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1 Introduction

Recently the electronics development moved close to the step of intelligent control

device creating. Even now we have a real opportunity of the effective using of new

mathematics algorithms of the dynamic systems unknown parameters identification

theories, optimal and adaptive control, mathematical design of experiment theory

during the practice problems solving.

For some problems earlier we could only try to get the most probable set, which

contains a vector of unknown object parameters (or of functioning dynamic system).

But now the opportunity for getting rather exact decisions for such types of prob-

lems appears. Solving tasks, which find exact unknown parameters data, was often

unavailable owing to calculating difficulties. The exact decision of any problem can

be find if there is an exact target setting. But in our real existing world all the

connections and the relationships are so difficult and many-sided, that it is prac-

tically impossible to give a strict mathematical description of many phenomena.

A typical theoretic approach is to chose a mathematical model close to real pro-

cesses and to "include" into it different noises which from one side are some kind of

"roughness" of the mathematical model and from another one are characteristics of

unobserved object or system outside perturbations. During the last 40 years in ma-

jority of mathematical researches "useful" statistic properties are arrogated to noises

to develop solving task algorithms and at this base consistency of an algorithm is

proved mathematically. In the engineering practice the algorithms based on "least-

squares method" or on "maximum likelihood method" are used very often without

enough basis of statistic obstruction properties assumptions. As a matter of fact

it is inexpediently to use most that algorithms in the conditions of possible enemy

counteraction. It is well known for specialists in the theory of unknown parameters

identification that if the observation noises is a determined unknown function (the

enemy "jam" the signal) or observation noises are a "dependent" sequence then in

that case the getting decisions by many algorithms are wrong. In that cases the

theorists say that observation sequence is "singular" and such decisions are not con-

cerned. To "enrich" the information in the observation channel a test exciting noise



with the well-known (input) statistic properties is supposed to be included into the

system. It can be reached either by adding a trial impact through the system control

channel (if it exists) or by random way forming of an observation plan (experiment).

The theoretic bases of the corresponding algorithms can be found in a series of works

of Granichin O.N., Fomin V.N., Polyak B.T., Tsybakov A.B., Han Fu-Chen, Lei

Guo,J.Spall [5-11] and others. A considerable restriction of using these algorithms

is an assumption about a "week correlation" ("independence") of adding trail noise

into the system, while there are no other assumptions about noises properties. The

restriction at the exciting noise trail properties and external noise is natural, if noise

is a determined function, or any other foreign noise generated by the enemy, who

understood that we try to determine or investigate him. It is possible to elaborate

the suggestions about identification methods, which include trail exciting noise, for

some tasks solving. In itself this approach has a universal nature and may be used in

solving different problems, updating the exist algorithms, which are in use. Further

I'll try to describe it to stochastic approximation.

2 Stochastic approximation with exciting pertur-

bation under dependent noises

The main ideas of stochastic approximation was formulated by Robbins and Monro

[1]. Let x 2 R is "controllable" variable and for each x we can measure random

value Y (x) with distribution P (Y (x) < y) = Fx(y). Let M(x) is regression function

Y (x) on x:

M(x) =

Z +1

�1

Y (x)dFx(y):

Robbins and Monro investigated problem of finding � unique root of regression

equation M(x) = 0. Let M(x) is increasing function. Consider recurrent sequence

xn+1 = xn � anYn;

where fang are positive number and Yn is result of measurement by xn. Robbins

and Monro shown convergence xn to � as sure with natural proposals about fang

and statistical properties of measurement errors. In this algorithm one can considers

statistic

z0 = Y (x)

for estimate value of regression function M(x). Usually this is consistency estimate

of M(x)
Exfz0g =M(x);

(Exf:::g conditional mean value).

