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Abstract:
In this work the load balancing problem is studied for decentralized stochastic network with unknown
but bounded noise in measurements and varying productivities of agents. The load balancing problem is
formulated as a consensus problem in a stochastic network. Consideration of Laplasian potential function
corresponded to the network graph allows to introduce a new randomized local voting protocol with
constant step-size which is based on simultaneous perturbation stochastic approximation algorithm. The
conditions are formulated for the approximate consensus achievement which corresponds to achieving
of a suboptimal level of agents’ load. The new algorithm is illustrated by simulations.

Keywords: Simultaneous perturbation stochastic approximation, randomized algorithms, multiagent
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1. INTRODUCTION

In recent years the consensus approach has been widely used for
solving different practical problems Olfati-Saber and Murray
(2004); Olfati-Saber et al. (2007); Ren et al. (2007); Ren and
Beard (2008); Chebotarev and Agaev (2009); Kar and Moura
(2009); Granichin et al. (2012); Amelin et al. (2013); Lewis
et al. (2014), including the load balancing problem Amelina
et al. (2015). For the problem of achieving consensus a lot
of theoretical results were obtained. In Tsitsiklis et al. (1986);
Huang and Manton (2009); Li and Zhang (2009) the stochastic
approximation type algorithms were used for achieving the
consensus, and their applicability under some statistical uncer-
tainties was analyzed in Amelina and Fradkov (2012); Amelina
et al. (2015), where it was assumed that measurement noise and
delays have a statistical nature with standard properties of zero-
mean and bounded covariance.

Emphasize, when the undirected topology graph has a spanning
tree, the load balancing problem can be reformulated as a min-
imization problem of a Laplacian potential associated with a
graph (see Olfati-Saber and Murray (2004)). In this paper we
suggest to use a simultaneous perturbation stochastic approxi-
mation (SPSA) for solving this problem. SPSA algorithm recur-
sively generates estimates along a random directions and uses
⋆ The authors acknowledge the Russian Ministry of Education and Sci-
ence (agreement 14.604.21.0035, unique no. RFMEFI60414X0035), RFBR
(projects 13-07-00250, 14-08-01015, and 15-08-02640), and SPbSU (project
6.37.181.2014).

only two observations of minimized function at each iteration.
SPSA and similar procedures with one (or two) measurements
per iteration were introduced in Granichin (1989, 1992) Polyak
and Tsybakov (1990). and Spall (1992). They are similar to
random search methods Rastrigin (1963). The general overview
of SPSA type algorithms and their applications in different
fields are done in Granichin et al. (2015). Generally, a cen-
tralized algorithm for load balancing which is based on SPSA
was considered in Granichin and Amelina (2015); Granichin
(2015).

The paper is organized as follows. In Section II, the problem
statement is described, and basic concepts of a graph theory
that are used hereinafter are introduced. In Section III, the load
balancing control strategy is considered. Section IV presents a
new result about a mean-risk optimization problem under linear
constrains. In Section V we introduce the new randomized
local voting protocol and Section VI gives conditions of an
asymptotic mean square ε-consensus. Simulation results are
given in Section VII. Section VIII contains conclusions.

2. PROBLEM FORMULATION

Let the network system be composed by m agents (proces-
sors, machines, etc.) which are numbered by naturals i, i =
1, . . . ,m, and N = {1, . . . ,m} be a set of agents in the system.
This system executes a set of tasks of the same type. Tasks feed
to the system in different discrete time instants t = 0, 1, . . .
through different agents. Agents perform incoming tasks in

Preprints, 1st IFAC Conference on Modelling, Identification and
Control of Nonlinear Systems
June 24-26, 2015. Saint Petersburg, Russia

Copyright © IFAC 2015 946



parallel. Tasks can be redistributed among agents based on
feedbacks. We assume, that the task can not be interrupted after
it has been assigned to the agent.

