∈ Ni
t ,

where Ni
t is the set { j ∈ N : ai, j

t > 0}.
Denote p̄i,k

t = Epi,k
t and

xi,k
t =

{
qi,k

t /p̄i,k
t , if p̄i,k

t > 0;
0, otherwise

(2)

the load of agent i ∈ N for priority class k = 1, . . . ,m.
Assume, that pi 6= 0, ∀i ∈ N and Pk 6= 0, k = 1, . . . ,m.
In [17] it was proven that from all possible options for
the redistribution of all tasks the minimum operation time
of the system is achieved when loads xi,k

t are equalized
throughout the network. Hence, it is important to consider
the achievement of the following goal.

Now we define the cost of a chosen topology {Ni
t , i ∈ N}

C({Ni
t , i ∈ N}) = max

i∈N
∑
j∈Ni

t

ai, j
t . (3)

Tasks have different priorities and, for each priority, the
maximum cost of the network graphs that could be used is
defined.

For each time instant t, consider m ways (which may
be different and each corresponds to one class) to select
the topology subgraphs G k

t : G m
t ⊆ G m−1

t ⊆ . . .⊆ G 1
t of the

graph GAt , which allows to use redistribution protocols for
tasks with priority k. Let Bk

t be the corresponding adjacency
matrices. Note that one of the possible ways of choosing G k

t
is to use GAt for all k.

Definition 1: We will say that network topology decom-
position {G k

t } satisfies average cost constraint {ck} if for
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every priority class k

dmax(Bk
av) = Edmax(Bk

t ) = Emax
i∈N

∑
j∈Ni,k

t

bi, j,k
t ≤ ck, (4)

where Ni,k
t is the neighbors set of agent i at time t formed

in accordance with the topology G k
t . (Consider the example

in section V.)
We will consider control protocols that satisfy some spe-

cific constraint on the cost of the topology for each task
priority class.

It is required to maintain balanced (equal) loads across
the network for every priority class and, at the same time,
to meet the cost constraint requirement.

At this setting we can consider the consensus problem
for states xi

t = [xi,k
t ] of agents, where xi

t is a state vector of
agent i ∈ N, consisting of loads xi,k

t for m classes. We use
the following definitions.

Definition 2: n agents of a network are said to reach a
consensus at time t if xi

t = x j
t ∀i, j ∈ N, i 6= j.

Definition 3: n agents are said to achieve asymptotic
mean square ε-consensus for ε > 0 when

limt→∞E‖xi
t −x j

t ‖2 ≤ ε.
To ensure balanced loads across the network (e.g., in order

to increase the overall throughput of the system and to reduce
the execution time), it is naturally to use a redistribution
protocol over time. We assume that to form the control
(redistribution) strategy each agent i ∈ N has noisy and
possibly delayed observations about its neighbors’ states

yi, j
t = x j

t−di, j
t
+wi, j

t , j ∈ Ni
t , (5)

where wi, j
t is a noise vector, 0≤ di, j

t ≤ d̄ are integer-valued
delays, and d̄ is a maximum of possible delays.

III. CONTROL PROTOCOL

In [17], properties of a control algorithm, called local
voting protocol, were studied for stochastic networks in
the context of load balancing problem. For each agent the
control (amount of redistributed tasks) was determined by the
weighted sum of differences between the information about
the state of the agent and the information about its neighbors’
states. Let’s consider a similar family of protocols as follows.
For each k = 1, . . . ,m we define

ui,k
t = γk p̄i,k

t ∑
j∈N̄i

t

bi, j
t (yi, j,k

t − xi,k
t ), (6)

where γk > 0, k = 1, . . . ,m are step-sizes of the control
protocol and N̄i

t ⊂ Ni
t is the neighbor set of agent i (note,

that we could use not all the available connections, but some
subset of them), bi, j

t are protocol coefficients, satisfying( 4).
In [19] it was shown that differentiated consensuses could be
achieved throughout the whole network via control protocol
similar to the one mentioned above but with the same step-
size for balancing queues lengths of tasks of each class.
However, since tasks of different classes may be fed to the
system with different intensities it is reasonable to treat them

differently and choose step-sizes separately for each task
class.