The problem regression function minimum point estimation was considered by

Kiefer and Wolfowits in [2]. The main idea was to solve the equationM 0(x) = 0. For
this purpose one can measure values Y in two points x+ c; x� c and for derivation



of regression function in point x one can use statistic

z1 =
1

2c
(Y (x + c)� Y (x� c)):

For the estimation of minimum point Kiefer and Wolfowits proposed algorithm

xn+1 = xn � anz1n ;

where fang; fcng some sequences of positive numbers.

In many cases from the practical point of view we don't able to know enough

information about statistical properties of measurement errors or it can be deter-

ministic function. There are some problem to establish convergence of ordinary

Robbins-Monro or Kiefer-Wolfowits algorithms.

The performance of stochastic approximation algorithms depends from accuracy

of estimateM(x) orM 0(x). If we change statistics z0 and z1 for another we can hope
to get better performance. For this purpose we need in better approximationM(x)
or M 0(x), Fabian [3] modified Kiefer and Wolfowits algorithm. They proposed to

use difference approximations of high derivations with some weight. If l is number of

continuous derivation of regression functionM(x), then Fabian's algorithm provides

mean square rate of convergence as O(n�
l�1

2 ) for odd l. >From computational point

of view Fabian's algorithm is very complicated.

In this paper for estimation M (0)(x) = M(x) or M (1)(x) = M
0(x) in Robbins-

Monro or Kiefer-Wolfowits algorithms we propose to use statistics Z0 è Z1

Zrn
= h

�r

n
Kr(�n)Y (xn + hn�n); r = 0; 1;

instead z0 or z1. Here fhng is some sequence of positive number, f�ng is sequence of

independent random values which are uncorrelated with errors of measurement on

step n, K0(�); K1(�) are some kernel function on R. For some fhng; f�ng; Kr(�); r =
0; 1 estimates Zrn

are consistency estimates of M (r)(x) :

Exn
fKr(�n)h

�r

n
Y (xn + hn�ng =M

(r)(xn) + o(hp�r
n

); r = 0; 1:

Here p is some index of regression function M(x) (in particular, p = l if l 2 N

and M(x) has l � 1 derivations satisfies Lipchits conditions). Such a stochastic

approximation algorithm with additive perturbation noises hn�n has recently been

investigated by Polyak and Thybakov [4] for independent measurement noises Yn�

M(xn + hn�n) and by Granichin [5],[6],[7],[8] for some special cases with dependent

measurement noises. Polyak and Tsybakov have shown that this algorithm had an

optimum minimax rate of convergence in wide variety of algorithms. This algorithm

has mean square rate of convergence O(n�
p�1

p ).
We propose to consider two new algorithms as Robbins-Monro and Kiefer-

Wolfowits. This algorithms provide convergence as sure with high rate. It is possi-

ble to prove an asymptotic normality of distribution of random values xn � � after

some proposal about statistical properties of measurement errors. We calculate the

asymptotic variance of xn � �. This approach leads to way of optimal choosing



of kernel function Kr(�): The last section deal with new adaptive Robbins-Monro

algorithm, which every time use K0(�) and K1(�) for estimation function regression

root � and M (1)(�). This algorithm has optimal perfomance: minimum variance of

asymptotic normal distribution xn � �.

3 Differentiation kernel

Let fpm(u)g is some system of orthogonal polinoms on some interval [�; ] with
degree below l and weight function  (u) � 0;  > 0: Then

Z


�

 (u)pi(u)pj(u)du = aiÆi;j;

Z


�

 (u)du = 1; (1)

for i; j = 1; :::; l, where Æi;j is equal 1, if i = j, and 0 if i 6= j, ai =
R


�
 (u)p2

i
(u)du

is some constants.

