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1. INTRODUCTION

Technological advancements made it possible to deploy a large
number of inexpensive but technically advanced sensors to
cover wide areas. Applications in these fields include, for ex-
ample, intelligent video surveillance at cluttered and crowded
places, air traffic control, space situational awareness and ani-
mal tracking (see Hanif et al. (2017); Thite and Mishra (2016);
Jia et al. (2016)). Deployment of multiple sensors provides
more advantages over a single node. In particular, each sensor
mostly receives incomplete observations (measurements) be-
cause of the noisiness of an environment and inaccuracy inher-
ent to the sensor devices. Thanks to the use of multiple sensors
one might obtain more accurate estimation of the measured
value through the information fusion. In other words, multi-
sensor networks can be used to reduce uncertainties.

Kalman filters (KFs) without doubt are one of the most common
algorithms which the tracking systems rely on Kalman et al.
(1960); Uhlmann (1992). For multi-target tracking it has be-
come as much important as it has been for single target tracking.
Nevertheless, these algorithms address not all aspects of the
overall problem. When a tracking system is required to track
a large number of targets, the computation and communica-
tion loads arise. One possible solution is to use a distributed
scheme. In order to do that, consensus algorithms have been
adopted. In Olfati-Saber (2007); Cattivelli and Sayed (2010);
Di Paola et al. (2015) the authors suggested distributed estima-
tion schemes based on Kalman filtering. In the follow-up works
the researchers address the issues inherent to sensor networks
such as limited sensing capability, heterogeneity, asynchronous

� The main result (Theorem 1) in a special case with no constraints (9) was
supported by Russian Science Foundation (project 16-19-00057). The problem
statement with the constraints (9), Sections 3, 5 and Subsections 4.1, 4.3 were
supported by RFBR (project 16-07-00890).

messaging, energy efficiency Olfati-Saber and Sandell (2008);
Petitti et al. (2011); Giannini et al. (2013); Yang and Shi (2012).
In Yu (2017) distributed target tracking algorithm in the pres-
ence of data association uncertainty is suggested. The authors
utilized the maximum a posteriori approach to deal with the
data association process.

Besides of the consensus approach, researches have suggested
to use the stochastic approximation algorithms. In Spall (2012)
considered a modification of stochastic approximation proce-
dure based on a cyclic approach. The essence of the approach
is that the parameter vector is divided into several subvectors,
which then is sequentially updated while holding the remaining
parameters at their most recent values. In Botts et al. (2016)
the authors consider a stochastic multi-agent and multi-target
surveillance problem and apply to it a cyclic stochastic opti-
mization algorithm.

The research described in this paper is built upon our previ-
ous works regarding stochastic approximation algorithms (see
Amelin et al. (2013); Granichin and Amelina (2015); Granichin
and Erofeeva (2018)). We have examined this kind of algo-
rithms in different optimization problems (i.e., (non)-stationary,
(non)-constrained) along with the presence of noise in observa-
tions. In this paper we examine a cyclic stochastic approxima-
tion method with a perturbation on the input in the resource
constrained problem. In contrast with the previous works, in
this paper we consider an estimation process in possibly large
networks. In this case we need to take into account the available
computation and communication resources of the sensor net-
work. In particular, we propose a distributed algorithm for state
estimating (i.e., positions) of multiple moving targets by the
sensor network. After that, we get an upper bound of residual
between estimates for the suggested algorithm. Note that we
don’t consider the data association problem occurring in multi-
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ple target tracking applications. We assume it has already been
done by some other method.

The remainder of the paper is organized as follows. Section II
presents the problem statement. In Section III, we describe the
cyclic approach. The main result is given in Section IV, where
we present a distributed algorithm for multiple target tracking
and analyze its properties. Results of the experiments are shown
in Section V. Sections VI concludes the paper.

The notation used in this paper can be described as follows.
Upper and lower bold face letters are used for matrices and
column vectors, respectively. E{·} is the expectation operation.
(·)T denotes transposition. |U | denotes the cardinality of the set
U . ‖·‖ is the Euclidean norm. tr{·} is the matrix trace operator.

2. PROBLEM STATEMENT

Consider a distributed network consisting of n sensors, which
observe m moving objects. Let N = {1,2, . . . ,n} be a set of
sensors, M = {1,2, . . . ,m} be a set of objects, s j

t ∈ Rm be a
state of the sensor j, j ∈ N at time instant t, ri

t ∈ Rp be a state
of the object i, i ∈ M at time instant t.

The sensors estimate the state ri
t of the object i based on

the measurements received in accordance with the following
observation model

zi, j
t = ϕ(s j

t ,ri
t)+ ε i, j

t , (1)

where zi, j
t ∈ Rq is a measurement of the state of the object i

available to the sensor j at time instant t, ϕ(·, ·) :Rm×Rp →Rq

is an observation function, which depends on the current state
of the object i and sensor j, {ε i, j

t } is the additive external
noise with zero mean Eε i, j

t = 0 and the error covariance matrix
Eε i, j

t (ε i, j
t )T = Σi, j

t .

We assume that for any i ∈ M, j ∈ N and independent centered
ε i, j

t with the error covariance matrix Σi, j
t there exists the inverse

function ϕ−1(s j
t , ·) : Rq → Rp:

ϕ−1(s j
t ,ϕ(s

j
t ,ri

t)+ ε i, j
t ) = ri

t +ξ i, j
t , (2)

where ξ i, j
t is an independent component with zero mean

Eξ i, j
t = 0, the error covariance matrix Eξ i, j

t (ξ i, j
t )T = Ξi, j

t and
the bounded fourth central moment E‖ξ i, j

t ‖4 ≤ M4.

