© 2015 г. О. Н. ГРАНИЧИН, д-р физ.-мат. наук (oleg_granichin@mail.ru) (Санкт-Петербургский государственный университет)

ПОИСКОВЫЕ АЛГОРИТМЫ СТОХАСТИЧЕСКОЙ АППРОКСИМАЦИИ С РАНДОМИЗАЦИЕЙ НА ВХОДЕ

В статье наряду с детальным обзором развития псевдоградиентных алгоритмов стохастической аппроксимации с рандомизированными возмущениями на входе рассматривается вопрос об их применимости в оптимизационных задачах с линейными ограничениями и обсуждаются новые возможности их применения для мультиагентного управления при балансировке загрузки узлов вычислительных сетей. Обоснования состоятельности алгоритмов и их оптимальной скорости сходимости опираются на основополагающие работы Б.Т. Поляка.

1. Введение

Развитие средств контроля и вычислительной техники позволяет в настоящее время перейти к решению многих практических задач "на лету", встраивая "умные" блоки в контуры управления простых и сложных систем, в технологические процессы, в разнообразные системы поддержки принятия решений и т. п. В приложениях важную роль играют решения задач оптимизации [1].

Использование математических методов неразрывно связано с формированием моделей исследуемых явлений, представляющих собой только приближение реальных процессов. Допустимый класс неопределенностей в модели и скорость работы алгоритма оптимизации — ключевые вопросы обоснования того или иного оптимизационного метода. Типичным подходом в теории является выбор близкой к реальным процессам математической модели и включение в нее различных *помех*, относящихся, с одной стороны, к грубости математической модели и, с другой — характеризующих неконтролируемые внешние возмущения объекта или системы [2]. При рассмотрении проблем оптимизации стохастическая постановка не только является наиболее адекватной реальным процессам, но и часто позволяет предлагать обоснованные решения для вычислительно "сложных" или плохо обоснованных задач.

Традиционные методы описания динамических систем предполагают выбор некоторого пространства состояний $\mathbb{X} \subset \mathbb{R}^d$, $d \in \mathbb{N}$, и составление уравнения динамики

$$\dot{\mathbf{x}} = A(\mathbf{x}, u, w, \theta)$$

для зависящей от времени переменной состояния $\mathbf{x} \in \mathbb{X}$. Управляющая переменная u характеризует контролируемые внешние воздействия на систему (играет роль "посредника" с внешним миром), неконтролируемые воздействия характеризуются переменной w. Вид уравнений динамики обычно задается с точностью до некоторого набора констант $\theta \in \Theta$ (обычно конечномерного), называемого параметрами системы.

После удачного и обоснованного выбора математической модели одной из основных задач, возникающих при анализе динамических систем, является получение или уточнение информации о реальных параметрах системы (идентификация системы). Эта информация может в дальнейшем использоваться при прогнозировании поведения системы или при формировании закона управления. Для всех математических моделей результатом эксперимента является математический объект — число, множество чисел, кривая и т. п. Наряду с описанием динамики процесса выбирают ту или иную модель наблюдений. Любые измерения дают всегда значения величин, заведомо усредненные как по некоторой пространственной области, так и по некоторому промежутку времени. Обычно набор наблюдений y в момент времени T может быть представлен как двойной интеграл по некоторому условному распределению $P_y(\cdot)$

$$y = \int_{T-\delta}^{T} dt' \int_{\mathbb{M}} \mathcal{P}_{y}(d\mathbf{x} | t', u, w),$$

где продолжительность интервала времени δ и некоторое подмножество пространства состояний $\mathbb{M} \subset \mathbb{X}$ (часто $\mathbb{M} \subset \partial \mathbb{X}$) определяются характеристиками регистрирующих приборов. Принципы построения современных вычислительных устройств наиболее адекватны обработке последовательных наблюдений, получаемых в дискретные моменты времени. После дискретизации и некоторых упрощающих предположений для модели наблюдений можно получить выражение вида

$$y_t = B_t(\mathbf{x}_t, u, w_t, \theta) + v_t, \ t = 1, 2, \dots,$$

в котором $B_t(\cdot)$ — некоторые функции, а $v_t = \tilde{v}_t + \hat{v}_t(\theta)$ понимается как стандартная опшбка в наблюдении (помеха), состоящая обычно из статистической (случайной) погрешности \tilde{v}_t и систематической \hat{v}_t (погрешности модели). О неконтролируемых воздействиях на систему w_t также обычно делаются стандартные статистические предположения. В этом случае статистическую погрешность \tilde{v}_t можно включить как дополнительный компонент в w_t , а v_t можно по смыслу отождествлять с систематической погрешностью \hat{v}_t . В противовес статистическим погрешностям w_t о систематических v_t обычно делаются предположения только об ограниченности, а в остальном они могут быть произвольными.

