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Two Procedures with Randomized Controls for the Parameters’
Confidence Region of Linear Plant under External Arbitrary Noise

Konstantin Amelin, Natalia Amelina, Oleg Granichin, and Olga Granichina

Abstract—In this paper we join the previous results about
asymptotic properties of a randomized control strategy with
new one based on a non-asymptotic approach of LSCR (Leave-
out Sign-dominant Correlation Regions) methods. Our consid-
eration is focused on problems of the identification or adaptive
optimal control for the linear plant with unknown parameters
and dynamics disturbed by an external noise. The assumptions
about the noise are reduced to a minimum: it can virtually be
arbitrary, but, independently of it, the user must be able to add
test perturbations through the input channel. The theoretical
results are illustrated by simulations.

I. INTRODUCTION

The severity of the identification problem is commonly
caused by the insufficient variability of an input signal. In
control systems test control signals can be fed to the input
of a control plant, which alleviates the problem of the plant
unknown parameters reconstruction. For example, under the
assumption that noise lacks a harmonic signal arriving at the
input of a linear stable stationary plant is transformed into
a harmonic output signal once the transient is completed.
The amplitude of this signal is proportional to the value of
the plant’s transfer function at a frequency of the harmonic
signal. On this basis when varying a frequency one can
construct the plant transfer function, that is, in essence, the
signal can be identified. In a similar manner, the plant’s unit
impulse response can be reconstructed for input impulses
(step functions).

With test signals as control signals the identification of
a plant is possible for additive noise acting on it, too.
Noise does not necessarily possess any useful stochastic
properties and does not need to be stochastic at all. The
reconstruction of unknown values of parameters is provided
with properties of a test signal, which is mixed with a
control signal. The introduction of a test signal in a control
channel can deteriorate the control performance. However,
in an appropriate decision about the intensity of a test signal
the output process will be indistinguishable from an optimal
process through time (if the intensity of a test signal is
diminished rapidly with time it is not necessary that the
identification process is complete).

The investigation of identification techniques with test
signals was first used in [1] and subsequently extended in [2]
to closed control systems. In these works an assumption was
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made of a plant a priori stability, a disturbance was assumed
to be a white noise process, and in addition, a relatively
limiting constraint was placed on the noisy control.

In [3], [5] for the non a priori stable case there were
suggested the algorithm when special randomized test signals
in the input channel allow to identify asymptotically the
control plant unknown parameters under almost arbitrary
additive noise in a plant model. The procedure is valid for
any noise v; and does not require a priori knowledge of its
characteristics; noise may be not random or may be white
or correlated, with zero-mean or bias; a signal-noise ratio
may be high or low. Recently similar randomized control
strategies were put forward in [6], [7]. The recovery of
unknown parameter values is provided by the properties of
randomized test signals which are added together with an
intrinsic adaptive control signal from a closed loop. This
approach follows from Feldbaum’s concept of dual control
[8]: control must be not only directing, but also learning.

In [5], [9], for the case of an arbitrary noise (e. g., unknown
but bounded noise), the randomization was used to develop
an identification algorithm which allowed for obtaining the
asymptotically confidence region of an indefinitely small
size. These results were extended to the case of time-
varying parameters in [10], [11]. The information about the
maximum possible amplitude of the noise has only been
used in the formulas for estimating the rate of convergence,
i. e., this knowledge is not required for operability of an
identification algorithm.

The identification method discussed below is based on
the reparametrization of the mathematical model of a plant
(instead of plant coefficients as its initial parameters, some
alternative parameters are convenient to use which are in an
one-to-one correspondence to the initial parameters). This
enables the plant to be written in the form which is not too
different from a “linear observation scheme”. Then justified
recurrent algorithms such as stochastic approximation algo-
rithms can be applied for estimating unknown values of the
parameters.

