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Abstract

The paper is devoted to the linear regression parameters estimation

problem in a case where observation noise does not have any good sta-

tistical properties. The main asssumption, which will be made, is that

the model regressors (inputs) are random. New type of algorithms is

studied. They are similar to standart LMS or stochastic approxima-

tion algorithms. Optimal rates of convergence are established under

some weak assumptions. A typical algorithm behavior under the "bad"

noise is illustrated by several numerical examples.

1 Introduction

In linear regression problems the usual assumption as to the observation

noises is that noises are considered as realization of some sequence of in-

dependent random variables with zero mean. However in applications this

assumption is frequently neglected leading to side effects of standard estima-

tions procedures. Therefore it is important to investigate the capability of

the regression parameters estimation at a minimum assumptions to statisti-

cal properties of observation noises. It may seem surprising but regression

parameters can be effectively estimated though not centered, correlated and

even nonrandom noises (see [5],[6],[7],[8]). It can be reached under certain

conditions when regressors are random. The idea to use random input sig-

nals for the removal of displacement effect was put forward by Fisher [1]

in the form of the randomized principle of experiment design. Apart from

experiment design problem, in which regressors can be randomized by an

experimenter, random inputs also arise in many problems of identification,

filtration, recognition, etc.

Recurrent algorithms of regression parameters estimation were considered

at the random input signals case in works [3],[4] etc. In paper [2], the rate

of such algorithms convergence was studied. There was considered the opti-

mum algorithms with best from the possible rates of convergence. In all these

papers standard assumptions for noises were made. Namely it were consid-

ered that noises are random variables with zero mean, independent or weak
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dependent. The main purpose of this paper is to avoid these assumptions. It

will be shown that some estimation algorithms remain to generate consistent

estimates under not centered, correlated or even non�random observation

noises given input signals are random. Besides, optimum algorithms have

the same convergence rate as in the "standard" case.

The problem of linear regression parameters estimation was considered in

the [5] and [6] under "unknown, but bounded" deterministic noises. There a

more general then standard problem statement was studied, which supposed

that the unknown parameters vector can vary in time and it's mean value was

estimated in the offered algorithm. Content of this paper in many respects

is based on the [7].

2 Problem statement and assumptions

Consider a linear regression model

(1) yn = �
T

n
�
�

n
+ vn; �

�

n
= �� + �n; n = 1; 2; : : : ;

with output yn 2 R
1, input �n 2 R

r and noise vn 2 R
1
; �n 2 R

r . The un-

known parameter vector �� is to be estimated based on observations yn; �n;

n = 1; 2; : : : :
Let Fn be the ��algebra generated by f�1; : : : ; �n; �1; : : : ; �n; v1; : : : ; vng,

F̂n�1 be the ��algebra generated by f�1; : : : ; �n�1; �1; : : : ; �n�1; v1; : : : ; vng;

è ~Fn�1 be the ��algebra generated by f�1; : : : ; �n�1; �1; : : : ; �n; v1; : : : ; vng;

Fn�1 � F̂n�1 �
~Fn�1 � Fn :

We make the following assumptions.

(A) Inputs f�ngn�1 form a sequence of independent random vectors with

bounded mean values kEf�ngk �M� <1; for all n �n is independent

of ~Fn�1. Random vectors �n = �n � Ef�ng have symmetric distribu-

tion functions Pn(�), i.e. Pn(
) = Pn(�
) for any Borel set 
 � Rr;

Ef�n�
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(B) For all n �n are independent from F̂n�1 and Ef�ng = 0. Noises fvngn�1
and f�ngn�1 satisfy one of conditions:
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(iii) jvnj � Cv < 1; a:s:; k�nk � C� < 1 a:s:;

where �v; ��; Cv and C� are some constants.



Let's remark that standard assumptions (see [2]) are various in the linear

regression parameter estimations problem with random input signals. In

particular, that is expressed in the absence of zero-mean condition Efvng =
0 and assumption, which states that noises fvngn�1 are independent and

identically distributed random variables.

3 Estimation algorithms

Firstly we examine the randomized stochastic approximation estimator for

(1)

(2) �n = �n�1 � �n��n(�
T

n
�n�1 � yn); n = 1; 2; : : : ;

where �n � 0 is a non�random step size and � is a positively defined

symmetric matrix. We suppose that the initial value �0 is an arbitrary non-

random vector inRr.