Note that the measurements received by a single sensor might
not be enough to reconstruct the state of an object. In this case
a sequence of measurements collected by the sensor itself or
through other sensors is usually utilized. Nevertheless, due to
availability of technologically advanced equipment it is pos-
sible to satisfy the assumption (2). If there is no such single-
valued inverse function, but there exists a subspace correspond-
ing to zi, j

t −Ui, j
t ri

t = 0, where Ui, j
t is a matrix mapping the state

into the measurement, then we are able to estimate the true state
on this subspace.

In addition, we assume that with some probability pσ the mean
value of tr(Ξi, j

t ) is less than some threshold value (σ̄min)
2 > 0

and its mean value is equal to (σ̄ i, j
t )2 if the threshold (σ̄min)

2 is
exceeded.

We denote by θ t = col(r1
t , . . . ,rm

t ) the joint vector of all object
states. Let r̂i

t be an estimate of the state of object i at time
instant t and θ̂ t = col(r̂1

t , . . . , r̂m
t ) be the joint vector of all

estimates.

The problem of estimating unknown states of objects can be
formulated as the problem of minimizing the functional

F̄t(θ̂ t) =
1
2 ∑

i∈M
‖ri

t − r̂i
t‖2 → min

θ̂ t

. (3)

In Granichin and Erofeeva (2018) we have shown that (3) might
be considered as the mean risk functional. To solve the problem
(3) we are going to use the algorithm and results from Granichin
and Amelina (2015). However, we need to adjust it to the
distributed case.

2.1 Mean-Risk Optimization

Let (Ω,F ,P) be the underlying probability space, where Ω is
a set of all possible results (outcomes) of an experiment, F
is a σ -algebra of subsets of Ω, and P is a probability measure
function, E is a mathematical expectation, W is some set (i.e.,
W= N or W⊂ Rp).

Consider a set of differentiable functions { f̄w(θ)}w∈W, f̄w(θ) :
Rd → R. Let x1,x2, . . . be the set of observation points chosen
by the experimenter. For each t = 1,2, . . . we get the mea-
surements (observations) y1,y2, . . . of f̄w(·) with the additive
external noise vt

yt = f̄wt (xt)+ vt , (4)
where vt represents the error emerging due to random quantities
such as imperfect state estimates, {wt} is an uncontrollable
sequence, wt ∈ W. In some cases vt can be considered as a
part of the vector wt . However, in the general case it is better
to separate them since the noise in the measurements is a
sensor property, and the random vector wt is a property of the
optimized system.

We denote by Ft−1 the σ -algebra of probabilistic events gener-
ated by those quantities from w0, . . . ,wt−1,x0, . . . ,xt−1,v0, . . . ,
vt−1, which are random, EFt−1 is a symbol for conditional
mathematical expectation with respect to σ -algebra Ft−1. We
assume that if wt is random, then f̄wt (θ) as a function of wt is
measurable for each θ with respect to σ -algebra Ft−1.

The problem is to find optimal θ t that minimizes mean risk
functional

F̄t(θ) = EFt−1 f̄wt (θ)→ min
θ

. (5)

subject to linear constraints
Hθ = qt−1 (6)

with matrix H of dimension l × d and vectors qt−1 ∈ Rl , 0 ≤
l < d (if l = 0 we assume that there are no constrains).

If rankH = l then there exists linear function h : Rd →Rd−l and
its reverse function gt : Rd−l → Rd such as

x = gt(h(x)), ∀x ∈Qt = {x : Hx = qt−1}.

If we choose W = ⊗m
i=1 ⊗n

j=1 Rq ⊗n
j=1 Rp and denote wt =

col(. . . ,ε i, j
t , . . . ,s j

t , . . .), xt = θ̂ t ,

f̄wt (xt) =
K
2n ∑

j∈N
∑
i∈M

‖ϕ−1(s j
t ,z

i, j
t )− r̂i

t‖2/(σ i, j
t )2,

where K = pσ (σ̄min)
2 +(1− pσ )∑ j∈N(σ̄

i, j
t )2, the correspond-

ing summands in the sum are assumed to be zero if (σ i, j
t )2 = ∞

and (σ i, j
t )2 = max{tr(Ξi, j

t )} otherwise, then (3) is a mean risk
functional similar to (5), since ξ i, j

t is an independent and cen-
tered component.
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ple target tracking applications. We assume it has already been
done by some other method.

The remainder of the paper is organized as follows. Section II
presents the problem statement. In Section III, we describe the
cyclic approach. The main result is given in Section IV, where
we present a distributed algorithm for multiple target tracking
and analyze its properties. Results of the experiments are shown
in Section V. Sections VI concludes the paper.

The notation used in this paper can be described as follows.
Upper and lower bold face letters are used for matrices and
column vectors, respectively. E{·} is the expectation operation.
(·)T denotes transposition. |U | denotes the cardinality of the set
U . ‖·‖ is the Euclidean norm. tr{·} is the matrix trace operator.

2. PROBLEM STATEMENT

Consider a distributed network consisting of n sensors, which
observe m moving objects. Let N = {1,2, . . . ,n} be a set of
sensors, M = {1,2, . . . ,m} be a set of objects, s j

t ∈ Rm be a
state of the sensor j, j ∈ N at time instant t, ri

t ∈ Rp be a state
of the object i, i ∈ M at time instant t.