The main purpose of this paper is to join the former
asymptotic results and new procedure from [12], [13] which
gives rigorously guaranteed nonasymptotic confidence re-
gions for unknown parameters of a linear dynamical control
plant which is disturbed by an arbitrary noise. The new
procedure consists of simple input design steps followed
by an algorithm named LSCR (Leave-out Sign-dominant
Correlation Regions), which is mostly promoted by M.
Campi and E. Weyer [6]. In [6] authors consider the finite
time problem setting and they prove the result about the
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proposed algorithm efficiency when an amount of data points
increase infinitely. It is possible to achieve an arbitrary small
level of an accuracy but the algorithm’s complexity increase
significantly. The former algorithm from [3] has a much more
simple recurrent form and it uses the same control strategy
as in [12], [13] which is different from the control strategy
of [6]. It has randomized items in the input channel only
one time per some interval when the control strategy of [6]
has randomized part of inputs on each iteration. Both this
facts allow to prove in [13] more weak assumptions about
external noise and to modify the original procedures for the
infinite time case.

The paper is organized as follows: At the beginning
we give a preliminary example for illustrative purposes.
Then, in Section III, we formulate a formal problem setting.
Section IV provides the rules to form control inputs (control
synthesis). Section V introduces the main assumptions and
describes a special method of transfer function reparameter-
ization. Stochastic approximation algorithm is considered in
Section VI. Next Section VII summarizes the result of [13]
about properties of confidence regions in the case of finite
number of observations. At the end, we make conclusions.

II. PRELIMINARY EXAMPLE

Is it possible to get smart estimates under arbitrary external
noise?

For example, let’s consider the simple problem of estimat-
ing of an unknown parameter 6* from the observations:

Vi = O 1 + vy, (D

where we can
« to chose the inputs (control actions) u;, t = 1,2,...,N,
« to measure the outputs y; (see Fig. 1).

Ut

0, Yt

Ut—n

Fig. 1. The model of observations.

The problem is to find or estimate the unknown parameter
0, € R by the sequence of inputs and outputs {u;,y,} without
any restrictions for the sequence {v;} of external noises.

Does not it seem absurd such a statement of the problem?

From the deterministic point of view, yes, of course! There
can be no deterministic algorithm which gives at least some
common sense answer (other than a meaningless solution —
the entire real axis). For the fixed number of observations
and for any proposed answer as a number or a finite interval
one can always choose such v; that the following observation
will be wrong for the proposed answer.

The algorithm of sequential estimation of an unknown
parameter 6, of (1) consists of two steps:

1) Input (control actions) u, selection.

2) Estimation of the parameter 6, based on the data
obtained uy,y; (for example, calculation of an estimate
6; or set ©; containing 0,).

If in addition to the problem setting we would be to
assume a random (probabilistic) nature of the noise v; then
under the conditions of the strong law of large numbers we
could be talking about estimating an unknown parameter 6,
by simply averaging the data of observation. The simulation
results with the real parameter 6, =3 and the observations
which were made with an uniformly distributed on the
interval [-0.5,0.5] noise v, are given in Table 1, row 5
indicate the proximity estimates 87 = %ZZ:] ;i =2.99 to the
real parameter 6, = 3.

Table 1
t 1 4

u |1 1 1 1 1 1 1
v =rand() — 0.5
e | 29| 28 32 33 2.6 34 2.7
6 | 29| 285 | 297 | 3.05 | 296 | 3.03 | 2.99
vi=rand()—0.5+m, m=1
vy | 39| 3.8 4.2 43 3.6 3.9 4.2
6 | 39 | 3.85 | 397 | 405 | 396 | 403 | 3.99

If the observations were carried out also with the random
noise but with the unknown expectation m = E{v,} (for
example, m = 1, Table 1, row 6) then the simulati/(\)n results
(Table 1, row 8) shows that the algorithm failed: 6; = 3.99,
and this value is substantially exceeds the 8, = 3.

Despite the seeming absurdity of the statement of the
problem of an estimation under arbitrary external noise it
is often still have to solve from the practical needs.

Consider the following rule of a random input selection
for the first step

1, with ility 1
"y = {+ , with probability 3, @)

—1, with probability 1.

At the second step from the known values (u,y,) we form
a value

Ve =u-yr.

For the “new” sequence of observations we have a similar
to (1) model
Ve = Ok ity + Vi,

where ii; = u,2 and V; = u; - v;.

Let’s suppose, as before in the simulation, that v, is
a random noise but with an unknown expectation. If v,
is an external noise it is natural to assume that they are
independent of our randomized inputs (controls) at step 1.
Hence we have

E{v} =E{u-v;} =E{u;}-E{v;} =0-m=0,

i. e. in the “new model” the “hard” observation problem
of estimating an unknown parameter 6* of (1) is converted
by using a random selection rule for inputs (controls) in
step 1 to the “standard” problem of estimating an unknown
parameter 6, observed on the background of independent
centered noise.
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In Table 2 we summarize the corresponding results of
simulation.

