
Randomized Stochastic Approximation
under Unknown but Bounded External

Noise and It’s Application to a Control of
Educational Processes ⋆

Oleg Granichin, ∗ Olga Granichina, ∗∗

and Sergey Trapitsin ∗∗∗

∗ Saint Petersburg State University (Faculty of Mathematics and
Mechanics, and Research Laboratory for Analysis and Modeling of
Social Processes), Institute of Problems in Mechanical Engineering,

Russian Academy of Sciences, and ITMO University
E-mail: oleg granichin@mail.ru

∗∗ Saint Petersburg State University (Faculty of Mathematics and
Mechanics) and Herzen State Pedagogical University, St. Petersburg,

Russia
E-mail: olga granichina@mail.ru

∗∗∗ Herzen State Pedagogical University, St. Petersburg, Russia
E-mail: trapitsin@gmail.com

Abstract: In this paper the randomized stochastic approximation (RSA) methods for op-
timization problems for system unknown parameters tracking are studied. Such randomized
SA procedures are working under arbitrary external observation noise. One of the possible
application of the method to a control of educational processes is presented.
Keywords — randomized stochastic approximation, simultaneous perturbation, unknown but
bounded external noise, control of educational processes.

1. INTRODUCTION

Recently, the development of control methods allows to
find fast online solution for many practical problems. It
could be done by integrating of “smart” devices in control
schemes, technological processes, various decision making
systems, and many others. From mathematical point of
view, the optimization problems are the most important
in such applications.

Stochastic approximation (SA) was introduced by Robbins
and Monro [1951] and was further developed for opti-
mization problems by Kiefer and Wolfowitz [1952] (KW-
procedure). In Blum [1954] the stochastic approximation
algorithm was extended to the multidimensional case. In
case, when θ ∈ Rd, the conventional KW-procedure which
is based on finite-difference approximations of the func-
tion gradient vector uses 2d observations at each iteration
to construct the sequence of estimates (two observations
for approximations of each component of the gradient d-
vector). In late 80s, early 90s of XX century the random-
ized versions of SA procedure with one (or two) measure-
ments per iteration were introduced by Granichin [1989,
1992] and Polyak and Tsybakov [1990]. Independently,
similar concept was introduced by Spall [1992]. Method,
introduced by Spall, is now widely referred as SPSA (si-
multaneous perturbation stochastic approximation). These
algorithms recursively generate estimates along random
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directions. Polyak and Tsybakov [1990] proved an asymp-
totically optimal converge rate of algorithms. Spall [1992]
demonstrated the effectiveness of algorithms in the multi-
dimensional case (even when d → ∞), and in Granichin
[1989, 1992] it was established the consistency in pres-
ence of an arbitrary external noise. The possibility of
application for non-stationary problems (for tracking) was
studied Granichin and Amelina [2015]. General overview
of methods was presented in Granichin et al. [2015].

The stochastic approximation method has a wide range of
applications in different fields. RSA consistency in pres-
ence of an arbitrary external noise allows using it to anal-
ysis and in modeling of social events and processes when
existence of strong (perfect) models is doubtful. Generally,
one of the important possible applications is a control of
educational processes. The importance of education qual-
ity objective assessment is growing in the world. Different
countries would like to be sure that their educational
systems are trusted, and they strive to demonstrate the
ability to provide high quality education according to the
international standards. Many developed countries started
to be actively engaged in these issues only during the
last decades. Many conceptual models, which describe
the education process and factors that have potentially
impact on the quality, were developed Barr and Dreeben
[1983], Willms [1992], Beasley [1995], Mc Millan and Wing
[2006], Katharakis and Katharaki [2010], Kempkesa and
Pohl [2010]. Data Envelopment Analysis (DEA) is widely
used to analyze the quality of educational systems (see,
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e.g., Athanassopoulos and Shale [1997], Avkiran [2001],
Abbott and Doucouliagos [2003], Johnes [2006]). DEA
does not require a complete specification for the functional
form of the educational process, as well as the distribu-
tion of inefficient deviations. It only requires a general
assumptions. However, if those assumptions are too weak,
inefficiency levels may be systematically underestimated
in small samples. In addition, erroneous assumptions may
cause inconsistency with a bias.