The sensors estimate the state ri
t of the object i based on

the measurements received in accordance with the following
observation model

zi, j
t = ϕ(s j

t ,ri
t)+ ε i, j

t , (1)

where zi, j
t ∈ Rq is a measurement of the state of the object i

available to the sensor j at time instant t, ϕ(·, ·) :Rm×Rp →Rq

is an observation function, which depends on the current state
of the object i and sensor j, {ε i, j

t } is the additive external
noise with zero mean Eε i, j

t = 0 and the error covariance matrix
Eε i, j

t (ε i, j
t )T = Σi, j

t .

We assume that for any i ∈ M, j ∈ N and independent centered
ε i, j

t with the error covariance matrix Σi, j
t there exists the inverse

function ϕ−1(s j
t , ·) : Rq → Rp:

ϕ−1(s j
t ,ϕ(s

j
t ,ri

t)+ ε i, j
t ) = ri

t +ξ i, j
t , (2)

where ξ i, j
t is an independent component with zero mean

Eξ i, j
t = 0, the error covariance matrix Eξ i, j

t (ξ i, j
t )T = Ξi, j

t and
the bounded fourth central moment E‖ξ i, j

t ‖4 ≤ M4.

Note that the measurements received by a single sensor might
not be enough to reconstruct the state of an object. In this case
a sequence of measurements collected by the sensor itself or
through other sensors is usually utilized. Nevertheless, due to
availability of technologically advanced equipment it is pos-
sible to satisfy the assumption (2). If there is no such single-
valued inverse function, but there exists a subspace correspond-
ing to zi, j

t −Ui, j
t ri

t = 0, where Ui, j
t is a matrix mapping the state

into the measurement, then we are able to estimate the true state
on this subspace.

In addition, we assume that with some probability pσ the mean
value of tr(Ξi, j

t ) is less than some threshold value (σ̄min)
2 > 0

and its mean value is equal to (σ̄ i, j
t )2 if the threshold (σ̄min)

2 is
exceeded.

We denote by θ t = col(r1
t , . . . ,rm

t ) the joint vector of all object
states. Let r̂i

t be an estimate of the state of object i at time
instant t and θ̂ t = col(r̂1

t , . . . , r̂m
t ) be the joint vector of all

estimates.

The problem of estimating unknown states of objects can be
formulated as the problem of minimizing the functional

F̄t(θ̂ t) =
1
2 ∑

i∈M
‖ri

t − r̂i
t‖2 → min

θ̂ t

. (3)

In Granichin and Erofeeva (2018) we have shown that (3) might
be considered as the mean risk functional. To solve the problem
(3) we are going to use the algorithm and results from Granichin
and Amelina (2015). However, we need to adjust it to the
distributed case.

2.1 Mean-Risk Optimization

Let (Ω,F ,P) be the underlying probability space, where Ω is
a set of all possible results (outcomes) of an experiment, F
is a σ -algebra of subsets of Ω, and P is a probability measure
function, E is a mathematical expectation, W is some set (i.e.,
W= N or W⊂ Rp).

Consider a set of differentiable functions { f̄w(θ)}w∈W, f̄w(θ) :
Rd → R. Let x1,x2, . . . be the set of observation points chosen
by the experimenter. For each t = 1,2, . . . we get the mea-
surements (observations) y1,y2, . . . of f̄w(·) with the additive
external noise vt

yt = f̄wt (xt)+ vt , (4)
where vt represents the error emerging due to random quantities
such as imperfect state estimates, {wt} is an uncontrollable
sequence, wt ∈ W. In some cases vt can be considered as a
part of the vector wt . However, in the general case it is better
to separate them since the noise in the measurements is a
sensor property, and the random vector wt is a property of the
optimized system.

We denote by Ft−1 the σ -algebra of probabilistic events gener-
ated by those quantities from w0, . . . ,wt−1,x0, . . . ,xt−1,v0, . . . ,
vt−1, which are random, EFt−1 is a symbol for conditional
mathematical expectation with respect to σ -algebra Ft−1. We
assume that if wt is random, then f̄wt (θ) as a function of wt is
measurable for each θ with respect to σ -algebra Ft−1.

The problem is to find optimal θ t that minimizes mean risk
functional

F̄t(θ) = EFt−1 f̄wt (θ)→ min
θ

. (5)

subject to linear constraints
Hθ = qt−1 (6)

with matrix H of dimension l × d and vectors qt−1 ∈ Rl , 0 ≤
l < d (if l = 0 we assume that there are no constrains).

If rankH = l then there exists linear function h : Rd →Rd−l and
its reverse function gt : Rd−l → Rd such as

x = gt(h(x)), ∀x ∈Qt = {x : Hx = qt−1}.

If we choose W = ⊗m
i=1 ⊗n

j=1 Rq ⊗n
j=1 Rp and denote wt =

col(. . . ,ε i, j
t , . . . ,s j

t , . . .), xt = θ̂ t ,

f̄wt (xt) =
K
2n ∑

j∈N
∑
i∈M

‖ϕ−1(s j
t ,z

i, j
t )− r̂i

t‖2/(σ i, j
t )2,

where K = pσ (σ̄min)
2 +(1− pσ )∑ j∈N(σ̄

i, j
t )2, the correspond-

ing summands in the sum are assumed to be zero if (σ i, j
t )2 = ∞

and (σ i, j
t )2 = max{tr(Ξi, j

t )} otherwise, then (3) is a mean risk
functional similar to (5), since ξ i, j

t is an independent and cen-
tered component.
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2.2 Distributed Case

In distributed optimization it is assumed that for any w ∈W the
function f̄w(θ) is separable with respect to the function itself or
splitting of θ into n subvectors, meaning that:

f̄w(θ) =
n

∑
j=1

f j
w(θ

j), (7)

where θ j ∈ Rd is a copy of θ for each j = 1, . . . ,n or θ j ∈
Rd j

is a subvector of θ = col(θ 1, . . . ,θ n), respectively. In
the first case, each sensor i will generate its own estimate
of an optimal solution to the problem based on the avail-
able local information. Then the optimal solution set is Θ� =

{θ j ∈ Rd | ∑n
j=1 f j

w(θ j) = f̄ �w}. In the second case, each
sensor j is associated with some part θ j� of a global optimal
solution θ �.