Table 2
t 1 2 3 4 5 6 7
ur | -1 1 -1 1 1 1 -1

ve=rand() —0.5+m, m=1
ye | 2.1 | 3.8 -1.8 | 43 3.6 4.4 -2.3

i |1 1 1 1 1 1 1
v | 2.1 3.8 1.8 4.3 3.6 4.4 2.3
6; | 2.1 | 295|257 | 3.00 | 3.12 | 333 | 3.19

The comparison of the result Table 2, row 7 with previous
one from Table 1, row 8 shows that new estimates are
substantially better but the quality of evaluations turned out
lower than in the more relevant results from Table 2, row 5
because the “new errors” 7; have a bigger variance compared
to v;.

The probability of a wrong decision making can be esti-
mated asymptotically using the assessment of the correspon-
dence mean rate of the convergence in [9] and Chebyshev’s

inequality. For every ¢ and for any € > 0 we have

2
Prob{|6,— 0*| > €} < %% +0(:>.
For the finite number of observations (N = 7) a new
rigorous mathematical result of a guaranteed set of possible
values of the unknown parameter 6, can be obtained for an
arbitrary external noise v, following by the method described
by M. Campi in [14]:
1) Let be M =8 and select randomly seven (=M — 1)
different groups of four indexes T1,...,77.
2) Compute the partial sums §; =Y ;c7. ¥, i=1,...,7.
3) Build the confidence interval
© = [min§;; max),
i€l:7 i€l
which contains 6* with the probability p = 75% (=
1-2-1/M).
By the method described for the data {(u,y;)} in Table 2
we obtain:

Table 3

i T; S

T [ {2 3.4,5} | 3375
2 [ {1.3.4,6} | 3.15
3 {2.3.5,6} | 34

4 {1,267} | 315
5 {1.4,5 7} | 3075
6| {2.3.5. 7} | 2875
7 | {1, 4,6, 7} | 3275

Hence

« the unknown parameter 6, belongs to the interval 0=
[2.875;3.4] with probability p = 75%.

For the problem of an unknown parameter estimation
under arbitrary external noise which seems absurd and can
not be handle by any deterministic algorithm in principle the
randomization in the process of the input data selection can
get quite reasonable results.

it Remark. An alternative probabilistic approach is a
Bayesian estimation when the noise v; probability is at-
tributed a priori to a nature Q. But Bayesian and randomized

approaches are quite different from the practical point of
view. In a Bayesian approach the probability Q describes a
probability of a value of v, in a comparison with other, i. e.
the choice of Q is a part of the problem model. In contrast,
the probability P in a randomized approach is selected
artificially. P exists only in our algorithm, and therefore,
there is no a traditional problem of “a bad model” as can
happen with the Q in a Bayesian approach.

III. PROBLEM STATEMENT

Consider a dynamical system
=Gz s+ 3)
with input u#, and output y, shown in Fig. 2.
(2

e ] G*(Zwl-) . Hi

Fig. 2. Dynamical system.

Noise v, describes all other sources, apart from u,, which
cause variation in y,. z~! is a delay operator: z~lu; = u,_;.
The transfer function G,(z~!) belongs to a set of transfer
functions G(6,z!) parameterized by 6, i. e. G,(z7') =
G(G*,z_l) for some 6,. The structure of the model class
G(6,z7") is known but 8, itself is unknown. The problem
under consideration is to determine, based on a finite set of
data of inputs and outputs collected at time 7 = 1,2,...,N,
a confidence region ® for 6, with a specified probability
chosen by a user. Moreover, ® must be constructed without
any a priori knowledge of the noise level, distribution, or
correlation.

The procedure discussed further is intended to identify
the unknown parameters of a dynamic scalar linear control
plant which is described by an autoregressive moving average
model. It is based on the reparameterization of a plant
mathematical model. Instead of the natural parameters of the
plant — dynamic coefficients — it is convenient to use some
other parameters which are in one-to-one correspondence
with them. Such reparameterization is a result of rewriting
the plant’s equation in moving average model form which
makes it possible to use the LSCR procedure for building the
confidence region, even in the cases if an adaptive algorithm
is used in the feedback channel.