Возможна ли постановка задачи об идентификации неизвестных параметров системы при произвольных систематических внешних погрешностях?

Далее будет описан один из возможных подходов, позволяющих с оптимизмом смотреть на перспективы решения такого типа задач. Ключевой особенностью этого подхода является возможность включения рандомизации в модель таким образом, чтобы она была независимой с внешними помехами. Для рассмотренной выше модели динамики "в быстром времени" без существенного ограничения общности систематическую погрешность v_t можно рассматривать как внешнюю помеху, которая не связана с изменением текущих (мгновенных) переменных системы.

Другая проблема, с которой сталкиваются при синтезе законов управления, недостаточная вариативность последовательности наблюдений: "управляющие воздействия должны быть направляющими, но в известной мере и изучающими" (А.А. Фельдбаум, [3]). Например, если цель адаптивного управления состоит в минимизации отклонения вектора состояния системы от заданной траектории, то это часто приводит к вырожденной последовательности наблюдений. В то время как для успешного проведения идентификации неизвестных параметров системы должно быть обеспечено "разнообразие" наблюдений.

Теория оценивания неизвестных параметров при статистических неопределенностях достаточно хорошо развита [4,5]. Трудности в использовании стандартных подходов приводят к необходимости поиска алгоритмов, работоспособных при минимальных предположениях о статистических свойствах помех. Альтернативой являются методы, использующие оценки множеств, гарантированно содержащих неизвестные параметры [6–9], но доставляемые такими методами решения зачастую слишком консервативны.

В последнее время в научной литературе активно развиваются *рандомизирован*ные методы решения [10–13]. С одной стороны, в задачах требующих большого объема "перебора" вариантов алгоритмы, основанные на случайном выборе, позволяют за ограниченное время добиваться хороших результатов с определенной вероятностью. С другой стороны, возможность рандомизации процессов наблюдений позволяет во многих случаях компенсировать негативное влияние систематических внешних погрешностей.

Статья организована следующим образом. После введения следует раздел, в котором представлена история развития псевдоградиентных алгоритмов стохастической аппроксимации (CA). Далее в разделе 3 дается постановка задачи об оптимизации нестационарного функционала типа среднего риска при линейных ограничениях, предлагается модернизированный вариант поискового алгоритма CA с двумя измерениями на каждой итерации и с рандомизированными возмущениями на входе, формулируются основные предположения и основной теоретический результат статьи о слабой верхней оценке предельной невязки при ограниченных характеристиках дрейфа параметров и почти произвольных внешних помехах в наблюдениях. В разделе 4 рассматривается пример балансировки загрузки узлов вычислительной сети с использованием поискового алгоритма CA с двумя измерениями на каждой итерации и с рандомизированными возмущениями на входе. В заключении перечислены пять замечательных характеристик рассматриваемых в работе алгоритмов.

2. Псевдоградиентные алгоритмы стохастической аппроксимации

Алгоритм стохастической аппроксимации (СА) был предложен Роббинсом и Монро в 1951 г. [14], в следующем году он был развит Кифером и Вольфовицем для решения задач оптимизации [15]. В 1954 г. алгоритм СА был распространен Блюмом для многомерного случая [16]. При этом для случая оптимизации в *d*-мерном пространстве ($\theta \in \mathbb{R}^d$) традиционная процедура СА, которая основана на конечноразностных аппроксимациях вектора-градиента исследуемой функции, использует на каждой итерации 2*d* наблюдений для построения последовательной оценки (два наблюдения для приближения каждой из компонент *d*-мерного вектора-градиента). В конце 80-х – начале 90-х гг. ХХ века автором в [17, 18] и Поляком с Цыбаковым в [19, 20] были предложены поисковые алгоритмы стохастической аппроксимации с рандомизацией на входе, которые используют на каждой итерации всего одно (или два) значение исследуемой функции в точке (или точках) на линии, проходящей через предшествующую оценку в случайно выбираемом направлении (как в алгоритме случайного поиска [21]). В англоязычной литературе похожие алгоритмы предложил использовать Спал [22, 23], назвав их *SPSA (simultaneous perturbation stochastic*

approximation).