Now, we rewrite the problem (5) in a distributed way as follows:

F̄t(θ) = EFt−1

n

∑
j=1

f j
wt (θ

j) =
n

∑
j=1

F j
t (θ j)→ min

θ
, (8)

subject to linear constraints
H jθ j = q j

t−1 (9)

with matrix H j of dimension l × d and vectors q j
t−1 ∈ Rl ,

0 ≤ l < d.

Next, we specify the observation function ϕ(·, ·).

2.3 Observation Model

We consider a 2D-plane, in which the state of the object i is
ri

t = [ri,1
t ri,2

t ]T and the state of the sensor j is s j
t = [s j,1

t s j,2
t ]T .

Suppose the sensors are able to determine the angle and dis-
tance to the objects, then:

ϕ(s j
t ,ri

t) =

[
ψ(s j

t ,ri
t)

ρ(s j
t ,ri

t)

]
∈ R2, (10)

where

ψ(s j
t ,ri

t) = arctg
[

ri,1
t − s j,1

t

ri,2
t − s j,2

t

]
(11)

is the angle to the object i,

ρ(s j
t ,ri

t) =

√(
ri,1

t − s j,1
t
)2

+
(
ri,2

t − s j,2
t
)2 (12)

is the distance to the object i.

In this case, the inverse function ϕ−1(s j
t , ·) is as follows

ϕ−1(s j
t ,z

i, j
t ) = s j

t +

[
zi, j,2

t sinzi, j,1
t

zi, j,2
t coszi, j,1

t

]
, (13)

where zi, j,1
t and zi, j,2

t are the first and second coordinates of
the vector zi, j

t , respectively. If the error covariance matrices ε i, j
t

are equal to Σi, j
t =

[
σ2

ψ 0
0 (zi, j,2

t σρ)
2

]
, then the error covariance

matrix of ξ i, j
t is

Ξi, j
t = R(zi, j,1

t )

[
(zi, j,2

t σψ)
2 0

0 (zi, j,2
t σρ)

2

]
R(zi, j,1

t )T, (14)

where R(ψ) =

[
sinψ −cosψ
cosψ sinψ

]
is the rotation matrix through

the angle ψ . Note that tr(Ξi, j
t ) = (zi, j,2

t σψ)
2 +(zi, j,2

t σρ)
2.

3. CYCLIC APPROACH

In Spall (2012); Cuevas (2017) the authors suggested a cyclic
stochastic approximation algorithm to find the estimate of the
vector θ t and provided theoretical results for the case of de-
creasing to zero step sizes. However, the use of decreasing
to zero step sizes in the problem (5), where it is required to
track changes of the estimating parameter θ t , may significantly
affect the convergence. Such problem actualizes the study of the
properties of cyclic stochastic approximation algorithms with
nondecreasing step size, which is the focus of this paper.

The cyclic approach allows us to move from a centralized
formulation of the problem to a distributed one. The peculiarity
of the cyclic approach application is that an unknown vector
θ t is divided into several subvectors, herewith at time instant t
only a selected subvector is updated. Nevertheless, it is implied
that for some time interval each subvector will be fully updated.

Let us consider more closely how the cyclic approach might
be applied to the early described problem. We divide the time
axis by a sequence of cycles of length 2k: 2(T −1)k+1,2(T −
1)k+ 2, . . . ,2T k and on each of the cycles we partition the set
of indices D= {1, . . . ,d} into k disjoint subsets Iu, u = 1, . . . ,k.
The subsets Iu derive the “active” parameters at time instants
t = 2(T −1)k+2u−1 t = 2(T −1)k+2u, u= 1, . . . ,k from the
whole parameters set. This subsets should satisfy the following
conditions

k⋃
u=1

Iu = D, Iu′
⋂

Iu′′ = /0 for u′ �= u′′. (15)

For each t = 1,2, . . . we define diagonal matrices At , forming
a sparse vector Atxt from xt with zeros at those places whose
indices do not belong to I(t mod (2k))÷2. Here mod is an opera-
tion of taking the remainder of the division of one number by
another, ÷ is an integer division. Based on the cyclic sequence
of matrices {At} we define a polynomial

A (λ ) =
k

∑
u=1

A2kT+2uλ u,

which later will be used along with the operation of shifting the
index λθ t = θ t−2k+2.

Taking into account the notation introduced, the obtained ob-
servations y1,y2, . . . can be represented as follows

yt = fwt (Atxt)+ vt . (16)

Let us define the adjacency matrix Bt = [bi, j
t ], where bi, j

t > 0 if
the sensor j is able to track the object i and bi, j

t = 0 otherwise.
Similarly, we introduce the interaction matrix Ct = [c j,k

t ], where
c j,k

t > 0 if the sensor j is able to communicate with the sensor
k ∈ N and c j,k

t = 0 otherwise. We denote by N j
t = { j : c j,k

t >

0} ⊂ N a set of “neighbors” of the sensor j. Let M j
t ⊂ M be

a set of objects of the sensor j, which he can observe itself at
time instant t or receive measurements from its neighbors.

