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Abstract

A stochastic approximation problem is considered in the situation

when the unknown regression function is measured not at the previous

estimate but at its slightly exited position. Two estimation algorithms

for estimate the root and the minimum point of regression function

with projection is proposed. It is shown that the sequence of estimates

fxng obtained converges to the true value � as sure and in the mean

square sense. Sequence of estimates has asymptotic normality distri-

bution. The new adaptive Robbins-Monro algorithm is proposed. It

is provide minimum of variance of asymptotic distribution (xn � �).

Key words: stochastic approximation, consistency estimates, re-

gression function, conditional mean value, perturbation noise.

1 Introduction

The main ideas of stochastic approximation was formulated by Robbins and

Monro [1]. Let x 2 R is "controllable" variable and for each x we can

measure random value Y (x) with distribution P (Y (x) < y) = Fx(y). Let

M(x) is regression function Y (x) on x:

M(x) =

Z +1

�1

Y (x)dFx(y):

Robbins and Monro investigated problem of finding � unique root of re-

gression equation M(x) = 0. Let M(x) is increasing function. Consider

recurrent sequence

xn+1 = xn � anYn;

2



where fang are positive number and Yn is result of measurement by xn with

distribution Fxn . Robbins and Monro shown convergence xn to � as sure

with natural proposals about fFxng è fang. In this algorithm one considers

statistic

z0 = Y (x)

for estimate value of regression function M(x). This is consistency estimate

of M(x)
Exfz0g =M(x);

Exf:::g conditional mean value.

The problem regression function minimum point estimation was consid-

ered by Kiefer and Wolfowits in [2]. The main idea was to solve the equa-

tion M 0(x) = 0. For this purpose one can measure values Y in two points

x + c; x� c and for derivation of regression function in point x one can use

statistic

z1 =
1

2c
(Y (x+ c)� Y (x� c)):

For the estimation of minimum point Kiefer and Wolfowits proposed algo-

rithm

xn+1 = xn � anz1n ;

where fang; fcng some sequences of positive numbers.

The performance of stochastic approximation algorithms depends from

accuracy of estimate M(x) or M 0(x). If we change statistics z0 and z1 for

another we can hope to get better performance. For this purpose we need in

better approximation M(x) or M 0(x), Fabian [3] modified Kiefer and Wol-

fowits algorithm. They proposed to use difference approximations of high

derivations with some weight. If l is number of continuous derivation of re-

gression function M(x), then Fabian's algorithm provides mean square rate

of convergence as O(n�
l�1

2 ) for odd l. From computational point of view

Fabian's algorithm is very complicated.

In this paper for estimation M
(0)(x) = M(x) or M (1)(x) = M

0(x) in

Robbins-Monro or Kiefer-Wolfowits algorithms we propose to use statistics

Z0 è Z1

Zrn
= h

�r

n
Kr(�n)Y (xn + hn�n); r = 0; 1;

instead z0 or z1. Here fhng is some sequence of positive number, f�ng is

sequence of independent random values, K0(�); K1(�) are some kernel func-

tion on R. For some fhng; f�ng; Kr(�); r = 0; 1 estimates Zrn
are consistency

estimates of M (r)(x) :

Exn
fKr(�n)h

�r

n
Y (xn + hn�ng =M

(r)(xn) + o(hp�r
n

); r = 0; 1:



Here p is some index of regression function M(x) (in particular, p = l if

l 2 N and M(x) has l � 1 derivations satisfies Lipchits conditions). Such a

stochastic approximation algorithm with additive perturbation noises hn�n
has recently been investigated by Polyak and Thybakov [4] for independent

measurement noises Yn � M(xn + hn�n) and by Granitchine [5],[6],[7] for

some special cases with dependent measurement noises. Polyak and Tsy-

bakov have shown that this algorithm had an optimum minimax rate of

convergence in wide variety of algorithms. This algorithm has mean square

rate of convergence O(n�
p�1

p ).
We propose to consider two new algorithms as Robbins-Monro and Kiefer-

Wolfowits. This algorithms provide convergence as sure with high rate and

asymptotic normality of distribution of random values xn � �. We calculate

the asymptotic variance of xn � �. This approach leads to way of optimal

choosing of kernel function Kr(�): The last section deal with new adaptive

Robbins-Monro algorithm, which every time use K0(�) and K1(�) for esti-
mation function regression root � and M (1)(�). This algorithm has optimal

perfomance: minimum variance of asymptotic normal distribution xn � �.