Алгоритмы СА, в которых изменение оценки на каждой итерации происходит в направлении, в среднем совпадающем с направлением вектора-градиента исследуемой функции, называются *псевдоградиентными (или квазиградиентными)*. Свойства сходимости псевдоградиентных алгоритмов СА в нелинейном (общем) случае детально исследованы в [24], а в линейном — в [25].

Алгоритмы СА первоначально появились как инструменты статистики, но позже выделились в отдельную область в теории управления [26]. В знаменитой лаборатории №7 ИПУ РАН исследовались применения псевдоградиентных алгоритмов СА в адаптации, при построении оптимальных и робастных алгоритмов [27–33]. Широкое международное признание получил "ускоряющий" алгоритм Поляка с усреднениями [34,35]. Сейчас СА широко применяется в разнообразных приложениях в таких областях, как идентификация неизвестных параметров систем, адаптивное управление, адаптивная обработка сигналов, адаптивное размещение ресурсов в коммуникационных сетях и др.

Традиционно в алгоритмах СА предполагался выбор убывающих с течением времени до нуля размеров шагов алгоритма. Сейчас активно исследуются возможности применения алгоритмов СА для оптимизации нестационарных функционалов качества. При этом в задачах трекинга (отслеживания дрейфа (изменений) параметров) часто используют достаточно малые, но постоянные размеры шагов [36–39]. Распределенные асинхронные алгоритмы СА рассматривались в [40]. В [41] алгоритм СА с постоянным размером шага использовался в мультиагентных системах для балансировки загрузки узлов вычислительной сети в условиях статистических помех в наблюдениях, переменной топологии и задержек.

Обычно СА исследуется в задачах оптимизации без ограничений, но в [41] алгоритм СА хорошо зарекомендовал себя и в задаче условной оптимизации, когда нельзя свободно менять общую балансируемую загрузку сети. В следующем разделе формулируются новые результаты по отслеживанию изменений дрейфа параметров, обобщающие исследования из [39] на случай задания возможной связи между оптимизируемыми параметрами.

3. Отслеживание изменения дрейфа параметров при линейных ограничениях

Во многих практических приложениях требуется оптимизировать тот или иной функционал среднего риска. Хотя иногда экстремальные значения можно найти аналитически, в технических системах часто приходится сталкиваться с ситуацией, когда сама оптимизируемая функция описана не полностью, ее градиент не известен, а можно только использовать ее значения (измерять или вычислять) в выбираемых точках.

Рассмотрим семейство дифференцируемых функций $\{f_w(\theta)\}_{w\in\mathbb{W}}, f_w(\theta) : \mathbb{R}^d \to \mathbb{R},$ и пусть $\mathbf{x}_1, \mathbf{x}_2, \ldots$ — последовательность точек наблюдения (измерения), выбираемая экспериментатором (план наблюдений), в которых в каждый момент времени $t = 1, 2, \ldots$ доступны наблюдению значения y_1, y_2, \ldots функций $f_w(\cdot)$ с аддитивными внешними помехами v_t

(1)
$$y_t = f_{w_t}(\mathbf{x}_t) + v_t,$$

где $\{w_t\}$ — неконтролируемая последовательность: $w_t \in \mathbb{W}$ (например, $\mathbb{W} = \mathbb{N}$ и $w_t = t$ или $\mathbb{W} \subset \mathbb{R}^p$ и $\{w_t\}$ — последовательность некоторых случайных элементов).

Пусть $\mathcal{F}_{t-1} - \sigma$ -алгебра всех вероятностных событий, которые реализовались до момента времени $t = 1, 2, \ldots$ Обозначим: E — символ математического ожидания, $E_{\mathcal{F}_{t-1}}$ — символ условного математического ожидания по отношению к σ -алгебре \mathcal{F}_{t-1} .