The paper is organized as follows. In Section II, the
problem statement is described, and the basic assumptions
are made. In Section III, the main theoretical result with
proof is presented. Section IV presents the problem of
a control of educational processes and an application
example. Simulation results are given in Section V. Section
VI contains conclusion remarks.

2. MEAN-RISK OPTIMIZATION PROBLEMS AND
EXCITING TESTING PERTURBATION

Consider a set of differentiable functions {fw(θ)}w∈W,
fw(θ) : Rd → R, and let x1,x2, . . . be a set of observation
points chosen by experimenter. For each t = 1, 2, . . .
we obtain measurements y1, y2, . . . of fw(·) with additive
external noise vt

yt = fwt
(xt) + vt, (1)

where {wt} is an uncontrollable sequence, wt ∈ W.

We adopt following notations: E is a symbol for math-
ematical expectation, Ft−1 stands for σ-algebra of all
probabilistic events occurred before t = 1, 2, . . ., EFt−1 is
a symbol for conditional mathematical expectation with
respect to Ft−1, ⟨·, ·⟩ is a scalar product of two vectors.

The problem is to find “drifting” points θt that minimize
mean-risk functionals

Ft(θ) = EFt−1fwt(θ) → min
θ

. (2)

Let ∆n, n = 1, 2, . . . be an observed sequence of indepen-
dent Bernoulli random vectors in Rd with values ± 1√

d
with

probability 1
2 , called the simultaneous test perturbation.

At first, we take a fixed initial vector θ̂0 ∈ Rd and
choose positive constants α and β. Consider the ran-
domized stochastic approximation (RSA) algorithm for
constructing sequences of points of observations {xn} and

estimates {θ̂n}x2n− 1
2±

1
2
= θ̂n−1 ± β∆n,

θ̂n = θ̂n−1 −
αn

2β
∆n(y2n − y2n−1).

(3)

Next, we assume the following about fw(x), F (x) and
disturbances:
A1: ∀t,x ∈ Rd and θt

⟨x− θ, EFt−1∇zfwt(x)⟩ ≥ µ∥x− θ∥2

with constant µ > 0.
A2: ∀wt ∈ W gradient ∇fwt(x) satisfies the Lipschitz
condition: ∀x′,x′′ ∈ Rd

∥∇fwt(x
′)−∇fwt(x

′′)∥ ≤ M∥x′ − x′′∥

with constant M ≥ µ.
A3: Gradient ∇fwt(·) is uniformly bounded in the mean-

squared sense at minimum points θt: ∥E∇f̃t(θt)∥ ≤ c1,

E∥∇f̃t(θt)∥2 ≤ c2 (c1 = c2 = 0 if wt is not random, i.e.
fwt(x) = Ft(x)).
A4: The drift is bounded: ∥θt− θt−1∥ ≤ δθ < ∞. The rate
of drift is bounded: EF2n−2φn(z)

2 ≤ c3∥z−h(θ2n−2)∥2+c4,
where φn(x) = fw2n(x)− fw2n−1(x).
A5: ∀n a) successive differences v̄n = v2n − v2n−1 of
observation noises are bounded: |v̄n| ≤ cv < ∞.
b) If v̄n is random then v̄n and vector∆n are independent.
c) ∆n and w2n−1, w2n (if they are random) do not depend
on σ-algebra F2n−2.
d) If w2n−1, w2n are random then random vectors ∆n and
elements w2n−1, w2n are independent.

3. MAIN RESULT

We introduce the quality characteristic of estimates se-
quence.

Definition. A sequence of estimates has asymptotically
optimal mean upper bound L̄ > 0 if ∀ε > 0 ∃N such that

∀n > N

√
E∥θ̂2n − θ2n∥2 ≤ L̄+ ε.