2 Differentiation kernel

Let fpm(u)g is some system of orthogonal polinoms on some interval [�
; 
]
with degree below l and weight function  (u) � 0; 
 > 0: ThenZ




�


 (u)pi(u)pj(u)du = aiÆi;j;

Z



�


 (u)du = 1; (1)

for i; j = 1; :::; l, where Æi;j is equal 1, if i = j, and 0 if i 6= j, ai =R



�

 (u)p2

i
(u)du is some constants.

Define the functions Kr(u); r = 0; 1 on interval [�
; 
] as linear combi-

nation of polinoms pm; m = 1; :::; l

Kr(u) =
lX

m=0

p
(r)
m (0)

am

pm(u): (2)

We can see Z



�


 (u)Kr(u)u
q
du = Æq;r; (3)

for any q 2 Z; q � l:

Let function f has l times continuous derivations near point x0 on R. We

have

f(x0 + cu) =
lX

i=0

f
(i)(x0)

i!
(cu)i + o(ul):



Consider integral representation of function f with kernel Kr

1

c2
< f(x0 + cu); Kr(u) >=

1

c2

Z



�


 (u)Kr(u)f(x0 + cu)du (4)

We can obtain

1

c2
< f(x0 + cu); K0(u) >= f(x0) +

Z



�


 (u)K0(u)o(u
l)du; (5)

1

c2
< f(x0 + cu); K1(u) >= f

(1)(x0) +

Z



�


 (u)
K1(u)

c
o(ul)du: (6)

Equations 5 and 6 shows the main idea of new stochastic approximation

algorithms listed below.

Note

K0(0) =

Z



�


 (u)K0(u)
2
du; (7)

K
(1)

1 (0) =

Z



�


 (u)K1(u)
2
du: (8)

We can use Legendre's or Chebuchev's polinoms to build kernel functions

Kr(u); r = 0; 1, for example. The values K0(0) and K
0

1(0) have importance

role in calculation variance of asymptotic distribution xn � � We have for

Legendre's polinoms

K0(0) =

[ l+1
2

]X
m=0

[
(2m� 1)!!

2m!!
]2(4m+ 1);

K
(1)

1 (0) =
1


2

[ l�1
2

]X
m=0

(4m+ 3)(1 +
1

2
)2(1 +

1

4
)2:::(1 +

1

2m
)2;

and for Chebuchev's polinoms

K0(0) = 1 +
1

2
[
l + 1

2
]; K 0

1(0) =
1


2
2([
l � 1

2
] + 1)2(

3

4
[
l � 1

2
]([
l � 1

2
] + 2) + 1);

[:::] is entire function.



3 Convergence and asymptotic normality

Let all random values define on some fixed probability space (
; F; P ).
Let regression function M(x) define on some compact set � 2 RN. It

has l times continuous derivations on � and M l(x) which satisfy Hoelder's

conditions with some constant �; 0 < � � 1 so that

M(x0 + t) =
lX

m=0

M
(m)(x0)

m!
t
m + o(jtjpj); (9)

where p = l + �.