In this paper we use the following notation and terms from the
matrix and graph theories. A communication graph (N,E) is
defined by a set of nodes N and a set of edges E. A dynamic
network of d agents is determined by a set of dynamic systems
(agents) that interact according to the communication graph.
We associate a weight ai,j > 0 with each edge (j, i) ∈ E.
A graph can be represented by an adjacency matrix A =
[ai,j ] with weights ai,j > 0 if (j, i) ∈ E, and ai,j = 0
otherwise. Assume, that ai,i = 0. We use the notation GA

for a graph which is represented by an adjacency matrix A.
Define a weighted in-degree of node i as a sum of i-th row of
matrix A: di(A) =

∑n
j=1 a

i,j , and D(A) = diag{di(A)} as a
corresponding diagonal matrix. Let L(A) = D(A)−A denotes
the Laplacian of the graph GA. Note, that the sum of rows of
the Laplacian equals to zero. The symbol dmax(A) stands for
a maximum in-degree of the graph GA, Re(λ2(A)) is the real
part of the second eigenvalue of matrix A ordered by absolute
magnitude, AT is the transpose matrix. Let N i = {j : ai,j >
0} be a “neighbors” set of agent i ∈ N , |N i| is a corresponding
number of “neighbors”. The graph GA is called undirected if
ai,j = aj,i for all i, j ∈ N .

At each time instant t the behavior of each agent i ∈ N is
described by two characteristics:

• qit is the queue length of atomic elementary tasks of agent
i at time instant t;

• θit is the productivity of agent i at time instant t.

Here and below, an upper index of agent i is used as a corre-
sponding number of an agent (not as an exponent). The execu-
tion time of a task varies from one agent to another and depends
on a productivity of an agent.

Consider the case when the dynamic model of the system is
described by the following equations

qit+1 = qit − θit + zit + ui
t, i ∈ N, t = 0, 1, . . . , (1)

where zit are amounts of new system tasks received through
agent i at time instant t; ui

t ∈ R are control actions (redis-
tributed tasks to agent i at time instant t — parts of system
tasks previously received through other agents), which could
(and should) be chosen.

We assume, that to form the control strategy ui
t each agent

i ∈ N has knowledge about its own productivity, productivities
of its neighbors and noisy data about its own queue length:

yi,it = qit + ξi,it , (2)

and, if the neighbors set N i is not empty, the knowledge about
productivities of its neighbors and noisy observations about its
neighbors’ queue lengths:

yi,jt = qjt + ξi,jt , j ∈ N i
t , (3)

where {wi,j
t } is an observation noise.

Denote T i
t as a time moment when agent i completes currently

assigned tasks (at time moment t). T i
t can be formally described

as:

T i
t = min

τ

τ∑
k=t

θik ≥ qit.

Consider the problem of minimization of implementation time
of all tasks:

max
i∈{1,...,m}

T i
t (q

i
0, u

i
1, z

i
1, u

i
2, z

i
2, . . .) → min

u1
1,...,u

m
1 ,u1

2,...
. (4)

For the stationary case when zit = 0 (i.e. there are no new
receiving tasks for t > 0), such value does not vary over time
and so the problem becomes a worst-case optimization problem
(moreover, it is easy to show that the problem can be further
reduced to minimization of some “good” convex functional).
For the nonstationary case the problem is more difficult as we
should trace “drifting” minimum point.

3. LOAD BALANCING

An ideal scheduling algorithm is the one which keeps all the
nodes busy executing essential tasks, and minimizes the in-
ternode communication required to determine the schedule and
pass data between tasks. The scheduling problem is particularly
challenging when the tasks are generated dynamically and un-
predictably in the course of executing the algorithm. This is the
case when many recursive divide-and-conquer algorithms have
to be used, including backtrack search, game tree search and
branch-and-bound computation.

When all queue lengths and productivities (performance) of
nodes are known, then the best control strategy is a proportional
distribution of tasks such that

q1/θ1 = q2/θ2 = · · · = qm/θm.

The proof of this result is not difficult and could be found, for
example, in Amelina et al. (2015). This control strategy is called
load balancing.

The reasons mentioned above allow us to reformulate the
considering problem: the goal is to maintain the balanced
(equal) load across the network.