We consider two types of restrictions placed on the sensor net-
work functioning. The first restriction is that each sensor is able
to exchange data only with a certain number of “neighbors”, i.e.
we assume that the following constraints arise

|N j
t | ≤ n j

max. (17)
In a real environment, this restriction may arise, for example,
if the number of dedicated communication channels is limited
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or if sensors are unable to send data to a distance greater
than a certain maximum. The second restriction is related to
the maximum allowable number of objects to be tracked by
sensor j itself or through information from its “neighbors” at
time instant t

|M j
t | ≤ m j

max, (18)
In turn, this restriction may be associated with the limited
throughput of the communication channel. Note that we form
the subsets of M j

t by varying the coefficients of the adjacency
matrix Bt .

Let matrices Bt and Ct satisfy the conditions (17) and (18).
Moreover, each sensor j, j ∈ N observe the objects belonging
to some set D j under the conditions:

k j⋃
u=1

I j
u = D j, I j

u′
⋂

I j
u′′ = /0 for u′ �= u′′. (19)

We denote by A j
t matrices that form the sparse vectors θ̂ t .

With the notation introduced, the functional (3) can be rewritten
as (8)

f j
t (θ̂

j
t ) =

K
2n ∑

i∈M j
t

‖ϕ−1(s j
t ,z

i, j
t )− r̂i

t‖2/(σ i, j
t )2, (20)

since we can assume that (σ i, j
t )2 = ∞ if the sensor j does not

receive any information about the object i at time instant t.

4. MAIN RESULT

We are going to use General Cyclic Simultaneous Perturbation
Stochastic Approximation (GCSPSA) with a perturbation on
the input and linear constraints to track changes of θ t , see
Granichin and Erofeeva (2018); Erofeeva (2018).

4.1 Distributed Cyclic Estimation Algorithm

Let θ̂ 0 ∈ Rd be a nonrandom initial vector, ∆T , T = 0,1, . . . ,
be an observed sequence of independent random vectors in Rd ,
called the simultaneous perturbation vectors, which are equal
to ±1 with probability 1

2 . The following Algorithm 1 should be
carried out on each sensor j, j ∈ N.
Algorithm 1. Distributed State Estimation Based on GCSPSA

Input: α j > 0, β j > 0, n j
max, m j

max

Output: θ̂
j
t

Initialization: Set the counter index T j = 0. Select an initial
guess θ̂

j
0 ∈Rd . Form a sequence of matrices {A j

t } such that the
conditions (17)-(19) are satisfied.

1. Set T j ← T j +1.

2. Generate the random vector ∆ j
T j according to the Bernoulli

distribution of i.i.d. components that are equal to ±1 with
probability 1

2 .

3. For u ← 1 to k j repeat:

3.1 Set t ← 2T j +2u.

3.2 Form an observation point x j
t−1. If a j,l

t−1 > 0 then x j,l
t−1 ←

θ̂ j,l
2T j − β j∆ j,l

T j and x j,l
t−1 ← 0 otherwise.

3.3 Get measurements zi, j
t−1, i ∈ M j

t−1.

3.4 Calculate y j,−
t−1 using (20): y j,−

t−1 ← f j
t (x

j
t−1).

3.5 Form an observation point x j
t . If a j,l

t > 0 then x j,l
t ← θ̂ j,l

2T j +

β j∆ j,l
T j and x j,l

t ← 0 otherwise.

3.6 Get measurements zi, j
t , i ∈ M j

t .

3.7 Calculate y j,+
t using (20): ∇̂ j

t ← A j
t ∆ j

T j
y j,+

t −y j,−
t−1

2β j .

3.8 Calculate pseudogradient: ∇̂ j
t ← A j

t ∆ j
T j

y j,+
t −y j,−

t−1
2β j .

3.9 Get the new estimation θ̂
j
t ← θ̂

j
t−1 −α j∇̂ j

t .

Go to step 1.

4.2 Supporting Theorem and Assumptions

This subsection presents Theorem 1 and assumptions for the
general cyclic SPSA procedure with a perturbation on the
input, which are provided in Erofeeva (2018). The proof of
Theorem 1 is based on the results in Granichin and Erofeeva
(2018), where we have considered a special case, i.e. when
there are no constraints. In the next subsection we are going
to formulate Theorem 2 based on Theorem 1 for a particular
problem described in Section II.

Let us provide Assumptions about disturbances and functions
f̄w(x), F̄t(x):

As1. For the minimum points θ t of functions F̄t(·) and the gra-
dients of the functions f̃ (Atx) = f̄wt (gt(Atx)) the inequalities
hold
∀x ∈ Rd (x−h(θ t))

TAT
t EFt−1∇ f̃wt (Atx)≥ µ‖At(x−h(θ t))‖2

with a constant µ > 0.

As2. ∀w ∈ W the gradient ∇ f̃wt (Atx) satisfies the Lipschitz
condition: ∀x′,x′′ ∈ Rd

‖∇ f̃wt (Atx′)− f̃wt (Atx′′)‖ ≤ M‖At(x′ −x′′)‖
with a constant M ≥ µ .

As3. The gradient ∇ f̃wt (Atx) is uniformly bounded in the mean-
squared sense at the minimum points θ t : ‖E∇ f̄wt (Ath(θ t))‖ ≤
c1, E‖∇ f̄wt (Ath(θ t))‖2 ≤ c2, E(∇ f̄wt (Ath(θ t)))

T∇ f̄wt−1(At ·
·h(θ t−1)) ≤ c2 (c1 = c2 = 0, if wt is not a random parameter,
i.e. f̄wt (x) = F̄t(x)).