Let Bt = [bi, j
t ] be the matrices of task redistribution proto-

cols for every time instant t. (We set bi, j
t = 0 when ai, j

t = 0
or j /∈ N̄i

t .) The corresponding graph GBt may have the same
topology as graph GAt of matrix At or more poor.

Let’s assume d̄ = 0 and p̄i,k
t+1 = p̄i,k

t . Then the dynamics of
the closed loop system with protocol (6) will be as follows:

xi,k
t+1 = xi,k

t − r̃i,k
t + z̃i,k

t + γk ∑
j∈N̄i

t

bi, j
t (yi, j,k

t − xi,k
t ) =

xi,k
t − r̃i,k

t + z̃i,k
t + γk

∑
j∈N̄i

t

bi, j
t x j,k

t

− γkdi(Bt)x
i,k
t + γkw̃i,k

t ,

(7)
where i ∈ N, k = 1, . . .m and w̃i, j,k

t = bi, j
t wi, j,k

t ,

r̃i,k
t =

{
pi,k

t / p̄i,k
t , if p̄i,k

t > 0;
0, otherwise,

z̃i,k
t

{
zi,k

t / p̄i,k
t , if p̄i,k

t > 0;
0, otherwise.

Let us rewrite Eq. (7) in a more compact form. Define
the Rn-valued vectors Xk

t = [xi,k], Rk
t = [r̃i,k

t ], Zk
t = [z̃i,k

t ]

and Wk
t = ∑ j∈N̄i

t
bi, j

t wi, j,k
t . The dynamics of the closed loop

system with protocol (6) may be represented as

Xk
t+1 = Xk

t + γk(Bt −D(Bt))Xk
t −Rk

t +Zk
t + γ1Wk

t . (8)

If d̄ > 0 we “artificially” add nd̄ new agents to the current
network topology. At each time instant t the new “fictitious”
agents have states which are equal to the corresponding
states of “real” agents at previous time instants t − 1, t −
2, . . . , t− d̄. The same is done for every class k = 1 . . .m. Let
xi,k

t ≡ 0, i∈N for −d̄ ≤ t < 0. Denote X̄k
t ∈Rn̄, n̄ = n(d̄+1),

as an extended state vector for t = 0,1, . . . which consist
of d̄ + 1 (n)-vectors Xk

t ,Xk
t−1, . . . ,X

k
t−d̄ , i.e. it includes all

the components with all kinds of delays not exceeding d̄.
Introduce the extended n̄× n̄ matrices B̄k

t of control proto-
col (6) which consist of zeros at all places except |N̄i

t | entries

b̄i, j+nsi, j
t ,k

t in each i∈N, j∈ N̄i
t of n first lines, which are equal

to bi, j
t and b̄i,i−n,k

t = 1/γk in next nd̄ lines, i = n+1, . . . , n̄.
Due to the view of Laplacian matrices L (B̄k

t ) we can
rewrite the dynamics of the system in the following vector-
matrix form:

X̄k
t+1 = X̄k

t − γkL (B̄k
t )X̄

k
t +

(
−Rk

t +Zk
t + γkWk

t
0

)
. (9)

IV. MAIN RESULTS

A. Assumptions

Assume that the following conditions are satisfied:
• A1. a) For all i ∈ N, j ∈ Ni

t , observation noise vec-
tors wi, j

t are zero-mean, independent identically dis-
tributed (i.i.d.) random vectors with bounded variances:
E(wi, j

t )2 ≤ σ2
w.