Нестационарная постановка задачи: найти "дрейфующую" точку минимума θ_t функции

(2)
$$F_t(\theta) = E_{\mathcal{F}_{t-1}} f_{w_t}(\theta) \to \min_{\theta}$$

при линейных ограничениях

(3)
$$H\theta = \mathbf{q}_{t-1}$$

с задаваемыми матрицей H размерности $k \times d$ и векторами $\mathbf{q}_{t-1} \in \mathbb{R}^k$, $0 \leq k < d$. (При k = 0 считаем, что никаких дополнительных линейный ограничений нет).

Более точно: используя наблюдения y_1, \ldots, y_t и входы $\mathbf{x}_1, \ldots, \mathbf{x}_t$, надо построить удовлетворяющую условию (3) оценку $\hat{\theta}_t$ неизвестного вектора θ_t , минимизирующего нестационарный (зависящий от времени) функционал среднего риска (2).

Обычно минимизация функционала $F_t(\theta)$ исследуется при более простой модели наблюдений

$$y_t = F_t(\mathbf{x}_t) + v_t$$
 или $y_t = f_{w_t}(\mathbf{x}_t).$

Общий вид модели наблюдений (1) позволяет разделить возмущения в наблюдениях на статистические $\{w_t\}$ с "хорошими" свойствами (например, случайные независимые одинаково распределенные с нулевым средним) и на произвольные аддитивные внешние помехи $\{v_t\}$. Конечно, такое разделение не нужно, если можно предположить, что помехи $\{v_t\}$ также случайные независимые одинаково распределенные с нулевым средним.

Если матрица H полного ранга, т. е. rankH = k, то из линейной алгебры известно, что существуют линейное отображение $h : \mathbb{R}^d \to \mathbb{R}^{d-k}$ и обратные к нему функции $g_t : \mathbb{R}^{d-k} \to \mathbb{R}^d$ такие, что

$$\mathbf{x} = g_t(h(\mathbf{x})), \ \forall \mathbf{x} \in \mathbb{M}_t = {\mathbf{x} : H\mathbf{x} = \mathbf{q}_{t-1}}.$$

Пусть Δ_n , n = 1, 2, ..., - наблюдаемая последовательность ограниченных ($\|\Delta_n\| \leq c_\Delta < \infty$) случайных независимых векторов в \mathbb{R}^{d-k} , называемых *одновременно рандомизируемыми пробными возмущениями*, с симметричными функциями распределений $P_n(\cdot)$, и пусть $\mathbf{K}_n(\cdot) : \mathbb{R}^{d-k} \to \mathbb{R}^{d-k}$, n = 1, 2, ..., - набор некоторых вектор-функций (ядер), удовлетворяющих вместе с Δ_n условиям

(4)
$$\|\mathbf{K}_n(\Delta_n)\| \leq c_{\Delta}, \ \int_{\mathbb{R}^{d-k}} \mathbf{K}_n(\mathbf{z}) \mathbf{P}_n(d\mathbf{z}) = 0, \ \int_{\mathbb{R}^{d-k}} \langle \mathbf{K}_n(\mathbf{z}), \mathbf{z} \rangle \mathbf{P}_n(d\mathbf{z}) = I,$$

где I — тождественная (единичная) матрица. (Здесь и далее $\|\cdot\| = \|\cdot\|_2$ — евклидова норма вектора (корень из суммы квадратов), $\langle \cdot, \cdot \rangle$ — скалярное произведение двух векторов). Например, можно взять $\mathbf{K}_n(\mathbf{z}) \equiv \mathbf{z}$ и в качестве $\{\Delta_n\}$ последовательность бернуллиевских случайных векторов из \mathbb{R}^{d-k} , принимающих значения ± 1 с равными вероятностями $\frac{1}{2}$. В этом случае $c_{\Delta} = \sqrt{d}$.