Assume, that the following conditions are satisfied

A1: Graph GA is undirected, and it has a spanning tree.
A2: θit ≥ θmin > 0, ∀i ∈ N, t = 0, 1, . . . .

(Note, if Assumption A1 is satisfied then 0 < Re(λ2(A)) (see
Lewis et al. (2014))).

If we take xi
t = qit/θ

i
t as a state of agent i of considered

dynamic network at time instants t = 0, 1 . . ., then the control
goal of achieving consensus in network will correspond to the
optimal redistribution of tasks among agents (see Amelina et al.
(2015)). Under this notation, the dynamics of each agent can be
rewritten as

xi
t+1 = xi

t + f̃ i
t + ũi

t, (5)

where f̃ i
t = zit/θ

i
t−1, and ũi

t = ūi
t/θ

i
t, i ∈ N are “normalized”

control actions.

We can rewrite Equation (5) in the vector form

xt+1 = xt + ft + ut, (6)

where m-vectors xt, ft, and ut consist of corresponding ele-
ments x1

t , . . . , x
m
t , f̃1

t , . . . , f̃
m
t , and ũ1

t , . . . , ũ
m
t .

If undirected graph GA has a spanning tree, the load balancing
problem can be reformulated as a minimization problem of a
Laplacian potential associated with graph GA (see Olfati-Saber
and Murray (2004))
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Φt(xt) =
1

2

n∑
i=1

m∑
j=1

ai,j(xj
t − xi

t)
2 → min

xt

, (7)

subject to
m∑
i=1

xi
tθ

i
t =

m∑
i=1

qit−1, (8)

since Φt(xt) = 0 for the case x1
t = x2

t = . . . = xm
t and

Φt(xt) > 0 for all other cases. Is is also mentioned in Olfati-
Saber and Murray (2004) that local voting protocol (see, e.g.,
Amelina et al. (2015)) is equivalent to gradient descent for
Laplacian potential. Linear constrain (8) is natural for problems
of tasks redistribution because we cannot loss the tasks during
a redistribution process.

To solve the problem (7),(8) we could use the algorithm and
result from Granichin (2015).

4. MEAN-RISK OPTIMIZATION PROBLEM UNDER
LINEAR CONSTRAINS

Consider a set of differentiable functions {fw(θ)}w∈W, fw(θ) :
Rm → R, let x1,x2, . . . be the set of observation points chosen
by experimenter. For each t = 1, 2, . . . we get measurements
y1, y2, . . . of fw(·) with additive external noise vt

yt = fwt(xt) + vt, (9)
where {wt} is an uncontrollable sequence, wt ∈ W.

Let (Ω,F , P ) be the underlying probability space, and let Ft−1

be the σ-algebra of all probabilistic events occurred before
t = 1, 2, . . ..

The problem is to find optimal θ⋆t that minimizes mean-risk
functional

Ft(θ) = EFt−1fwt(θ) → min
θ

(10)

subject to linear constrains
Htθ = qt−1 (11)

with matrices Ht of dimension k ×m and vectors qt−1 ∈ Rk,
0 ≤ k < m (with k = 0 it is assumed that there is no
constrains).

Hereandafter E is a symbol for mean value and EFt−1 is a
symbol for conditional mathematical expectation with respect
to Ft−1, ⟨·, ·⟩ is a scalar product of two vectors, ∥ · ∥ is an
Euclidean norm of a vector.

If rankHt = k then there exists linear function ht : Rm →
Rm−k and its reverse function gt : Rm−k → Rm such as

x = gt(ht(x)), ∀x ∈ Mt = {Htx = qt−1}.
We assume that ht(·) could always be chosen.

Let ∆n, n = 1, 2, . . . be an observed sequence of independent
random variables in Rm−k, called the simultaneous test per-
turbation, with Bernoulli distribution which elements equal ±1
with probabilities 1

2 .