Define the functions Kr(u); r = 0; 1 on interval [�; ] as linear combination of

polinoms pm; m = 1; :::; l

Kr(u) =
lX

m=0

p
(r)
m (0)

am

pm(u): (2)

We can see Z


�

 (u)Kr(u)u
q
du = Æq;r; (3)

for any q 2 Z; q � l:

Let function f has l times continuous derivations near point x0 on R. We have

f(x0 + cu) =
lX

i=0

f
(i)(x0)

i!
(cu)i + o(ul):

Consider integral representation of function f with kernel Kr

1

c2
< f(x0 + cu); Kr(u) >=

1

c2

Z


�

 (u)Kr(u)f(x0 + cu)du (4)

We can obtain

1

c2
< f(x0 + cu); K0(u) >= f(x0) +

Z


�

 (u)K0(u)o(u
l)du; (5)

1

c2
< f(x0 + cu); K1(u) >= f

(1)(x0) +

Z


�

 (u)
K1(u)

c
o(ul)du: (6)

Equations 5 and 6 shows the main idea of new stochastic approximation algorithms

listed below.

Note

K0(0) =

Z


�

 (u)K0(u)
2
du; (7)



K
(1)

1 (0) =

Z


�

 (u)K1(u)
2
du: (8)

We can use Legendre's or Chebuchev's polinoms to build kernel functionsKr(u); r =
0; 1, for example. The values K0(0) and K

0

1(0) have importance role in calculation

variance of asymptotic distribution xn � � We have for Legendre's polinoms

K0(0) =

[ l+1
2

]X
m=0

[
(2m� 1)!!

2m!!
]2(4m+ 1);

K
(1)

1 (0) =
1

2

[ l�1
2

]X
m=0

(4m+ 3)(1 +
1

2
)2(1 +

1

4
)2:::(1 +

1

2m
)2;

and for Chebuchev's polinoms

K0(0) = 1 +
1

2
[
l + 1

2
]; K 0

1(0) =
1

2
2([
l � 1

2
] + 1)2(

3

4
[
l � 1

2
]([
l � 1

2
] + 2) + 1);

[:::] is entire function.

4 Convergence and asymptotic normality

Let all random values define on some fixed probability space (
; F; P ).
Let regression function M(x) define on some compact set � 2 R

N. It has l

times continuous derivations on � and M
l(x) which satisfy Hoelder's conditions

with some constant �; 0 < � � 1 so that

M(x0 + t) =
lX

m=0

M
(m)(x0)

m!
t
m + o(jtjpj); (9)

where p = l + �.

Theorem 1 Let random sequences fxng is "own" design of an experiment and

fYng is result of measurements(or observations), Efx1g < 1, f�ng is exciting

perturbation, the sequence of independent random values with same distributions

on some interval [�; ](0 <  < 1) with distribution density  (u), h and a are

some positive constants, the real design of an experiment is determined by summa

xn+
h

n

1
2p

�n, if errors of measurement are random values then random values �n and

Y1�M(x1+
h

1
�1); :::; Yn�1�M(xn�1+

h

(n�1)
1
2p

�n�1) are uncorrelated,n = 1; 2; ::: and

measurement errors are satisfied

Ef(Yn �M(xn +
h

n
1

2p

�n))
2
g � �

2
; Ef(Yn �M(xn +

h

n
1

2p

�n))
2
g ! �

2(�)

as xn ! �, there is some positive constant � > 0 so that for any q > 0

Ef(Yn �M(xn +
h

n
1

2p

�n))
2
1
f(Yn�M(xn+

h

n

1
2p

�n))2�qn�g
g ! 0



as n!1,(1f:::g is indicator function).