Пусть $\hat{\theta}_0 \in \mathbb{R}^d$ — неслучайный начальный вектор. Для построения точек наблюдений $\{\mathbf{x}_t\}$ и оценок $\{\hat{\theta}_t\}$ рассмотрим поисковый алгоритм СА с двумя наблюдениями и рандомизацией на входе:

(5)
$$\begin{cases} \mathbf{x}_{2n-1} = g_{2n-1}(h(\widehat{\theta}_{2n-2}) - \beta_n^- \mathbf{\Delta}_n), \, \mathbf{x}_{2n} = g_{2n}(h(\widehat{\theta}_{2n-2}) + \beta_n^+ \mathbf{\Delta}_n), \\ \widehat{\theta}_{2n-1} = g_{2n-1}(h(\widehat{\theta}_{2n-2})), \\ \widehat{\theta}_{2n} = g_{2n}(h(\widehat{\theta}_{2n-1}) - \alpha \mathbf{K}_n(\mathbf{\Delta}_n) \frac{y_{2n} - y_{2n-1}}{\beta_n}), \end{cases}$$

где $\alpha > 0$ — постоянный размер шага, $\{\beta_n^+\}$ и $\{\beta_n^-\}$ — такие неотрицательные последовательности, что $\beta_n = \beta_n^+ + \beta_n^- > 0$.

Сформулируем основные предположения о возмущениях и функциях $f_w(\mathbf{x}), F_t(\mathbf{x})$. 1.) Для точек минимума θ_t функций $F_t(\cdot)$ и векторов-градиентов функций $\tilde{f}_t(\mathbf{z}) = f_{w_t}(g_t(\mathbf{z}))$ выполняются неравенства

$$\forall \mathbf{z} \in \mathbb{R}^{d-k} \ \langle \mathbf{z} - h(\theta_t), E_{\mathcal{F}_{t-1}} \nabla \tilde{f}_t(\mathbf{z}) \rangle \ge \mu \| \mathbf{z} - h(\theta_t) \|^2$$

с некоторой постоянной $\mu > 0$.

2.) $\forall w_t \in \mathbb{W}$ градиент $\nabla \tilde{f}_t(\mathbf{z})$ удовлетворяет условию Липшица: $\forall \mathbf{z}', \mathbf{z}'' \in \mathbb{R}^{d-k}$

$$\|\nabla \tilde{f}_t(\mathbf{z}') - \nabla \tilde{f}_t(\mathbf{z}'')\| \leq M \|\mathbf{z}' - \mathbf{z}''\|$$

с константой $M \ge \mu$.

3.) Вектор-градиент $\nabla \tilde{f}_t(\cdot)$ равномерно ограничен в точках $h(\theta_t)$: $||E\nabla \tilde{f}_t(h(\theta_t))|| \leq c_1$, $E||\nabla \tilde{f}_t(h(\theta_t))||^2 \leq c_2$, $E\langle \nabla \tilde{f}_t(h(\theta_t)), \nabla \tilde{f}_{t-1}(h(\theta_{t-1}))\rangle \leq c_2$ ($c_1 = c_2 = 0$ если последовательность w_t неслучайная, т. е. $f_{w_t}(\mathbf{x}) = F_t(\mathbf{x})$).

4.) Дрейф ограниченный: $\|h(\theta_t - \theta_{t-1}))\| \leq \delta_{\theta} < \infty$ или $E\|h(\theta_t - \theta_{t-1})\|^2 \leq \delta_{\theta}^2$ и $E\|h(\theta_t - \theta_{t-1})\|\|h(\theta_{t-1} - \theta_{t-2})\| \leq \delta_{\theta}^2$, если последовательность $\{w_t\}$ случайная.

5.) Скорость дрейфа ограничена таким образом, что $\forall \mathbf{z} \in \mathbb{R}^{d-k}$: $E_{\mathcal{F}_{2n-2}}\varphi_n(\mathbf{z})^2 \leq c_3 \|\mathbf{z} - h(\theta_{2n-2})\|^2 + c_4$, где $\varphi_n(\mathbf{z}) = \tilde{f}_{2n}(\mathbf{z}) - \tilde{f}_{2n-1}(\mathbf{z})$.

$$6.)$$
 Для $n = 1, 2, ...$

а) последовательные разности $\bar{v}_n = v_{2n} - v_{2n-1}$ помех наблюдения ограничены: $|\bar{v}_n| \leq c_v \beta_n$ или $E \bar{v}_n^2 \leq c_v^2 \beta_n^2$, $(c_v < \infty)$, если последовательность $\{\bar{v}_t\}$ случайная; б) если \bar{v}_n случайные, тогда \bar{v}_n и вектор Δ_n независимые;

в) Δ_n и w_{2n-1}, w_{2n} (если они случайны) не зависят от σ -алгебры \mathcal{F}_{2n-2} ;

г) если w_{2n-1}, w_{2n} случайные, тогда случайные векторы Δ_n и элементы w_{2n-1}, w_{2n} независимые между собой.