Denote γ = 3α(M2 + c3
β ), m = 2(µ − γ), b = βM(1 +

6αM) + δθ(M + 2µ+ 6αM2), l̄ = 2δθ(M(2β + δθ) + c1 +
3µδ2θ)+ 2α(c2v + 3( c4β + c2 +M2(δθ + β̄)).

The following Theorem, which extends the corresponding
results from Granichin et al. [2009, 2015] and gives more
accurate bound for the considered case than in Granichin
and Amelina [2015], shows the asymptotically efficient
mean upper bound of estimation residuals by algo-
rithm (3).

Theorem 1. If assumptions A1-A5 hold, and α is suf-
ficiently small: α ∈ (0;µ/γ) when µ2 > 2γ, or α ∈
(0;

µ−
√

µ2−2γ

2γ ) ∪ (
µ+

√
µ2−2γ

2γ ;µ/γ) otherwise,

then the sequence of estimates provided by algorithm (3),
has asymptotically optimal mean upper bound

L̄ = (b+
√
b2 +ml̄)/m. (4)

Proof. Denote νn = ∥θ̂2n − θ2n∥, f̄n = fw2n(x2n) −
fw2n−1(x2n−1), sn = α

βn
(f̄n + v̄n)∆n, dt = θ̂2⌈ t−1

2 ⌉ −
θt, F̃n−1 = σ{F2n−2, w2n−1, w2n}, where ⌈·⌉ is a ceiling
function. Since sn = α

βn
(y2n − y2n−1)∆n, according to

the observation model (1) and algorithm (3), we obtain
ν2n = ∥d2n∥2 + ∥sn∥2 − 2⟨d2n, sn⟩. Hence, by taking the

conditional expectation over σ-algebra F̃n−1, we could
bound EF̃n−1

ν2n as follows: EF̃n−1
ν2n ≤ ∥d2n∥2−

2⟨d2n,
α

βn
EF̃n−1

f̄n∆n⟩+ 2
α2

β2
n

EF̃n−1
(v̄2n + f̄2

n), (5)

since by virtue of AssumptionsA5b we haveEF̃n−1
v̄n∆n =

EF̃n−1
v̄nEF̃n−1

∆n = EF̃n−1
v̄n · 0 = 0.

Taylor series of fwt(xt) for t± = 2n − 1
2 ± 1

2 gives

fwt±
(xt±) = fwt±

(θ̂2n−2)±⟨∇t±(ρt±), β∆n⟩, where ρt± ∈
(0, 1), ∇t±(ρt±) = ∇ft±(θ̂2n−2)± ρt±β∆n.
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Since EF̃n−1
φn(θ̂2n−2)∆n = φn(θ̂2n−2)EF̃n−1

∆n = 0, by

virtue of Assumptions A3, for the second term in (5) we
have −2⟨d2n,

α
βn

EF̃n−1
f̄n∆n⟩ ≤

2
α

β
(2β2M(νn−1 + ∥θ2n − θ2n−1∥+ ∥θ2n−1 − θ2n−2∥)−

EF̃n−1
⟨θ2n − θ2n−1, β

−
n ∇t−(0)⟩+

∑
t±

⟨dt± , β∇t±(0)⟩).(6)

According to the first part of Assumption A4, we get

EF2n−2∥h(d2n)∥2 ≤ EF2n−2∥h(d2n−1)∥2 + 2δθνn−1 + 3δ2θ .

By taking consequently conditional expectations over σ-
algebras F2n−1 and F2n−2 and by using Assumption A1,
we derive

EF2n−2 − (⟨θ2n − θ2n−1, β∇t−(0)⟩+
∑
t±

⟨dt± , β∇t±(0)⟩) ≤

≤ EF2n−2β∥θ2n − θ2n−1∥(M∥dt−∥+ c1)− αµ∥dt−∥2+
+βµ(2∥θ2n − θ2n−1∥∥dt−∥+ ∥θ2n − θ2n−1)∥2.