As4. The drift is bounded: for η t = At(h(θ t −θ t−1)) the condi-
tion ‖η t‖≤ δθ <∞ is met, or E‖η t‖2 ≤ δ 2

θ and E‖η t‖‖η t−1‖≤
δ 2

θ are met if a sequence {wt} is random.

As5. The rate of drift is bounded in such a way that for any
arbitrary point ∀x ∈ Rd : EFt−2( f̃wt (Atθ t)− f̃wt−1(Atθ t−1))

2 ≤
c3‖At(x−h(θ t−2))‖+ c4.

As6. Sequential differences of the observation noise are limited:
|v2t − v2t−1| ≤ cv < ∞ or E(v2t − v2t−1)

2 ≤ c2
v , if the sequence

{vt} is random.

As7. For any T = 0,1, . . ., if vt is random, then the vector ∆T
and the differences v2kT+2 − v2kT+1, . . . ,v2k(T+1) − v2k(T+1)−1
are independent; if wt is random, then the vector ∆T and
w2kT+1, . . . ,w2k(T+1) are independent.

Theorem 1. If Assumptions 1–7 hold, the constant α j is suffi-
ciently small and the conditions (15) are fulfilled: α ∈ (0; µ/γ)
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or if sensors are unable to send data to a distance greater
than a certain maximum. The second restriction is related to
the maximum allowable number of objects to be tracked by
sensor j itself or through information from its “neighbors” at
time instant t

|M j
t | ≤ m j

max, (18)
In turn, this restriction may be associated with the limited
throughput of the communication channel. Note that we form
the subsets of M j

t by varying the coefficients of the adjacency
matrix Bt .

Let matrices Bt and Ct satisfy the conditions (17) and (18).
Moreover, each sensor j, j ∈ N observe the objects belonging
to some set D j under the conditions:

k j⋃
u=1

I j
u = D j, I j

u′
⋂

I j
u′′ = /0 for u′ �= u′′. (19)

We denote by A j
t matrices that form the sparse vectors θ̂ t .

With the notation introduced, the functional (3) can be rewritten
as (8)

f j
t (θ̂

j
t ) =

K
2n ∑

i∈M j
t

‖ϕ−1(s j
t ,z

i, j
t )− r̂i

t‖2/(σ i, j
t )2, (20)

since we can assume that (σ i, j
t )2 = ∞ if the sensor j does not

receive any information about the object i at time instant t.

4. MAIN RESULT

We are going to use General Cyclic Simultaneous Perturbation
Stochastic Approximation (GCSPSA) with a perturbation on
the input and linear constraints to track changes of θ t , see
Granichin and Erofeeva (2018); Erofeeva (2018).

4.1 Distributed Cyclic Estimation Algorithm

Let θ̂ 0 ∈ Rd be a nonrandom initial vector, ∆T , T = 0,1, . . . ,
be an observed sequence of independent random vectors in Rd ,
called the simultaneous perturbation vectors, which are equal
to ±1 with probability 1

2 . The following Algorithm 1 should be
carried out on each sensor j, j ∈ N.
Algorithm 1. Distributed State Estimation Based on GCSPSA

Input: α j > 0, β j > 0, n j
max, m j

max

Output: θ̂
j
t

Initialization: Set the counter index T j = 0. Select an initial
guess θ̂

j
0 ∈Rd . Form a sequence of matrices {A j

t } such that the
conditions (17)-(19) are satisfied.

1. Set T j ← T j +1.

2. Generate the random vector ∆ j
T j according to the Bernoulli

distribution of i.i.d. components that are equal to ±1 with
probability 1

2 .

3. For u ← 1 to k j repeat:

3.1 Set t ← 2T j +2u.

3.2 Form an observation point x j
t−1. If a j,l

t−1 > 0 then x j,l
t−1 ←

θ̂ j,l
2T j − β j∆ j,l

T j and x j,l
t−1 ← 0 otherwise.

3.3 Get measurements zi, j
t−1, i ∈ M j

t−1.

3.4 Calculate y j,−
t−1 using (20): y j,−

t−1 ← f j
t (x

j
t−1).

3.5 Form an observation point x j
t . If a j,l

t > 0 then x j,l
t ← θ̂ j,l

2T j +

β j∆ j,l
T j and x j,l

t ← 0 otherwise.

3.6 Get measurements zi, j
t , i ∈ M j

t .

3.7 Calculate y j,+
t using (20): ∇̂ j

t ← A j
t ∆ j

T j
y j,+

t −y j,−
t−1

2β j .

3.8 Calculate pseudogradient: ∇̂ j
t ← A j

t ∆ j
T j

y j,+
t −y j,−

t−1
2β j .

3.9 Get the new estimation θ̂
j
t ← θ̂

j
t−1 −α j∇̂ j

t .

Go to step 1.

4.2 Supporting Theorem and Assumptions

This subsection presents Theorem 1 and assumptions for the
general cyclic SPSA procedure with a perturbation on the
input, which are provided in Erofeeva (2018). The proof of
Theorem 1 is based on the results in Granichin and Erofeeva
(2018), where we have considered a special case, i.e. when
there are no constraints. In the next subsection we are going
to formulate Theorem 2 based on Theorem 1 for a particular
problem described in Section II.