Для анализа качества оценок будем использовать следующую характеристику.

O n p e d e n e h u e. Последовательность оценок $\{\widehat{\theta}_{2n}\}$ дает асимптотически оптимальную слабую верхнюю границу $\overline{L} > 0$ средней невязки, если для любого $\varepsilon > 0$ существует такое N, что

$$\forall n > N \ \sqrt{E \|h(\widehat{\theta}_{2n} - \theta_{2n})\|^2} \leqslant \bar{L} + \varepsilon.$$

Обозначим: $m = 2(\mu - \alpha \gamma), b = \bar{\beta}Mc_{\Delta}^{3}(1 + 6\alpha Mc_{\Delta}^{2}) + \delta_{\theta}(M + 2\mu + 6\alpha M^{2}c_{\Delta}^{4}),$ $\bar{l} = 2\alpha c_{\Delta}^{2} \left(c_{v}^{2} + 3(\max_{n}\frac{c_{4}}{\beta_{n}} + c_{\Delta}^{2}(c_{2} + M^{2}(\delta_{\theta} + \bar{\beta}c_{\Delta})^{2}))\right) + 2\delta_{\theta}(2\bar{\beta}Mc_{\Delta}^{3} + M\delta_{\theta} + c_{1} + 3\mu\delta_{\theta}^{2}),$ где $\gamma = 3c_{\Delta}^{2}(M^{2}c_{\Delta}^{2} + \max_{n}\frac{c_{3}}{\beta_{n}}), \bar{\beta} = \max_{n}\frac{(\beta_{n}^{+})^{2} + (\beta_{n}^{-})^{2}}{\beta_{n}}.$ Следующая теорема дает асимптотически оптимальную слабую верхнюю границу $\bar{L} > 0$ средней невязки оценок алгоритма (5).

 $T \, e \, o \, p \, e \, ma \, 1.$ Если матрица H полного ранга (rankH = k), выполнены предположения 1)-6) и константа α достаточно мала:

(6)
$$\alpha \in (0; \mu/\gamma) \setminus \begin{cases} \emptyset, & ecnu \ \mu^2 > 2\gamma; \\ (\frac{\mu - \sqrt{\mu^2 - 2\gamma}}{2\gamma}; \frac{\mu + \sqrt{\mu^2 - 2\gamma}}{2\gamma}) & end \ npomubhom \ cny uae \end{cases}$$

тогда последовательность оценок, построенная по алгоритму (5), имеет асимптотически оптимальную слабую верхнюю границу средней невязки

(7)
$$\bar{L} = (b + \sqrt{b^2 + m\bar{l}})/m.$$

Доказательство теоремы 1 в Приложении.

3 a M e ч a н u e 1. При k = 0 результат теоремы 1 уточняет соответствующее утверждение в [39].

Замечание 2. Помехи наблюдения v_t в теореме 1 можно назвать почти произвольным шумом, так как они могут быть или неслучайными, но ограниченными, или реализацией некоторого стохастического процесса с произвольными внутренними зависимостями. В частности, обратим внимание на то, что для доказательства результата теоремы 1 не надо делать традиционных предположений о центрированности v_t , а также о независимости v_t и \mathcal{F}_{t-1} .

Замечание 3. Анализ доказательства теоремы 1 показывает возможность рассмотрения случайных последовательностей $\{\beta_n^+\}$ и $\{\beta_n^-\}$, что важно с практической точки зрения. Достаточно предположить измеримость их *n*-х значений относительно σ -алгебры \mathcal{F}_{2n-2} .