Hence, we have −EF2n−22⟨d2n),
α
β f̄n∆n⟩ ≤

−2µν2n−1 + 2
α

β
(2β2M(νn−1 + 2δθ)+ (7)

βδθ(Mνn−1 +Mδθ + c1) + βµ(2δθ(νn−1 + δθ) + δ2θ)).

Consider squared difference f̄2
n. By using representations

f̄n = φn(θ̂2n−2) + β
∑

t±⟨∇fwt±
(θt±),∆n⟩+ ⟨∇t±(ρt±)−

∇fwt±
(θt±),∆n⟩, and the symmetrical property of ∆n

distribution, and Assumptions A2, we get

EF̃n−1
f̄2
n ≤ 3(φnθ̂2n−2)

2+

+3β2((
∑
t±

∇fwt±
(θt±))

2 +M2(
∑
t±

(∥dt±∥+ β))2).

By taking the conditional expectation over σ-algebra
F2n−2, we obtain

EF2n−2 f̄
2
n ≤ 3(c3ν

2
n−1+ c4+β(c2+M2((νn−1+ δθ)+2β)).

Summing up the findings bounds and by taking the condi-
tional expectation over σ-algebra F2n−2, we derive the fol-
lowing EF2n−2ν

2
n ≤ (1−αm)ν2n−1+2αbνn−1+αl̄.By taking

the unconditional expectation, we see that all conditions of
Lemma 1 from Granichin et al. [2009] (or from Granichin

and Amelina [2015]) hold for en =
√
Eν2n. This completes

the proof of Theorem 1.

Remark 1. Observation noise vt in Theorem 1 could be said
“almost arbitrary” since it may either be nonrandom but
bounded or it may also be a realization of some stochastic
process with arbitrary internal dependencies. In particular,
to prove the results of this Theorem, there is no need to
assume that vt and Ft−1 are not dependent.

Remark 2. The result of Theorem 1 shows that for the
case without drift the asymptotical mean upper bound

L̄ =
√
α
√

c2v+3c2+M2β2

µ + βM
µ + o(

√
α+ β) could be made

infinitely small simply by choosing sufficiently small α and
β under any noise level cv. At the same time in the case
of drift, the bigger drift norm δθ could be compensated
by choosing bigger algorithm parameters α and β. This
leads to a tradeoff between making algorithm parameters

smaller because of noisy observations and making them
bigger due to the drift of optimal points.

4. CONTROL OF EDUCATIONAL PROCESSES
QUALITY

Recent researches lead to the important conclusion: the
productive management of the education quality is im-
possible without transition from subjective descriptions
of pedagogical phenomena and processes to their rigor-
ous and objective assessments. Undoubtedly, mathemat-
ical models of educational systems cannot disclose and
explain the nature of pedagogical phenomena, they are
only optional, but absolutely necessary part of educational
researches. Mathematical models provide a description and
identification of patterns, properties and relationships of
pedagogical objects and processes by constructing their
images, identical to the structure and contents of real
objects or processes, it allows us to represent pedagogical
reality in an abstract form that is convenient for theo-
retical analysis, not only quantitative but also qualitative.
The analysis of statistical data of monitored parameters of
the educational quality is the most simple and applicable
method that are is ordinary in practice. However, this
method uses only a part of characteristics that could be
measured. It is often used indicators which accuracy are
questionable. In particular, this concerns the application
of educational statistics at the macro and meso levels of
management. Moreover, there are no statistics collected
on an ongoing basis for many indicators. Low level of
characteristics of an educational system description ad-
versely affects the precision of descriptions of monitoring
results, this causes difficulties in determining the control
action. Incorrect using of indicators could specify false
benchmarks that will adversely affect the educational sys-
tem. The inability to give an adequate evaluation of any
characteristic of process can eliminate this feature from
the priority control objects, regardless of its actual signif-
icance. Increasing of the environment uncertainty and the
complexity of educational institutions activities leads in-
evitably to more complex systems of assessment processes
and results of this activities. In this situation, the means
and methods of estimation that were time-tested and
proven in the past for technical systems stop working (or
work inefficiently) and require significant modifications,
and sometimes a complete replacement. Therefore, the
main task is the development of evaluation models and
methods, ensuring adequate diagnosis and identification
of trends in the development of such complex area as an
education quality.