Let us take a fixed initial vector θ̂0 ∈ Rm and choose positive
numbers α and β. Consider the algorithm

x±
n = g2n−1± 1

2
(h2n−1± 1

2
(θ̂2n−2)± β∆n),

θ̂2n−1 = g2n−1(h2n−1(θ̂2n−2)),

θ̂2n = g2n(h2n(θ̂2n−1)− α∆n
y+n − y−n

2β
),

(12)

which is similar to one proposed in Granichin (2015) when
Ht(·) does not depend on t.

Next, we assume the following about fwt(x), Ft(x) and uncer-
tainties in the model:
A3: Function Ft(·) has unique minimum point θ⋆t and ∀z ∈
Rm−k

⟨z− ht(θ
⋆
t ), EFt−1∇zfwt(gt(z))⟩ ≥ µ∥z− ht(θ

⋆
t )∥2

with a constant µ > 0.
A4: ∀wt ∈ W gradient ∇zfwt(gt(z)) satisfies the Lipschitz
condition: ∀z′, z′′ ∈ Rd−k

∥∇zfwt(z
′)−∇zfwt(z

′′)∥ ≤ M∥z′ − z′′∥
with a constant M ≥ µ.
A5: Vector-gradient ∇f̃t(·) is uniformly bounded in point
ht(θ

⋆
t ): ∥E∇f̃t(h(θ

⋆
t ))∥ ≤ c1, E∥∇f̃t(h(θ

⋆
t ))∥2 ≤ c2,

E⟨∇f̃t(h(θ
⋆
t )),∇f̃t−1(h(θ

⋆
t−1))⟩ ≤ c2 (c1 = c2 = 0 if wt

is nonrandom, i.e. fwt(x) = Ft(x)).
A6: For n = 1, 2, . . . ,
a) ∆n and w2n−1, w2n (if they are random) do not depend on
σ-algebra F2n−2.
b) If w2n−1, w2n are random then random vectors ∆n and
elements w2n−1, w2n are independent.
c) the successive differences v̄n = v2n − v2n−1 of observation
noises are bounded:
|v̄n| ≤ cv < ∞, or Ev̄2n ≤ c2v, if a sequence {vt} is random.
d) If v̄n is random then v̄n and vector ∆n are independent.
A7: Matrices H2n−1 and H2n (if they are random) do not
depend on σ-algebra F2n−2.
A8: The drift is bounded: ∥ht(θ

⋆
t − θ⋆t−1))∥ ≤ δθ < ∞, or

E∥ht(θ
⋆
t − θ⋆t−1)∥2 ≤ δ2θ and E∥ht(θ

⋆
t − θ⋆t−1)∥∥h(θ⋆t−1 −

θ⋆t−2)∥ ≤ δ2θ , if a sequence {wt} is random.
The rate of drift is bounded in a such way that ∀z ∈ Rd−k:
EF2n−2φn(z)

2 ≤ c3∥z − ht(θ
⋆
2n−2)∥2 + c4, where φn(x) =

fw2n(x)− fw2n−1(x).

Denote κ = 2(µ−αγ), b = 2βMc3∆(1 + 6αMc2∆) + δθ(M +
2µ + 6αM2c4∆), l̄ = 2αc∆

2(c2v + 3(maxn
c4
2β + c2∆(c2 +

M2(δθ+2βc∆)
2)))+2δθ(4βMc3∆+Mδθ+c1+3µδ2θ), where

γ = 3c∆
2(M2c2∆ + c3

2β ).

The following Theorem shows the asymptotically efficient
mean-squared weak upper bound of estimation residuals by
algorithm (12).

Theorem 1. If rankHt = k, assumptions A3-A8 hold, and
α is sufficiently small: α ∈ (0;µ/γ) if µ2 > 2γ, or α ∈
(0;

µ−
√

µ2−2γ

2γ ) ∪ (
µ+

√
µ2−2γ

2γ ;µ/γ) otherwise,
then the sequence of estimates provided by the algorithm (12)
has asymptotically efficient mean-squared weak upper bound
of estimation residuals

L̄ = (b+
√
b2 + κl̄)/κ, (13)

i.e. ∀ε > 0 ∃N such that ∀n > N√
E∥θ̂2n − θ⋆2n∥2 ≤ L̄+ ε.