3 a M e ч a н u e 4. Результат теоремы 1 показывает, что в задаче без дрейфа ($\delta_{\theta} = c_3 = c_4$) при любом уровне помех наблюдения c_v асимптотическая верхняя граница

$$\bar{L} = \sqrt{\alpha}c_{\Delta}\sqrt{\frac{c_v^2 + 3c_{\Delta}^4(c_2 + M^2\bar{\beta}^2 c_{\Delta}^2)}{\mu}} + \bar{\beta}c_{\Delta}^3\frac{M}{\mu} + o(\sqrt{\alpha} + \bar{\beta})$$

может быть сколь угодно малой при выборе достаточно малых параметров алгоритма α и β_n^{\pm} . В то же время в задачах с дрейфом большие значения нормы дрейфа δ_{θ} могут быть скомпенсированы выбором больших α и β_n^{\pm} . Это приводит к задаче о компромиссе между выбором меньших значений параметров алгоритма α и β_n^{\pm} для компенсации помех наблюдения и больших значений параметров для лучшего отслеживания дрейфа оптимальной точки.

4. Использование рандомизированных алгоритмов стохастической аппроксимации в мультиагентном управлении при балансировке загрузки узлов вычислительной сети

Рассмотрим вычислительную систему (сеть), состоящую из d узлов (процессоров). Будем считать, что система работает последовательно, обрабатывая на каждой итерации t, t = 1, 2, ..., поступивший в систему ранее набор заданий известного размера q_{t-1} , который можно произвольно разделить на d наборов подзадач x^j , $j = 1, \ldots, d$:

(8)
$$\|\mathbf{x}\|_1 = \sum_{j=1}^d x^j = q_{t-1}$$

(здесь и далее $\mathbf{x} = col(x^1, \ldots, x^d)$, верхний индекс *j* используется не как степень, а для обозначения номера узла).

Пусть $\theta^{j} \in \mathbb{R}$ — производительность узла j. Обозначим $time^{j}(x^{j}) = x^{j}/\theta^{j}$ — время вычислений узлом j, j = 1, ..., d.

Требуется *минимизировать* общее время обработки пакета заданий q_{t-1} :

(9)
$$T(\mathbf{x}) = \max_{j \in \{1, \dots, d\}} time^j(x^j) \to \min_{\mathbf{x}}.$$

Идеальный алгоритм распределения заданий поддерживает для всех узлов равномерную "занятость" выполнением поставленных задач, минимизируя коммуникации между узлами, необходимые для составления плана работ и пересылки данных. Задача о планировании загрузки усложняется, когда задачи генерируются динамически (с течением времени) и непредсказуемо.

В условиях, когда производительности узлов известны, лучшая стратегия распределения задач (стратегия управления) — пропорциональное разделение заданий:

$$x^1/\theta^1 = x^2/\theta^2 = \dots = x^d/\theta^d.$$

Доказательство этого факта не очень сложное, его можно найти, например, в [41]. Такая стратегия управления загрузкой узлов называется *балансировка загрузки*. Формальное определение следующее:

(10)
$$\mathbf{x} = \mathcal{U}(\theta, q_{t-1}): \ x^{j} = \frac{\theta^{j}}{\|\theta\|_{1}} q_{t-1}, \ j = 1, \dots, d, \ \theta = col(\theta^{1}, \dots, \theta^{d}).$$

На практике производительности узлов $\theta \in \mathbb{R}^d$ могут быть неизвестными. Более того, они могут меняться со временем из-за параллельного выполнения сторонних работ: $\theta_t = \theta + w_t$, или вообще меняться со временем: $\theta_t = \theta_{t-1} + w_t$, где $w_t \in \mathbb{R}^d$ — независимые случайные элементы.

Обычный способ — использовать в стратегии управления оценки производительностей $\hat{\theta}_t$ на каждой итерации t, которые определялись бы из условия

$$\|\widehat{\theta}_t - \theta_t\|^2 \to \min$$

в каком-нибудь разумном смысле, и с их помощью вычислять разбиение \mathbf{x}_t как $\mathbf{x}_t = \mathcal{U}(\widehat{\theta}_t, q_{t-1}).$

Рассмотрим один из возможных эмпирических функционалов качества

(11)
$$f_t(\widehat{\theta}_t) = \frac{1}{2(d-1)q_{t-1}^2} \sum_{j,k=1}^d (time_t^j - time_t^k)^2 \to \min_{\widehat{\theta}_t},$$

в котором

$$time_t^j = time^j(\mathcal{U}^j(\widehat{\theta}_t, q_{t-1})), \ j = 1, \dots, d_t$$

Функция $f_t(\hat{\theta}_t)$ имеет точку минимума $\hat{\theta}_t = \theta_t$, которая соответствует оптимальной стратегии управления (распределения заданий), минимизируюшей (9) при одном (k = 1) линейном ограничении (8).