We assume that the current educational process state is de-
fined by a set of d numbers z1, z2, . . . , zd. Mathematically,
this set could be conveniently represented as a vector z in
d-dimensional real space Rd. In practice, the size of vector
z could be very large. We can regard a detailed model
where components of vector z represent all characteristics
of the university and its business units (information on
fixed assets, financing, material and intellectual resources,
personal and academic information about the students,
promising students, graduate students, faculty, staff and
so on), or we can regard a model that operates with
aggregated data.
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Many components of current state z are difficult (and
sometimes impossible) to determine at any given time. For
example, it is not always easy to quantify the quality of
the training of a student.

A mathematical model for the description in practical use
implies the selection (or formation) of a set of measured
data y = col(y1, y2, . . . , ym) ∈ Rm which values are as-
sumed to be available to the observer at the selected time t.
(Some components of vector z or functions of one or more
components of vector z could be observed. They are give
components of vector y. Observation components can be
determined not only through the current state variables,
but also through their preceding values). Examples of
observable quantities could be ongoing assessments of a
student, or an average score of a group, or an average
score of a student or a group for the entire period of study.
Usually, size m is much smaller than d (if a detailed model
with high dimensional state space is considered).

For current time instant t, let the path in the system
state space from some initial state z0 to current zt be
denoted zt(·), yt be the current vector of observations. As
a rule, the formation of observation’s vector values could
influence not only to the system state vector values along
the trajectory, but also to a various unidentified external
disturbing factors, the totality of which is denoted by wt.
Mathematically, we could write the following formula for
current observations vector

yt = Rt(zt(·),wt),

where Rt(·, ·) is a function of trajectory zt(·) and unknown
disturbing factors wt (this function may be dependent on
time instant t).

The problem of restoring (estimating) of all components of
state vector zt or of a part of them based on observations
yt(·) is a classical problem of filtering. In the stationary
setting (without the introduction of time-varying t) this
would be a typical problem of regression analysis. These
problems are well known in the mathematical literature.
However, most of papers are either not considered a possi-
ble uncontrolled disturbancew in the model, or they are to
be slight. In a stochastic problem formulation, disturbance
w are usually considered as random elements with known
statistical properties. All these assumptions are valid for a
sufficiently strict compliance model, especially developed
for technical systems or descriptions of natural phenom-
ena. For information models described the complex pro-
cesses that determine the behavior of groups of people,
mathematical results of “classical theories” often do not
give a good answer. Typical features of human behavior
are unpredictability, failure to follow general scheme which
created in advance. For example, final assessments of a
group of students received on a particular course is an
important indicator of evaluating the educational process
quality. But each teacher is prone to subjectivity. This may
lead to a general overestimation or underestimation. It is
difficult to provide the necessary conditions for correctness
of statistical studies that are based on a repeatability of
an experiment, because each next year the course will be
read for another group of students and maybe by another
teacher. This example shows the need of developing an-
alytical methods that do not rely on strict limitations of
the model and uncontrollable disturbances.

Analytical problems are often associated with a wide
range of decision problems. To formalize the description
of the information model a set of control actions u =
col(u1, u2, . . . , ul) ∈ U ⊂ Rl are included in addition to
the state vectors and observations. Here l is a size of
control vector, U is a set of control vector’s possible values
(usually, it is bounded).

Examples of control actions ui may be a general plan of
admission of students, plans for the professions funding
levels of certain items in the budget, the task of some
benchmarks of the educational process, and so on.

Assessment of the quality of decision-making assumes the
introduction of some quantitative characteristics, which
defined by obtained educational process zt(·). In the sim-
plest case, it could be a value of type “Yes-No”, char-
acterizing the selected control strategy ut(·) as good
or bad. More generally, the quality assessment can be
multi-criteria and consist of a set of quality functionals
Φi(zt(·),ut(·)), i = 1, 2, . . . , k. For example, for the gen-
eral characteristics of the educational process one could
select only two criteria: first — the number of graduates,
and the second — the average quality of training. In this
case k = 2, and

Φ1(zt(·),ut(·)) ∈ [0,+∞], Φ2(zt(·),ut(·)) ∈ [0, 5].