b) Graphs GBt , t = 1, . . . are i.i.d. (independent identi-
cally distributed), i.e. the random events of appearance
of of “time-varying” edge ( j, i) in graph GBt are in-
dependent and identically distributed for the fixed pair
( j, i), i ∈ N, j ∈ Ni

max = ∪t N̄i
t . For all i ∈ N, j ∈ Ni

t
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weights bi, j
t in the control protocol are independent

random variables with mean values (mathematical ex-
pectations): Ebi, j

t = bi, j
av , and bounded variances: E(bi, j

t −
bi, j

av)
2 ≤ σ2

b . Let Bk
av be the corresponding adjacency

matrix.
c) For all i ∈ N, j ∈ Ni there exists a finite value d̄ ∈N:
di, j

t ≤ d̄ with probability 1, and integer-valued delays
di, j

t are i.i.d. random variables taking values l = 0, . . . , d̄
with probability Di, j

l .
d) For all k = 1, . . . ,m, i∈N, t = 0,1, . . . random values
zi,k

t are independent with expectations: Ezi,k
t = z̄k which

do not depend on i, and variances: E(zi,k
t − z̄k)2 ≤ σ2

z,k.
e) For all i ∈ N, t = 0,1, . . . random vectors pi

t are
i.i.d. and consist of independent components. Random
values r̃i,k

t , k = 1, . . . ,m, have expectations: Er̃i,k
t = r̄k

and bounded variances: E(r̃i,k
t − r̄k)2 ≤ σ2

r,k which do
not depend on i.
Additionally, all mentioned in Assumption A1 inde-
pendent random variables and vectors are mutually
independent.

• A2. Graph GBk
av

has a spanning tree (for the consensuses
to be achievable throughout the system [10]).

• A3. For step-sizes γk, k = 1 . . .m of control protocols (6)
the following conditions are satisfied:

0 < γk <
1

indegmax(Bk
av)

, 0 < δk(γk)< 1, (10)

where δk(γk) = R − γkRe(λmax(Q)), R =
1−Dmax +Dmax|Re(λ2(L (Bk

av)))|, Dmax = maxi, j,l Di, j
l ,

Q = E(L (EB̄k
t )−L (B̄k

t ))
T(L (EB̄k

t )−L (B̄k
t )).

Note that |Re(λ2(L (Bk
av)))| > 0 when Assumption A2

holds (see [16]).

B. Averaged Models

Let x?,k0 , k = 1, . . . ,m be the weighted average of the initial
states

x?,k0 =
∑i gix

i,k
0

∑i gi

where gT is the left eigenvector of matrix Bk
av [16] (x?,k0 =

1
n ∑

n
i=1 xi,k

0 in the case of balanced topology graph GBk
av

) and
{x?,kt } is the trajectory of averaged systems

x?,kt+1 = x?,kt + z̄k− r̄k, k = 1, . . . ,m. (11)

where z̄k and r̄ are expectations which are defined by
Assumptions A1.d,e.

C. Differentiated Consensuses

Theorem 1: If Assumption A2 holds then for any av-
erage costs constraint {ck}, ck > 0, there exists network
topology decomposition {G k

t } that satisfies the averaged
costs constrains {ck} and for which all averaged graphs G k

av
have spanning trees.

Proof: The proof is given in [20].
Consider vectors X̄?,k

t ∈ Rn̄, t =
0,1, . . . , k = 1, . . . ,m which consist of
x?,kt , . . . ,x?,kt ,x?,kt−1, . . . ,x

?,k
t−1, . . . ,x

?,k
t−d̄ , . . . ,x

?,k
t−d̄ .

Theorem 2: If Assumptions A1–A3 hold then for aver-
aged squared difference νk

t = E||X̄k
t − X̄?,k

t ||2 of trajectories
of closed-loop systems (7) and (11) following inequalities
are satisfied:

ν
k
t ≤

γ2
k Hk +Sk

γkδk(γk)
+(1− γkδk(γk))

t
(

ν
k
0 −

γ2
k Hk +Sk

γkδk(γk)

)
, (12)

where k = 1, . . . ,m, Hk = 2σ2
w(n

2σ2
b + ||Bk

av||2), Sk = n(σ2
z,k+

σ2
r,k), i.e. if additionally νk

0 < ∞, then the asymptotic mean

square εk-consensus in (7) is achieved with εk =
γ2

k Hk+Sk
γkδk(γk)

.

Proof: The proof is similar to the proof in [21] or we
can use results from [19] with minor revisions.