Proof of Theorem 1 is slightly different from the correspon-
dence proof in Granichin (2015) since we consider more com-
plicated problem setting and additional Assumption A5.

5. TASK REDISTRIBUTION PROTOCOL

Generally, to ensure load balancing across a network (in order
to increase the overall throughput of a system and to reduce
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execution time) it is naturally to use the redistribution protocol
over time.

Minimum point x⋆
t of (7) vary over time due to the system dy-

namics (6). Consider SPSA algorithm (12) with nonvanishing
step-sizes for tracking the changes x⋆

t using ht(x) = h(x) =
col(x1, . . . , xm−1)

gt(z) = col(z1, . . . , zm−1,

∑m
i=1 q

i
t−1 −

∑d−1
j=1 z

jθit

θmt
).

We have initial guess x̂0 which is formed by qi0/θ
i
0, i =

1, . . . ,m. Let α > 0 and β > 0 be fairly small step-sizes.

The iteration step consists of
• Compute two values

y±n = Φ2n−1± 1
2
(g2n−1± 1

2
(h(x̂t−1)± β∆t)); (14)

• Compute quasigradient vector

∇̂n = ∆n
y+n − y−n

2β
; (15)

• Get new estimate
x̂2n−1 = g2n−1(h(x̂2n−2);

x̂2n = g2n(h(x̂2n−2)− α∇̂n). (16)

We cannot use (16) in decentralized load balancing problem
since each agent is able to use information about its neighbors
only.

Consider the ith component of the quasigradient vector from
(15). By virtue (7) and (14) we have

∇̂i
t = ∆i

t

Φt(x̂t−1 + β∆t)− Φt(x̂t−1 − β∆t)

2β
=

∆i
t

1

4β

n∑
k=1

n∑
j=1

ak,j×

×
(
(xj

t + β∆j
t − xk

t − β∆k
t )

2 − (xj
t − β∆j

t − xk
t + β∆k

t )
2
)
.

By using the difference of squares (formula: a2 − b2 = (a −
b)(a+ b)), we derive

∇̂i
t = ∆i

t

n∑
k=1

n∑
j=1

ak,j(∆j
t −∆k

t )(x
j
t − xk

t ) =∑
j∈Ni

(ai,j + aj,i)(1−∆i
t∆

j
t )(x

j
t − xi

t)+

∆i
t

n∑
k ̸=i

n∑
j ̸=i

ak,j(∆j
t −∆k

t )(x
j
t − xk

t ),

since (∆i
t)

2 = 1. Denoting ηit =
∑n

k ̸=i

∑n
j ̸=i a

k,j(∆j
t −

∆k
t )(x

j
t − xk

t ) we get

∇̂i
t = 2

∑
j∈Ni

ai,j(1−∆i
t∆

j
t )(x

j
t − xi

t) + ∆i
tη

i
t.

Following by the SPSA iteration step (16) we could consider
decentralized control protocol

ui
t = α

∑
j∈Ni

ai,j(1−∆i
t∆

j
t )

(
θit

θjt
yi,jt − yi,it

)
, i ∈ N, (17)

where α > 0 is a step-size of control protocol (17).

For each i ∈ N the dynamics of the closed loop system with
protocol (17) is as follows

xi
t+1 = xi

t+f̃ i
t+α

∑
j∈Ni

ai,j(1−∆i∆j)

(
yi,jt

θjt
− yi,it

θit

)
. (18)

If we denote matrix Bt = [bi,jt ], where bi,jt = ai,j(1−∆i
t∆

j
t ),

then properties of a similar control algorithm, called a local
voting protocol, for a load balancing problem were studied
in Amelina et al. (2015). The common feature is that the control
value of the local voting protocol for each agent was determined
by the weighted sum of differences between the information
about the state of the agent and the information about its neigh-
bors’ states. However, the analysis in Amelina et al. (2015) was
done only for the case of statistical noise (noise with Gaussian
distribution) with standard zero-mean and bounded covariance
properties. Here we consider the randomized modification (the
special case) of the local voting protocol, which was inspired by
SPSA methods. Probably we could use weaker conditions about
observation noise {vi,jt } and disturbances f̃ i

t if we assume the
independence of simultaneous test perturbation ∆t on noise
and disturbances (see Granichin et al. (2015)).