We assume that a control plant has scalar inputs and
outputs and it is described by Equation (3) in discrete time
with G,(z7!) = B.(z7!)/A.(z"), where

AA)=1+ad+--Famlrm,
B,(A) = b A 4B A

the natural numbers n,,n, are the output and input (con-
trol) model orders; [ is a delay in control, 1 <[/ < ny;
al,....dl bl ... b are the plant parameters, a part of
which is unknown.

It is required to define, with a given probability, an area
of reliability for unknown coefficients of the plant (3) by
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the observations of outputs {y,} on a finite interval of time
t=1,2,...,N, and known inputs (controls) {u }, which can
be chosen.

IV. CONTROL ACTIONS WITH RANDOMIZED TEST
SIGNALS

Let s <ng,+np—1+1 be a positive integer number. (It
is usually equal to the quantity of unknown parameters of
plant (3)). And let N = s- N be with some Na.

Let us choose a sequence of independent random vari-
ables, which are symmetrically distributed around zero, (a
randomized test perturbation) Ag,Ar,...,Ay,—1 and add them
to the input channel once per every s time moments (at the
beginning of each time interval) in order to “enrich” the
variety of observations.

To be more precise, we will build controls {u}""/ by the
rule

A lgp— =0
“3n+i—l{ e 7 n=0,...,Nyx—1,

IZSVH*ifl? i:1727"'as_17

where “intrinsic” controls {i;} are determined by an ad-
justable feedback law

lzt:%‘(ylayt—lw")lzt—l)"'))t207 ﬁ*k:()) k>0

The type and characteristics of a feedback depend on specific
practical problems. In particular, it is possible to use a trivial
law of “intrinsic” feedback: i, =0,¢t=0,1,...,N—1[, or to
use a stabilized regulator

Clz )i =Dz, Ty “)

with parameters %, = 7,_; which are tuning by the “Strip”
algorithm [3] with choosing sufficiently large noise level C,

-
(@ 1 =3 gra1 oy 26,5l >0}

T=T1- ¢, (5
[aals
where 1{,} is a set characteristic function, 6 > 0 is a constant,
¢ = (7y1*1 seees T Vt—ng s Ut—15- -+, utfnb)T-

The feedback regulator (4) is determined by such polino-
mials C(A,7) and D(A,7) that a charecterized polinomial
A(A,7)C(A,7) —B(A,7)D(A,7) is a stable polinomial.

V. MAIN ASSUMPTIONS AND REPARAMETERIZATION OF
THE TRANSFER FUNCTION

Main assumption

A1l. The user can choose A, and this choice does not affect
to the external noise vy, ..., Vg4 1)—1- (In the mathematical
sense, A, does not depend on {v[};(:";r 1)71.)

Note, that no assumptions are made about the noise v, and
about the upper limits of the noise amplitudes. If the noise
is random, there are no assumptions about the zero-mean or
any autocorrelation properties.

For time sn,n=0,...,Nr» — 1, we can denote 7, = vy, +
(1= A (z7")ysn + (Bu(z7") — Bz ug, and rewrite Equa-
tion (3) in the following form:

Ysn = Ay 6*1 + 9,} Usn—1 + Vi,

where 8] = b!. This equation shows a direct relation between
observation yg, and test signal A, which does not depend on
the “new” noise vg,.

Similarly, we rewrite Equation (3) for the rest of time
instances sn+k—1,k=2,...,s, sequentially excluding the
variables Vg,1x—1,...,ysn from the left-hand side of the
Equation (3) using the same equation (3) for early time
instants

k—1
Ysn+k—1 = Anef + Z ef_lﬁsn—l-ki + Vsntk—1, 6)

i=0
where 0~/ i=0,...,k— 1 are the corresponding coefficients
of the remaining right-hand side terms with i, ;..

In [3] and [5], the authors suggest forming new parameters
as s-vector 0, of coefficients 8% obtained in (6). They also
give conditions for the invertibility of such reparameteriza-
tion procedure.