Let us provide Assumptions about disturbances and functions
f̄w(x), F̄t(x):

As1. For the minimum points θ t of functions F̄t(·) and the gra-
dients of the functions f̃ (Atx) = f̄wt (gt(Atx)) the inequalities
hold
∀x ∈ Rd (x−h(θ t))

TAT
t EFt−1∇ f̃wt (Atx)≥ µ‖At(x−h(θ t))‖2

with a constant µ > 0.

As2. ∀w ∈ W the gradient ∇ f̃wt (Atx) satisfies the Lipschitz
condition: ∀x′,x′′ ∈ Rd

‖∇ f̃wt (Atx′)− f̃wt (Atx′′)‖ ≤ M‖At(x′ −x′′)‖
with a constant M ≥ µ .

As3. The gradient ∇ f̃wt (Atx) is uniformly bounded in the mean-
squared sense at the minimum points θ t : ‖E∇ f̄wt (Ath(θ t))‖ ≤
c1, E‖∇ f̄wt (Ath(θ t))‖2 ≤ c2, E(∇ f̄wt (Ath(θ t)))

T∇ f̄wt−1(At ·
·h(θ t−1)) ≤ c2 (c1 = c2 = 0, if wt is not a random parameter,
i.e. f̄wt (x) = F̄t(x)).

As4. The drift is bounded: for η t = At(h(θ t −θ t−1)) the condi-
tion ‖η t‖≤ δθ <∞ is met, or E‖η t‖2 ≤ δ 2

θ and E‖η t‖‖η t−1‖≤
δ 2

θ are met if a sequence {wt} is random.

As5. The rate of drift is bounded in such a way that for any
arbitrary point ∀x ∈ Rd : EFt−2( f̃wt (Atθ t)− f̃wt−1(Atθ t−1))

2 ≤
c3‖At(x−h(θ t−2))‖+ c4.

As6. Sequential differences of the observation noise are limited:
|v2t − v2t−1| ≤ cv < ∞ or E(v2t − v2t−1)

2 ≤ c2
v , if the sequence

{vt} is random.

As7. For any T = 0,1, . . ., if vt is random, then the vector ∆T
and the differences v2kT+2 − v2kT+1, . . . ,v2k(T+1) − v2k(T+1)−1
are independent; if wt is random, then the vector ∆T and
w2kT+1, . . . ,w2k(T+1) are independent.

Theorem 1. If Assumptions 1–7 hold, the constant α j is suffi-
ciently small and the conditions (15) are fulfilled: α ∈ (0; µ/γ)
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if (µ)2 < 2γ , or α ∈
(

0; µ−
√

(µ)2−2γ
2γ

)
∪
(

µ+
√

(µ)2−2γ
2γ ; µ/γ

)

otherwise, then the sequence of estimates {θ̂ 2kT}∞
T=0 provided

by the GCSPSA algorithm has an asymptotically efficient upper
bound which equals to: ∀ε > 0 ∃ t̄ : ∀t > t̄

√
E‖h(θ̂ t −A (λ )θ t)‖2 ≤

√
k
(

b+
√

b2 +ml
)

m
+ ε, (21)

where γ = 3d(M2d + c3
β ), m = 2(µ −αγ), b = 2βMd

√
d(1+

6αMd)+δθ (M+2µ +6αM2d2), l̄ = 2αd(c2
v +3( c4

β +d(c2+

+M2(δθ + 2β
√

d)2))) + 2δθ (4βMd
√

d +Mδθ + c1 + 3µδ 2
θ ),

l = l̄ +2bk
√

kδθ +
1−αm

α δ 2
θ .

Proof. The proof is given in Erofeeva (2018).

4.3 Upper Bound of Residuals of Estimation

This subsection presents a theorem that provide estimation
properties for Algorithm 1.
Theorem 2. If Assumptions 1–7 hold, the constant α j is suf-
ficiently small, the drift ‖ri

t − ri
t−1‖ ≤ σ i

r, i ∈ M is bounded
and the following conditions are fulfilled: (2) is for the ob-
servation model, (17)–(19) are for the matrix sequences {Bt},
{Ct} and {A j

t }, j ∈ N: α j ∈ (0; µ j/γ j) if (µ j)2 < 2γ j, or α j ∈(
0; µ j−

√
(µ j)2−2γ j

2γ j

)
∪
(

µ j+
√

(µ j)2−2γ j

2γ j ; µ j/γ j
)

otherwise,

then the sequence of estimates {θ̂
j
2k jT j}∞

T j=0 provided by the
Algorithm 1 has an asymptotically efficient upper bound which
equals to: ∀ε j > 0 ∃ t̄ j : ∀t > t̄ j

√
E‖h(θ̂

j
t −A (λ )θ t)‖2 ≤

√
k j
(

b j +
√
(b j)2 +m jl j

)

m j + ε j,

where µ j = K
2nmaxi,t (σ

i, j
t )2

, M j = K
2nmini,t (σ

i, j
t )2

, γ j = 3d2(M j)2,

m j = 2(µ j−αγ j), δ j
θ = k j maxi,t ∑i∈M j

t
δ i

r, b j = 2βM jd
√

d(1+

6αM jd)+δ j
θ (M

j +2µ j +6α(M j)2d2), l̄ j = 6d α
β maxt

K
2n ·

· ∑
i∈M j

t

(
M4

(σ i, j
t )4

+
M4

(σ i, j
t−1)

4
−2)+6d2(

K
2n

max
i,t

tr(Ξi, j
t )

(σ i, j
t )2

+

+(M j)2(δ j
θ +2β

√
d)2)+2δ j

θ (4βM jd
√

d+M jδ j
θ +3µ j(δ j

θ )
2),

l j = l̄ j +2b jk j
√

k jδ j
θ +

1−αm j

α (δ j
θ )

2.