5.1 Connection to gossip algorithms

For considered SPSA algorithm we used Bernoulli distributed
simultaneous perturbation ∆ but in fact we can use different ∆
without losing core properties of the SPSA. In Granichin et al.
(2015) required conditions are presented (chapter 3, conditions
(3.8)). One possible distribution is as follows:

∆k
n =


0, k ̸= i, j

±1, w.p.
1

2
, k = i or k = j

∓1, Assuring ∆i
n = −∆j

n k = i or k = j

If we apply such ∆ to (18) there will be only two nonzero coor-
dinates and whole sum contains single nonzero term. Multiplier
(∆j

n −∆k
n) is ±2 for nonzero terms and the sign doesn’t affect

summary value. With that, considered stochastic approximation
procedure can be described as “iteratively pick random pair
of indices and average values of corresponding coordinates”
(value of β affects how much the values are drawn to their
average). Such algorithms was previously studied in Boyd et al.
(2006) and are known as “gossip” algorithms. As we mentioned
in previous sections, SPSA algorithm works with arbitrary
bounded noises. With that, gossip algorithms should work with
arbitrary noises as well if choice of a pair of indices does not
correlate with external noise.

6. ASYMPTOTIC MEAN SQUARE ε-CONSENSUS

Definition 1. n agents are said to achieve the asymptotic mean
square ε-consensus, if E∥xi

0∥2 < ∞, i ∈ N, and there exists a
sequence {x⋆

t } such that

limt→∞ E∥xi
t − x⋆

t ∥2 ≤ ε

for all i ∈ N .

Assume that the following assumptions are satisfied:

A9: a) For each i, j = 1, . . . ,m vector ∆t and ξi,jt (if it is
random) are independent.

b) For each i = 1, . . . ,m vector ∆t and zit (if it is random)
are independent.
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c) For each i = 1, . . . ,m vector ∆t and θit (if it is random)
are independent.

d) For all i, j ∈ N , t = 1, 2, . . . observation noise ξi,jt is
bounded: |ξi,jt | ≤ cξ < ∞, or E(ξi,jt )2 ≤ c2ξ if ξi,jt is
random.

e) For each i = 1, . . . ,m zit is bounded: |zit| ≤ cz < ∞, or
E(zit)

2 ≤ c2z if zit is random.

Let x⋆
0 be the average of the initial data

x⋆
0 =

1

n

n∑
i=1

xi
0

and {x⋆
t } is the trajectory of the averaged system

x⋆
t+1 = x⋆

t +
1

n

n∑
i=1

f̃ i
t . (19)

Theorem 1 allows to derive the level of upper bound of the
asymptotic mean square ε-consensus:

limt→∞ E∥xt − x⋆
t1m∥2 ≤ ε

with some ε which can be calculated using Theorem 1result.
Here 1m is m-vector of ones,

For considered case
µ = Re(λ2(A)), M = 4dmax(A).

To verify the applicability of Theorem 1 we need to check that:

1: The function Φt(·) is strongly convex on subspace Xt =
{x ∈ Rm : xT1m = xT

t 1m}, i.e. it has a unique minimum
point x⋆

t1m and

(x− x⋆
t1m)T∇Φt(x) ≥ µ∥x− x⋆

t1m∥2, ∀x ∈ Xt

with a constant µ = Re(λ2(A)) > 0.

Calculating the derivatives, we get

∂Φt(x)

∂i
= −

n∑
j=1

ai,j(xj − xi) +−
n∑

j=1

aj,i(xi − xj).

Hence, gradient-vector ∇Φt(x) equals to 2L(A)x.

The vector 1m is the right eigenvector of Laplacian matrix
L(A) and corresponding to the zero eigenvalue:

L(A)1m = 0.