The next formula follows immediately from the above
definition 6, = A*]B%7 where s X s matrix A and s-vector
B are

1 0 0 b,

a1 0 0 ;
A= |a dl 0 0f m=|pm
0 ... d“... a 1 0

Consider the conditions of the existence of a correspond-
ing inverse function.

Assumption

A2. Let s be a positive integer such that a set of the
plant’s unknown parameters is uniquely determined by some
function 7(6) from the above-defined vector 6.

By Lemma 2.2 on p. 117 from [5] Assumption A2 holds
for s =n,+n, —1+1 when the plant’s orders n,,n; are
known and the following assumption is satisfied.

A3. The polynomials 7A,(z~!) and 7B, (z~!) are mu-
tually prime.

In [5] there is also an algorithm for the inverse function
7(6).

In practice, usually only part of plant parameters are
unknown. Sometimes, unknown parameters correspond to the
low degrees of z~! which are smaller than some 7, and 7,
respectively. In this case, we can choose s =, +, — 1+ 1
which is significantly less than n, + n, — [+ 1. Moreover,
the “new” noise V41— in (6) can be divided into two
parts: nonmeasurable Vg, and measurable yj, ;1. The
measurable part is determined by observable inputs and
outputs with known coefficients (see the example below).

Example. Consider the second-order plant

Vi +aiy171 +Yi—2= biut,l +1.6u; 2+, (7N
t=1,2,...,N,

with unknown coefficients a! and b! # 0.

Denote
1
a*
T, = .
. <b1>
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Let be s =2 and vector 6, of the “new” parameters be

0, = by eR?
* T \1.6—alb! '

In this case, the inverse function 7(0) is

<1.692>
el
0! ’

Equations (6) have the following forms:

7(0) =

Yon = Ane*l + 9,}17[2,,,] + Vo + ‘72}13

Vanr1 = MO 4 0210, 1 + 0 ity + Won i1+ Vanit,

where W,1k = 1.6it2y 214 — Yon—244, k= 0,1, P2y = vy —
alyam—1, Vi1 = Vons1 + al(alys—1 + yom-2 — 1.6it2,—» —
Vzn).
VI. STOCHASTIC APPROXIMATION ALGORITHM
Let be for {A,} following conditions holds

Bt} =BT =0, ] < it
Bty O Lo MR
T e (E

where
P p—k
R(l + Z ‘ysn+k—j| + Z |’/_‘Sn*j|)
j=1 j=1

and oy, My, Ca, Cg > 0 are positive constants.
Consider the estimation algorithm

T =7(6,_1), s(n—1)<t<sn, s=1,2,. =1,2,.
§n = An—l _rlt,l;’{ln}An (fgzen—l (Y ll’n )
, Y

where T is a positive define matrix:22,min(l“)
vector of current observations.

For sufficiently large number of R > 0 let be “intrinsic”
control {i } is built by the feedback controller (4) with
adjustable parameters

~ Tta
T =9 ~
Tt—s

where estimates 7; are formed by “Strip”-algorithm (5).

Theorem 1. If the conditions A1-A3 and 2 A, (T) O'A2 >1
are satisfied then for an arbitrary initial condition 7° € R*
the algorithm (9) ensures the estimates {7;} such that for an
arbitrary p > 0 the following limit relations are valid with
probability 1 and in the mean square sense:

if [e| + ur—1| <R,

10
— othewise, (19)

limn' |6, — 6*|| =0, lim¢' |7, — 7*|| = 0.
n—yo0 t—yoo

Remark. From (8) it follows that A, — 0 as t — oo with
probability 1, implying that a test signal vanishes with time.
That is why adaptive systems can be synthesized with the
identification algorithm described in such a way that with

time their output becomes indistinguishable from the output

of an optimal system synthesized for a known parameter of
a control plant.
The proof of Theorem 1. This proof is similar to the

corresponding proof from [4] By virtue the algorithm, the
(p) _ L2

vectors ¢/ =nT (0 — 9,,) are related by the following
formula:
() o 2Pa=14pP o) 1/Inin}
e ~ (1= n )an T Y
nz

From this point on the sign ~ is taken to mean that the
equality is satisfied up to values of the highest order of
smallness when n — o and can be disregarded. Under the
conditions of Theorem 1 the following inequality is valid:

2y62 — 1+
E{q\?), ugs !y} ~ (1—VTP)IQ2P>\2+
21n{n}
P2y Pl
Since In{n)
n{n +p
Z nltp’ Z =

n=1

then by the familiar Doob’s Theorem on the convergence of
semi-martingales the limit equalities of Theorem 1 are valid.