Remarks 1: At this point, we highlight that, the result of
Theorem 2 shows that queues with different priorities achieve
m different consensus levels separately. This behavior is
termed as differentiated consensuses.

2: If Assumptions A1.b and A1.c hold, the averaged
matrices B̄k

av consist of elements

b̄i, j,k
av =


Di, j mod n

j÷n bi, j mod n, if i ∈ N, j mod n 6= 0
Di,n

j÷nbi,n, if i ∈ N, j mod n = 0
1/γk, if i = n+1, . . . , n̄, j = i−n,
0, otherwise.

(13)

Here, operation mod is a remainder of division, and ÷ is a
division without remainder. Note, that if d̄ = 0, then B̄k

av =
Bav.

3: Agent productivities’ for different task classes are de-
fined according to productivity fractions which are the same
for each agent in the system. Concerning this, in the case of
continuous task flow when agents’ queues for all priorities
are nonempty, productivity vectors pi

t are independent of
each other, i.e. assumption A1.e holds.

4: In control protocols (6) we can choose γk depending on
our intentions. We may either want to reduce noise sensitivity
asymptotically in (12), in which case we should take smaller
γk, or it may be more important for us to exchange the
incoming tasks faster so we should take larger γk. In that
case agents would exchange their tasks faster but the noise
will have larger impact on the system. So, here we have a
trade-off between the noise sensitivity and tasks exchanging
in our system. The next theorem gives an asymptotically
optimal solution.

Theorem 3: If Assumptions A1–A3 hold then optimal
step-sizes γ?k , k = 1, . . . ,m, of each control protocol from (6)
can be calculated by formulas:

γ
?
k =− Sk

Hk ∆
k +

√
S2

k
Hk2 ∆k2 +

Sk

Hk (14)

where ∆k = Re(λmax(Q))
R .

Proof: Let’s find the minimum of possible upper
bounds for εk. For derivative of γ2

k Hk+Sk
γkδk(γk)

by γk we have(
γ2

k Hk +Sk

γkδk(γk)

)′
=

(
γkHk + 1

γk
Sk

R− γkRe(λmax(Q))

)′
=
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Hk− 1
γ2

k
Sk

R− γkRe(λmax(Q))
+

(γkHk + 1
γk

Sk)Re(λmax(Q))

(R− γkRe(λmax(Q)))2 .

Let’s now set the obtained expression to zero and solve
the quadratic equation:

γ
2
k Hk +2γkSk∆

k−Sk = 0.

As a result we get optimal values for γ?k which are coincide
with (14).

Remarks 5: The optimality of step-sizes of control proto-
col (6) is understood in a sense that it provides the speed
of convergence and noise tolerance of the protocol needed
for achieving the maximal possible convergence (or minimal
deviation from the consensus value) in the system under the
given conditions.

V. SIMULATION RESULTS

Fig. 1. The multi-agent system topology.

Let’s consider an example of a network of five agents,
having a topology shown on Fig. 1. Agents form two groups
{1,2} and {3,4,5}. Assume that links between agents in
groups are stable and do not switch and link between groups
may disappear with probability 1

5 . Let’s also assume that cost
of using links in groups is rather low and equals 1 while cost
of link between groups is comparatively high and equals 5.
Maximum delay for the information exchange d̄ equals 1 and
the probability of delay is 1

3 and is the same for all edges.
Noise in communication channels is normally distributed
zero-mean random variable with parameter σw = 3. Agents’
productivities are 8, 2, 1, 4 and 10 computational instructions
per time unit. Number of incoming tasks is Poisson random
variable with parameter λ = 1. Assume tasks of two different
classes arrive at the agents. Let the productivity fractions
be given as 2 : 1, i.e. with all nonempty queues the agent’s
productivity will be divided among classes as 2

3 p and 1
3 p

correspondingly.
In this case matrix A of network system topology will have

the following form:

A =


0 1 0 0 0
1 0 0 5 0
0 0 0 0 1
0 5 1 0 0
0 0 0 1 0

 .