Setting of quality functionals allows to formalize the con-
cept of the decision purpose. In multi-criterion case k > 1,
a lot of goals are naturally raise, and for each goal i =
1, 2, . . . , k it is possible to determine one of two types:

Φi(zt(·),ut(·)) → max (min) or Φi(zt(·),ut(·)) ∈ Si ⊂ R.

In general case, the problem of relatable to each other of
different criteria is very complicated, and it could only
be solved at the stage of formulation of the problem by
experts in the selected domain. The typical approach is
to reduce the multi-criteria problem to a one-criterion by
introducing the new quality functional which includes, in
some forms, the original ones.

Example. As an example we consider the problem of de-
ciding of setting a price for a semester study in a practical
classes of programming. We assume that the costs of the
course does not depend on the number of students, and all
students study in the same single group. We assume that
only one control parameter u (l = 1) is used. It is the price
that is covered by the student for passing the course. It is
natural to consider the optimization problem: select such
value u that

Φ1(zt(·), u) → max, Φ2(zt(·), u) → max .

Simple arguments, backed up by a practical experience of
teachers, show that the simultaneous implementation of
both objectives could not be achieved, because the average
quality of education begins to decline sharply when the
number of students increases a certain point. If we consider
the new quality functional that has a form of “balanced”
sum of two initial functionals

Φ̄(zt(·), u) = α1Φ1(zt(·), u) + α2Φ2(zt(·), u),
then its maximization is meaningless, since with a large
value of the first term the second term may seek to the
lowest value. It is well enough to consider the multiplica-
tion of original functionals

Φ(zt(·), u) = Φ1(zt(·), u)× (Φ2(zt(·), u)− 2).
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In practice, setting prices for course does not completely
determine the state vector of educational process zt(·). At
the course beginning a number of students enrolled in it
depends on the price, not directly, but indirectly. Over
time, the educational process is disturbed by perturbations
(disease, natural disasters and so on). The optimal choice
of parameter u must not and can not depend on all this
diversity information. Description of optimization infor-
mation models often uses mean-risk quality functionals. It
is assumed in addition to the deterministic setting that the
trajectory of educational process states is a realization of
a random element. We denote D as a set of all educational
process trajectories. If we assume that random elements
defining the educational process trajectory have a distri-
bution P(·) on D, then the mean-risk functional could be
written as

F (u) = −
∫
D
Φ1(zt(·), u)(Φ2(zt(·), u)− 2)P(dzt(·)).

The problem of choosing the course price is reformulated
as u = argminF (u) =?.

Despite the seeming simplicity of the problem statement,
the solution with classical mathematical methods is impos-
sible even for the example considered above. Even brute
force is not appropriate for optimization. In practice, func-
tion F (u) is not calculated for all different values of u. Typ-
ically, the form of distribution P(·) is difficult to describe
in advance. Consequently, analytical form of function F (u)
cannot be obtained even approximately. In addition, there
are difficulties with getting the observational data.

We can set some value u at the semester beginning and
calculate number y1 of students enrolled in the course
and average value y2 of final certifications at the end of
training. The first observation quite accurately describes
Φ1(zt(·), u) and the second one is a “noisy” assessment of
the quality of training

y2 = Φ2(zt(·), u) + v,

where v is an observation noise, since observation y2
includes a teacher subjectivity and so on.

For a long time this type of problems was considered
as ill-posed problems, and usually the problem was not
solved in this form. Oddly enough, but introducing of
random control actions into a model allows to offer the
reasonable solutions. A key element of the new approach
is the including of randomization into measurements pro-
cesses Granichin et al. [2015]. At the household level, this
type of approach is well known and it is called “the method
of trial and error”.