VII. PROCEDURE FOR CONSTRUCTING CONFIDENCE
REGIONS
The previous result has an asymptotic nature. For the finite
number of observations we can use the following procedure.
1) Using observational data, we can write predictors as a
function of 0

k—1
ysiﬁk*l (9) = Anek + Z ekil’/_‘snwtkflfia (11)

) i=0
n=0,....No— 1, k=1,...s.

2) We can calculate the prediction error
8[(6) =W _57\[(6), 1= 1,. .. ,N.

3) According to the observed data, we form a set of
functions of 6

f:m#»kfl(e) = An£m+k71(9)> n= 0a~ .- aNA - 17

k=1,...,s

4) Choose a positive integer M > 2s and construct M
different binary stochastic strings (of zeros and ones)
(hit,....hin), i=0,1,..., M —1, as follows: hgy ; =
0,j=1,...,N, all the other elements #;; take the
values of zero or one with the equal probability %
We calculate

Np—1
= Z hi,nerk'fnerkfl (9), i= O, vy M — 17
n=0

k=1,....s

5) Choose ¢ from the interval [1;M/2s]. For k=1,.
construct a region ® such that at least g of the 8 (6)
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functions are strictly higher than O and at least g are
strictly lower than 0.
We define the confidence set by the formula

N
6= 8"
k=1

Remarks. 1. The procedure described above is similar to
the one suggested in [6] but it has two significant differences
from it. First, we consider a confidence set ® in tl/l\e state
space R* instead of R" ™" The confidence regions O k=
1,...,s, are the subsets of R¥ instead of ®F C RM™+tm,
Second, randomized trial perturbations are included through
the input channel only once per every s time instants instead
of permanent perturbations in [6].

2. If we can divide the “new” noise Vg, ;_; in (6) into
two parts — Vg, x—1 and Yy, k1 — where the first part
is nonmeasurable whereas the second is determined by
observable inputs and outputs with known coefficients then in
the above-described procedure we can use stronger predictors
instead of (11)

12)

k=1
)A/anrkfl (6) = An Gk + Z ekilﬁanrkflfi + Ysntk—1-
i=0
The probability that 8, belongs to each of regions @k, k=
1,2,...,s, is given in the following theorem.
Theorem 2: Let condition Al be satisfied. Consider k €
{1,2,...,s} and assume that Prob(g(6,) = 0) = 0. Then

Prob{6, € O} =1-2¢/M (13)

where M, g and O are from steps 4 and 5 of the above-
described procedure.
Proof: See [13].
The next corollary follows directly from Theorem 2.
Corollary 3: Under the conditions of Theorem 2

Prob{6, € ©} > 1—2sq/M (14)

where © is taken from (12).

Note, that, as it was pointed out in [6], the value of
the probability in (13) is accurate but not the lower limit.
Inequality in (14) is obtained because the events {6+ &
O}, k=1,...,s may overlap.

From the above, it is easy to derive.

Theorem 4: Let conditions A1-A2 be satisfied and as-
sume that Prob(gk(6,) = 0) = 0. Then the set (@) is the
confidence set for unknown parameters of plant (3) with a
confidence level of no less than 1 —2sq/M.

VIII. CONCLUSION

From the theoretical point of view, an important feature
of the suggested procedure is that it operates without any
significant assumptions about the external noise. It is also
a vital importance from the practical point of view since
in practical applications it is difficult to obtain a priori
knowledge about the noise characteristics. The resulting
confidence set is not conservative because it gives a rather
good description of the uncertainties in the model.

In the future work we plan to use above theoretical
results in our practical project: multiagents group of UAV
[15], [16]. Algorithms of a fly optimization are one of the
most important topics for the development of UAVs control
programs. One of possibilities is to use above described
randomized algorithms. Other way is to accumulate energy
and increase the flight range by using the thermal updrafts
which are formed in the lower atmosphere due to disruption
of warm air from the surface when it is heated by sunlight
[17].

The authors would like to thank the SPRINT laboratory
of SPbSU and Intel Corp. for supporting this work.
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