For this conditions we have

1) If l � 0, regression equation M(x) = 0 has the unique root on � in the point

�,

M
(1)(�) >

1

2a
(10)

there is B > 0; D > 0 so that for any x 2 R

jM(x)j � B +Djxj (11)

for any positive �

inf�<jx��j<��1fsign((x� �)M(x))g > 0; (12)

then estimates fxng which formed by

xn+1 = P�fxn �
a

n
K0(�n)Yng (13)

(P�f:::g is projection operator) satisfy convergence xn ! � as sure. With some

additional proposals the random value (xn� �)n
1

2 has asymptotically normality dis-

tribution with mean value 0 and variance

a
2
�
2(�)K0(0)

2aM (1)(�)� 1
; (14)

2) If l � 1, regression function M(x) has the unique minimum point on � in

the point �,

M
(2)(�) >

p� 1

2pa
(15)

there is B0
> 0; D0

> 0 so that for any x0; x" 2 R

jM
(1)(x0)�M

(1)(x")j � D
0
jx

0
� x"j; jM (1)(�)j � B

0 (16)

then estimates fxng which formed by

xn+1 = P�fxn �
a

n

h

n
1

2p

K1(�n)Yng (17)

satisfy convergence xn ! � as sure. In some cases random value (xn � �)n
p�1

2p has

asymptotically normality distribution with mean value 0 and variance

a
2(�2(�) +M(�))K(1)

1 (0)

h2(2aM (2)(�)� p�1

p
)

: (18)



5 Adaptive storage of Robbins-Monro algorithm

Theorem 2 Let all conditions of part 1 theorem 1 are hold.

If � is the unique root of regression equation M(x) = 0 on � and there is two

positive constants s+ > s
�
> 0 so such

s
�
� M

(1)(�) � s
+
; (19)

PSf:::g is projection operator on set S = [s�; s+],
then estimates fxng which formed by

xn+1 = P�fxn �
1

n

1

sn

K0(�n)Yng (20)

where fsng is sequence of random values

sn+1 = PSf
1

n

nX
i=1

i
1

2p

h
K1(�i)Yig; (21)

satisfy convergence xn ! � as sure and sn !M
(1)(�) as sure, random value (xn �

�)n
1

2 has asymptotically normality distribution with mean value 0 and variance

�
2(�)K0(0)

(M (1)(�))2
(22)

and random value (sn�M
(1)(�))n

p�1

2p has asymptotically normality distribution with

mean value 0 and variance
p�

2(�)K
(1)

1 (0)

p+ 1
: (23)

Note, expressions 22 and 23 are minimum of possible in wide range of simi-

lar algorithms. In accordance expressions 14(22) and 18(23) we have one way to

choice kernels Kr(u); r = 0; 1. For example we can calculate variance for Legendre's

and Chebushev's polinoms or we can study dependence between  and variance of

asymptotically distribution.

6 Two practical problems

The method of "dividing" material presence detection in the target, which is based

on trail signals using.

The initiation of in the time after target radiation treatment by an electron

bunch is one of the characteristics, which points at the presence in the target some

of "dividing" material. One of the basic theories of suspicious objects inspection is

based at this fact. At the same time the conclusion about the type of the "dividing"

material can be done by the retarded radiation intensity changes. If the enemy has a

counteraction opportunity, then it is easy to determine the beginning of the inspec-

tion (to note the electron bunch) by this method. Also, having some resources in



the time of retarded radiation appearance, add to the lag neuron flow corresponding

"jam" flow to delete an inspection opportunity. The main aim of the new method

with the trail signals using is to give a series of radiate electron bunch, the intensity

sequence of which is determined by some accidental process with well known static

properties. The new algorithm allows fixing the presence and the nature of the lag

neuron flow, in spite of high level noise generated.

Weighing Substance Precise Mass Definition Algorithm, Which Use Trail Ob-

structions.

The basic accuracy restriction during solving the problem of super precise mass

definition of reference material, which connects with the systematical error, defined

by the "dry friction" in mechanical part of the system, is well known. If scales have

the electromagnetic coupling opportunity at the balancing process, then it is possible

to start to shake a little bit the system by random sequence the electromagnetic

impulses to get precise result of weighting. Watching the system dynamic, which is

defined by the linear difference model of the second-order additive noise with the help

of the unknown parameters identification algorithm, coefficient model definition,

connected to the inertia moment, is possible. After this is possible to precise mass

definition of weighting material.
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