Sums of all elements in rows of matrix L(A) is equal to zero
and, moreover, all the diagonal elements are positive and equal
to the absolute value of the sum of all other elements in the row.

By virtue Assumption A1 matrix A has a spanning tree. By
Lemma 2.10 from Ren and Beard (2008) the rank of matrix
L(A) equals m− 1. Hence we can derive

(x− x⋆
t1m)T∇Φt(x) = 2(x− x⋆

t1m)TL(A)x =

2(x− x⋆
t1m)TL(A)(x− x⋆

t1m) ≥ Re(λ2(A))∥x− x⋆
t1m∥2,

2: By using Gershgorin criteria (see Lewis et al. (2014)), we
get that the gradient ∇Φt(x) satisfies the Lipschitz condition:
∀x′,x′′ ∈ Rm

∥∇Φt(x
′)−∇Φt(x

′′)∥ = 2∥L(A)(x′ − x′′)∥ ≤
4dmax(A)∥x′ − x′′∥

with a constant M = 4dmax(A) ≥ µ = Re(λ2(A)).

3: By virtue Assumption A9a the vector ∆t does not depend
on observation noise and drift.

4: By virtue Assumption A9d the observation noise satisfies:∣∣∣∣∣∣
∑
j∈Ni

ai,j(1−∆i∆j)

(
ξi,jt

θjt
− ξi,it

θit

)∣∣∣∣∣∣ ≤
4dmax(A)cv/θmin < ∞.

5: By virtue Assumption A9e the drift is bounded:

∥x⋆
t1m − x⋆

t−11m∥ = | 1
m

m∑
i=1

f̃ i
t |
√
m ≤

max{1, cz/θmin − 1}
√
n = δx < ∞.

7. SIMULATION RESULTS

To illustrate the theoretical results we consider the decentral-
ized computer network of m = 50 computing nodes. We will
show that the proposed randomized control algorithm (17) pro-
vides load balancing of the network similar to the one presented
in Fig. 1.

Fig. 1. The network topology.

The network topology is a ring with chords which are randomly
chosen by the following rule for every node:

(1) simulate a number of added chords by a Poisson distribu-
tion with mean value m/2

(2) randomly select nodes that attach to the current (the num-
ber of such units is equal to the value obtained in step 1)

We generate the initial productivities θ1t , θ
2
t , . . . , θ

m
t randomly

by the uniform distribution over the interval (10; 50). We as-
sume that productivity measure in our case is the number of
available jobs in time instant t = 0, 1, . . ., the productivities do
not change over time and θit ̸= 0 ∀ i.

The tasks are divided into two sets: regular and burst. The first
one is served on each tact to a randomly chosen node and the
second one at any given time. During system operation we will
be adding regular tasks from the interval (12; 100) and burst
tasks from (10000; 25000).

Fig. 2 shows the dependence of algorithm convergence rate on
choosing of coefficient α.

In Fig. 3, we can see the system of m = 50 nodes operating
in nonstationary case with the control protocol (17). Each line
indicates how the load xi

t evolves over time. For clarity, the
chart displays 3 maximum and 3 minimum values. These lines
also show how the system evolves to reach load-balancing
or consensus. We can see that even when the new burst task
set is received during the system work, it does not affect the
quality of load balancing. During the simulation we have set the
coefficient α = 0.007, which is the most suitable value for the
current topology and chosen parameters (see Fig. 2). In addition

MICNON 2015
June 24-26, 2015. Saint Petersburg, Russia

950



Fig. 2. Rate of convergence based on α.

to the obtained results, it is planned to study the possibility of
SPSA application for tracking the optimal value of α.

Fig. 3. Perfomance of the system with m = 50 nodes xi
t for the

nonstationary case.

8. CONCLUSION

In this paper the problem of load balancing in a multi-agent sys-
tem under unknown but bounded disturbances was examined.
To solve the load balancing problem the new randomized lo-
cal voting protocol with nonvanishing step-size was proposed.
Conditions for achieving an approximate consensus (balance
of the network load) were obtained. To illustrate the theoretical
results we presented the simulations for the computing network.
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