Ò å î ð å ì à 1 Let random sequences fxng is "own" design of an exper-

iment and fYng is result of measurements(or observations), Efx1g < 1,

f�ng is perturbation noises, the sequence of independent random values with

same distributions on some interval [�
; 
](0 < 
 < 1) with distribution

density  (u), h and a are some positive constants, the real design of an ex-

periment is determined by summa xn+
h

n

1
2p

�n and EFn
fYng =M(xn+

h

n

1
2p

�n);

FN = �fx1; Y1�M(x1+
h

1
�1); :::; YN�1�M(xN�1+

h

(N�1)
1
2p

�N�1); �1; :::; �N�1}

is �-algebra, random values �N and Y1 �M(x1 +
h

1
�1); :::; YN�1�M(xN�1 +

h

(N�1)
1
2p

�N�1) are independent,N = 1; 2; :::, measurement noises are satisfied

Ef(Yn �M(xn +
h

n
1

2p

�n))
2
g � �

2
; Ef(Yn �M(xn +

h

n
1

2p

�n))
2
g ! �

2(�)

as xn ! �, there is some positive constant � > 0 so that for any q > 0

Ef(Yn �M(xn +
h

n
1

2p

�n))
2
1
f(Yn�M(xn+

h

n

1
2p

�n))2�qn�g
g ! 0

as n!1,(1f:::g is indicator function).

For this conditions we have

1) If l � 0, regression equation M(x) = 0 has the unique root on � in

the point �,

M
(1)(�) >

1

2a
(10)

there is B > 0; D > 0 so that for any x 2 R

jM(x)j � B +Djxj (11)

for any positive �

inf�<jx��j<��1fsign((x� �)M(x))g > 0; (12)



then estimates fxng which formed by

xn+1 = P�fxn �
a

n
K0(�n)Yng (13)

(P�f:::g is projection operator) satisfy convergence xn ! � as sure and

random value (xn��)n
1

2 has asymptotically normality distribution with mean

value 0 and variance
a
2
�
2(�)K0(0)

2aM (1)(�)� 1
; (14)

2) If l � 1, regression function M(x) has the unique minimum point on

� in the point �,

M
(2)(�) >

p� 1

2pa
(15)

there is B0
> 0; D0

> 0 so that for any x0; x" 2 R

jM
(1)(x0)�M

(1)(x")j � D
0
jx

0
� x"j; jM (1)(�)j � B

0 (16)

then estimates fxng which formed by

xn+1 = P�fxn �
a

n

h

n
1

2p

K1(�n)Yng (17)

satisfy convergence xn ! � as sure and random value (xn � �)n
p�1

2p has

asymptotically normality distribution with mean value 0 and variance

a
2(�2(�) +M(�))K

(1)

1 (0)

h2(2aM (2)(�)� p�1

p
)

: (18)

4 Adaptive storage of Robbins-Monro algorithm

Ò å î ð å ì à 2 Let all conditions of part 1 theorem 3 are hold.

If � is the unique root of regression equation M(x) = 0 on � and there

is two positive constants s+ > s
�
> 0 so such

s
�
�M

(1)(�) � s
+
; (19)

PSf:::g is projection operator on set S = [s�; s+],
then estimates fxng which formed by

xn+1 = P�fxn �
1

n

1

sn

K0(�n)Yng (20)



where fsng is sequence of random values

sn+1 = PSf
1

n

nX
i=1

i
1

2p

h
K1(�i)Yig; (21)

satisfy convergence xn ! � as sure and sn !M
(1)(�) as sure, random value

(xn � �)n
1

2 has asymptotically normality distribution with mean value 0 and

variance
�
2(�)K0(0)

(M (1)(�))2
(22)

and random value (sn�M
(1)(�))n

p�1

2p has asymptotically normality distribu-

tion with mean value 0 and variance

p�
2(�)K

(1)

1 (0)

p+ 1
: (23)

Note, expressions 22 and 23 are minimum of possible in wide range of sim-

ilar algorithms. In accordance expressions 14(22) and 18(23) we have one

way to choice kernels Kr(u); r = 0; 1. For example we can calculate vari-

ance for Legendre's and Chebushev's polinoms or we can study dependence

between 
 and variance of asymptotically distribution.
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