Note, that given topology graph is balanced. Let’s as-
sume that the following topology cost constraints are given:
{ck}k=1,2 = {6,1.5}. While cost constraint for priority 1 is

met if matrix of control protocol B1
av is taken equal to A,

we have to reduce usage of costly 2−4 and 4−2 links for
priority 2 to meet cost constraint. This is done by using these
links randomly with probability 1

10 . Taking delays in account,
extended matrix of control protocol for priority 2 will have
the following form:

B̄2
av =


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Fig. 2. Dependence between γ?,k and the time to consensus achievement
for task of priority class k = 1,2.

Let’s compute optimal step-size γ?1 for balancing agents’
loads for task of class 1. Among all agents maximal σr,k
is presented at the agent with largest productivity. In our
example σ2

r,1 = 0.9497 for agent with productivity 10. So
Sk defined in (12) equals 9.7484 and Hk = 2 · 32(520.16+
1.42) = 107.28 for Hk defined in (12) since σ2

b = 0.16.
∆k = 1.7761

1.2764 = 1.3915 since Dmax =
2
3 , ‖Re(λ2(L (Bk

av)))‖=
1.4146, R= 1.2764 and Re(λmax(Q))= 1.7761. for Q defined
in (10). According to formula (14) we have

γ
?
1 =−9.7484

107.28
1.3915+

√
9.74842

107.282 1.39152 +
9.7484
107.28

≈
0.2004

and according to Theorem 1 corresponding minimum value
ε?1 equals to 76.2045.

Let’s make sure that γ?1 satisfies inequality (10). Since
dmax(Bk

av) =
7
5 , δ1(γ

?
1 ) = 1.2764−0.2004 ·1.7761≈ 0.9205<

7
5 therefore γ1 should be less than 5

7 that is true in our case.
Making analogous calculations we get optimal step-sizes

for other task classes γ?2 = 0.2045.
Simulation results in Fig. 2 show that optimal step-size γ?1

also provides close to optimal rate of convergence of agent’s
states in the system. Horizontal axis corresponds to γ1 and
vertical axis gives Tε time to ε-consensus (ε = 76 was taken
in experiments).

Fig. 3 shows the behavior of agents’ loads during task
distribution via the described protocol with optimal step-
size parameters. It could be seen from Fig. 3 that agent’s
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loads achieve consensus for every task class. Higher lines
correspond to loads for priority 2. Due to comparatively rare
use of link between groups agents achieve consensus first
inside their clusters. During transmission between clusters
information exchange is rather extensive and loads of agents
that have links to another cluster converge with high rate.
After that new consensus value is reached inside clusters.
The process continues until consensus in the whole system
is reached. Behavior of agents’ loads for priority 1 is the
opposite. In absence of restrictions on link usage and due to
higher rate of information exchange on “expensive” links
the first to converge are states of agents connected with
these links. After that agents’ states in clusters converge to
consensus value reached by agents linked to another cluster.
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Fig. 3. Evaluation of agents’ loads in the example for 3 classes of tasks.

VI. CONCLUSION

In this paper we examined a differentiated consensuses
problem for a distributed stochastic network with cost con-
straints on system topology for different priorities of incom-
ing tasks. The network model was assumed to have switched
topology, noise and delays in measurements. We introduced
the new control strategy (a modification of a local voting
protocol) that uses different step-size parameters for each
task class according to corresponding cost constraints and
proposed an instrument to choose optimal step-size parame-
ters. As in our previous work [19] for this model we obtained
the conditions of achieving differentiated consensuses (m
different consensus levels separately).

To illustrate the new theoretical results we presented
simulation results that show the performance of the control
protocol. It was shown that the larger step-size allows to
achieve consensus among agents’ loads faster. However,
due to the larger noise sensitivity the deviation from the
consensus value is relatively high compared to that for the
smaller step-size. On the contrary, if the step-size is too low,
though being tolerant to noise, the system achieves consensus
rather slowly. It was shown how to choose the optimal step-
size in the trade-off between the speed of convergence and
noise tolerance in the system under given conditions.
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