Theorem 1 Let Assumption (A) be fulfilled and
P
1

n=1
�n =1; �n ! 0

as n!1.

If (Bi) holds and
P
1

n=1
�
2

n
< 1 ; then for (2) �n ! �� ïðè n!1

a.s.

If (Bii) holds then for (2)Ef(�n � ��)(�n � ��)
Tg ! 0 as n ! 1: The

following theorem establishes the convergence rate for the algorithm (2).

Theorem 2 Let Assumptions (A) and (Bii) be fulfilled,�n = n
�1, 9B >

0 : kBn � Bk = O(n�1) and ��B + 1

2
I be a Hurwitz matrix, i.e. all its

eigenvalues lie in the left half-plane ( I is an identity matrix ). Then
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where � > 0 is some small positive constant.

Last equation can be explicitly solved in the case when � = B�1,�� = 0
and M� = 0. For the algorithm (2), which has the standart form of

�n = �n�1 � (nB)�1�n(�
T

n
�n�1 � yn); n = 1; 2; : : : ;

we have

E (�n � ��)(�n � ��)
T
� n

�1
�
2

v
B�1 + o(n�1):

The same convergence rate holds when vn are independent zero-mean random

variables [2]. Moreover it was shown in the [2] that this choice of �n and �
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Fig.1 Useful signal and noise

is an optimal for the algorithms (2). Remark. In Theorem 2 statement

the inequalities in evaluations of the convergence rate can be replaced by

equalities in the case when equalities are in the assumption (Bii).

Secondly, for the regression model (1) we consider the regularized least

squares estimator with centered regressors:

�n = �n

nX

k=1

�kyk; �n = (
nX

k=1

�k�
T

k
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or in the recursive form

(3a) �n = �n�1 � �n�n(�
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�n�1�n�

T
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1 + �T
n
�n�1�n

; �0 = �
�1I;

where �n = �n � Ef�ng; � > 0 is a small positive number (regularization

parameter), see [3]. Also we assume that the initial value �0 is an arbitrary

nonrandom vector in Rr.

Theorem 3Let �n; n = 1; 2; : : : be identically distributed random vectors

and Assumption (A) be fulfilled.

If (Bi) holds, then for algorithms (3) �n ! �� as n !1 a.s.

If (Biii) holds and k�nk � C� < 1; n = 1; 2; : : : a.s. then for the

algorithm (3) as n !1 Ef(�n � ��)(�n � ��)
Tg ! 0:

The proofs of Theorems 1,2 and 3 in many respects coincide with corre-

sponding proofs in the [7].

4 Experimental results

Let's consider a problem of detecting some "useful" signal f�ng, which can be

present or not in an observation channel. Measurements are made with ad-
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ditive "bad" noises. Assume that case f�� = 1g corresponds to the situation
when a signal is present in the receiver, and f�� = 0g � to absence.

At the computer simulation the useful signal f�ng was selected as uni-

formly distributed on an interval [0:5; 1:5] and was also observed on a hum

of noises, which are determined by an "unknown but bounded" deterministic

function, jvnj � Cv = 2 (see Figure 1). Figure 2 shows the pathes of estima-

tion series for three algorithms in two cases. The level of observation noises

is so high that ordinary RMS algorithm estimates exceed the decisionmaking

level almost always without the dependence from presence or absence of a

signal, while the algorithms (1) and (2) give the correct answers after 50

iterations.

In the following example useful signals f�ng and observation noises fvng

satisfy the same conditions as earlier but useful signals "are actuated" in

an observation channel temporarily, though its value are accessible to the

experimenter during all the observation period. The problem is to design a

rule, on which at each moment one could answer the question whether the

useful signal acts in the observation channel or there is just noise being reg-

istered. Compare with the ordinary LMS the randomized algorithm watches

the changes of useful signal parameters more precisely, it gives only 13% of

incorrect answers, see Fig.3.

5 Conclusion

In the random input signals case the considered above algorithms require

the fulfilment of very weak conditions of observation noises for the proofs

of convergence. In particular, the observation noises can be determined by

"unknown but bounded" deterministic function. Thus, these algorithms can

be useful in many applications. Numerical simulation has demonstrated al-

gorithms effectiveness under diverse noises. For example, in scalar case the

experiments were made with a non�random constant, not centered random

noises and various non�random sequences of noises. In these experiments

pathes of SA and LMS estimates were investigated. The typical pathes be-

haviour has appeared quite similar to experiments outcomes in the case of

random noises with zero mean.
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