Proof. The proof is given in Appendix.

Remarks: Due to time-varying nature of the estimated param-
eter in the target tracking problem, computations need to be
performed faster than the rate at which the parameter evolves.

Assumptions 1 and 2 imply that the function have to be convex
and the gradient have to be Lipschitz, respectively. Assumption
3 is general. Assumptions 4 and 5 are related to the sampling
time and the speed of an object. Assumptions 6 and 7 state
that the noise have to be bounded and independent from the
simultaneous perturbation vector generated by the algorithm.

5. EXPERIMENTS

Suppose six objects are moving in a square area of 300 ×
300 km2. The objects have the same initial velocity, which

is equal to 2500 km/h. The velocities of each object slightly
change over time.

Six stationary sensors are randomly located in the area of
interest. Each sensor receives noisy measurements. The level
of errors in the measurements is set to 5% for distances and 0.5
degrees for angles.

Objects and sensors have a common coordinate system with
axes x1 and x2. Objects start their movement at the points
with coordinates r1

0 = [270,295]T; r2
0 = [240,290]T; r3

0 =

[210,285]T; r4
0 = [180,280]T; r5

0 = [150,275]; r6
0 = [120,270]T.

For each sensor j ∈ N we set α j = 0,05 β j = 0,03. The initial
guess θ̂

j
0 is randomly assigned from the interval [299,300]T.

Let the maximum number of targets that each sensor is able
to observe be m j

max ∈ {1, . . . ,6} and the maximum possible
number of “neighbors” be n j

max = 2.

Figures 1-2 present the simulation results for a chosen value of
m j

max. Here, errt is an estimation error at time t. With a low
number of possible tracking objects, the rate of convergence of
the estimate to the real value is significantly slowed down. In
turn, with the maximum possible value of m j

max , the algorithm
demonstrates the best convergence.

Based on the simulation results, we can say that it is possible
not to use all available sensors to track each target. As a result
it is possible to use the resources of the sensor network more
rationally and increase its tracking characteristics.

Fig. 1. An estimation error for m j
max = 3

Fig. 2. An estimation error for m j
max = 1

6. CONCLUSIONS

Algorithm 1 provides an efficient solution for multi-target
tracking in the sense of memory and computation. If the con-
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ditions of Theorem 2 are hold, we will be able to estimate the
states of the moving objects despite the presence of the sensor
network limitations. However, it comes for a price. If we are
able to track only a small amount of all targets that have to be
tracked, the rate of convergence becomes slow. In this case, we
may find a trade-off between the rate of convergence and the
possible amount of targets, which the system tracks at some
time interval. In follow-up works we are going to study how
changes to the network topology affect the performance of the
algorithm.
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Appendix A. THE PROOF OF THEOREM 2

To prove Theorem 2, it suffices to verify if Assumptions 1–7
of Theorem 1 for functions F j

t (A
j
t x) and f j

t (A
j
t x) are fulfilled.

In order to do this, we first compute the components of the
gradient of the function F j

t (A
j
t x):

∂
∂xi,l ∇F j

t (A
j
t x) = EFt−1

∂
∂xi,l ∇ f j

t (A
j
t x) =

= EFt−1 ∑
i∈M j

t

K(xi,l +ξ i,l − ri,l)

2n(σ i, j
t )2

·1 = ∑
i∈M j

t

Kxi,l

2n(σ i, j
t )2

− ri,l .

From the last formula it follows that

Assumption 1 holds if µ j = K
2nmaxi,t (σ

i, j
t )2

,

Assumption 2 holds if M j = K
2nmini,t (σ

i, j
t )2

,

Assumption 3 holds if c j
1 = 0 c j

2 =
K
2n maxi,t

tr(Ξi, j
t )

(σ i, j
t )2

,

Assumption 4 holds if δ j
θ = k j maxi,t ∑i∈M j

t
δ i

r.

Let us now verify the Assumptions 5-6. Assumptions 5 holds if

c j
3 = 0 and c j

4 = maxt
K
2n ∑i∈M j

t

(
M4

(σ i, j
t )4

+ M4
(σ i, j

t−1)
4
−2

)
. For the

corresponding difference we have

EFt−2( f̄ j
wt (Atθ t)− f̄ j

wt−1
(Atθ t−1))

2 =

=
K
2n

EFt−2 ∑
i∈M j

t

(
‖ ξ i, j

t

(σ i, j
t )

‖2 −‖
ξ i, j

t−1

(σ i, j
t−1)

‖2

)2

≤

≤ K
2n ∑

i∈M j
t

(
M4

(σ i, j
t )4

+
M4

(σ i, j
t−1)

4
−2

)
≤ c j

4.

Since we consider that vt = 0 then in Assumption 6 cv = 0.
Assumption 7 is satisfied because of the noise independence in
the observation model.

The proof of Theorem 2 is now complete.
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ditions of Theorem 2 are hold, we will be able to estimate the
states of the moving objects despite the presence of the sensor
network limitations. However, it comes for a price. If we are
able to track only a small amount of all targets that have to be
tracked, the rate of convergence becomes slow. In this case, we
may find a trade-off between the rate of convergence and the
possible amount of targets, which the system tracks at some
time interval. In follow-up works we are going to study how
changes to the network topology affect the performance of the
algorithm.
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Let us now verify the Assumptions 5-6. Assumptions 5 holds if
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Since we consider that vt = 0 then in Assumption 6 cv = 0.
Assumption 7 is satisfied because of the noise independence in
the observation model.

The proof of Theorem 2 is now complete.
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