5. SIMULATION

We now describe more precisely the formal mathemati-
cal model for example considered above and the possible
algorithm for selection of the course fee (price). Let the ed-
ucational process state space consists of two components:
z1 ∈ [0,+∞] is the number of students who choose the
course and pay the fee, z2 ∈ [0, 5] is the average quality of
training. We assume that the control parameter u is the
price that is paid by the student for attending the course.

Suppose, that we could get the observation with noise

y = z1(z2 − 2) + v.

In other words, we select control parameter u and start an
experiment. We wait for experiment result y. Naturally, in
such problem formulation it is impossible to choose the op-
timal value of u after one experiment. However, if we have
an opportunity to repeat the experiment several times
and select various control parameters, the optimization
problem becomes meaningful. In cases where observation
noise v could be assumed to be a realization of independent
random variables with zero-mean and finite variance, this
problem is close to classical problems of mathematical
statistics. However, we have already mentioned the fact
that such requirements for observation noise may be ex-
cessive due to the problem nature. In this case we could
use RSA algorithm (3).

Algorithm:
1) Initialization and coefficient selection. Set a counter
index n = 0. Choose initial guess û0 ∈ R and fairly small
step-sizes α > 0 and β > 0.
2) Iteration n → n+ 1.

a. Generate random value ∆n ∈ R which equals to ±1 w.p.
1
2 .
b-1. Compute next input ū−

n by the rule: ū−
n = ûn−1−β∆n.

c-1. Start the process with input ū−
n and wait new value

y−n .
b-2. Compute next input ū+

n by the rule: ū+
n = ûn−1+β∆n.

c-2. Start the process with input ū+
n and wait new value

y+n .

d. Calculate the quasigradient: Ĝ = ∆n
y+
n−y−

n

2β .

e. Get the new estimate: û2n = û2n−2 − αĜ.
3) Repeat Step 2.

Instead of carrying out the practical experiments we use
computer simulations of possible implementations of the
educational process. The practical experience suggests to
choose z1 as a realization of a random variable with an
exponential distribution with parameter a

u , and z2 as a
realization of a Gaussian random variable with distribu-
tion N (b − ex1−c, d) truncated into the interval [0; 5]. In
simulation we chose: a = 1000, b = 4.5, c = 6, d = 0.5.
The physical meaning of these parameters is as follows: a
is the average value of money obtained for the course, b
is the maximum average value of the quality of training
with a minimum size of the group, c is the critical number
of students in the group, above which the quality of the
training begins to fall sharply, d is the variance of the
random variable associated with the quality of training.
Selected simulation parameters are close to the heuristic
estimates of these quantities which compiled on the basis
of experience in conducting course of programming.

The values u0 = 20, and α = 1, β = 5 were chosen for the
simulation.

Three typical simulation results of sequential estimation
of the optimal value uopt are shown in Fig. 1. One of
them corresponds to “standard” measurement noise vk
which was modeled as a realization of independent random
variables uniformly distributed on the interval [−1; 1], and
two others results correspond to the cases of unknown but
bounded noise when the teacher assesses the quality of
knowledge subjectively: v = 2 or v = −2 (cv = 2).
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Fig. 1. Sequence of estimates {un}.

As could be seen, after a few tens of iterations, all three
trajectories get close to the value of u ≈ 210. The
simulation has an advantage over the sequential estimation
of the optimal value for the real process that we have
the formal measurement model for yn. Although, the
estimation algorithm does not use this model, but for
the verification of the solutions quality we are having
an unlimited resource for tests which allows to calculate
approximately all values of functions Ft(u) for a selected
type of simulation model. Fig. 2 shows the typical results
of such calculations. Function fwt(u) has a pronounced
minimum in the neighborhood of u = 210. Hence the
use of RSA algorithm gives a good quality assessment for
different types of noise in the observations.

Fig. 2. The dependence of the quality functional of u.

6. CONCLUSION

In this paper the problem of tracking of minimum points
of mean-risk functionals is considered. The properties of
estimates of randomized stochastic approximation algo-
rithm are studied. The application in the control of the
educational processes quality is analyzed and the simula-
tion example is discussed.
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