Для отслеживания изменений θ_t воспользуемся алгоритмом (5), выбрав $h(\mathbf{x}) = col(x^1, \ldots, x^{d-1})$ и

$$g_t(\mathbf{z}) = col(z^1, \dots, z^{d-1}, q_{t-1} - \sum_{j=1}^{d-1} z^j).$$

Алгоритм.

1. Инициализация и выбор коэффициентов. Установить счетчик n = 0. Выбрать начальное приближение $\hat{\theta}_0 \in \mathbb{R}^d$, удовлетворяющее условию (8), и достаточно малые $\alpha > 0$ и $\beta > 0$.

2. *Unepayus* $n \rightarrow n+1$.

a) установить n := n + 1;

б) сгенерировать случайный вектор $\Delta_n \in \mathbb{R}^{d-1}$ из независимых компонент, равных ± 1 с вероятностями $\frac{1}{2}$ в соответствии с распределением Бернулли;

в-1) получить очередной пакет заданий q_{2n-2} ;

г-1) вычислить следующее разбиение по правилу

$$\mathbf{x}_{2n-1} = \mathcal{U}(g_{2n-1}(h(\theta_{2n-2}) - \beta \boldsymbol{\Delta}_n), q_{2n-2});$$

д-1) запустить вычислительную сеть (кластер) с входом \mathbf{x}_{2n-1} и подождать пока все задания выполнятся, получив все значения $time_{2n-1}^{j}, j = 1, \ldots, d;$

в-2) получить следующий пакет заданий q_{2n-1} ;

г-2) вычислить следующее разбиение по правилу:

$$\mathbf{x}_{2n} = \mathcal{U}(g_{2n}(h(\theta_{2n-2}) + \beta \mathbf{\Delta}_n), q_{2n-1});$$

д-2) запустить вычислительную сеть (кластер) с входом \mathbf{x}_{2n} и подождать пока все задания выполнятся, получив все значения $time_{2n}^{j}$, $j = 1, \ldots, d$; е) вычислить псевдоградиент

(12)
$$\hat{G} = \frac{1}{4\beta(d-1)} \Delta_n \sum_{j,k=1}^m \left(\frac{time_{2n}^j - time_{2n}^k}{q_{2n-1}} \right)^2 - \left(\frac{time_{2n-1}^j - time_{2n-1}^k}{q_{2n-2}} \right)^2;$$

ж) получить новую оценку: $\hat{\theta}_{2n} = g_{2n}(h(\hat{\theta}_{2n-2}) - \alpha \hat{G}).$ 3. Повторить шаг 2.

Заметим, что выбор эмпирического функционала (11) не является единственно возможным. В мультиагентном управлении часто используется функционал более общего вида

(13)
$$f_t(\widehat{\theta}_t) = \frac{1}{2(d-1)q_{t-1}^2} \sum_{j,k=1}^d a^{j,k} (time_i^j - time_i^k)^2 \to \min_{\widehat{\theta}_t}$$

с весовыми коэффициентами $a^{j,k} \ge 0$, называемый потенциалом Лапласа для графа с матрицей смежности, задаваемой коэффициентами $a^{j,k}$. Если этот граф сильносвязный, то можно обосновать применимость алгоритма, похожего на только что описанный.

4.1. Моделирование

Рассмотрим пример использования описанного выше алгоритма.

 $\Pi p u M e p$ 1. При моделировании было выбрано d = 50 вычислительных узлов.

В начальный момент времени в качестве производительности узлов были выбраны случайно числа $\theta^1, \ldots, \theta^{50}$ из интервала (0, 5; 1, 5) по равномерному распределению. В дальнейшем на каждой второй итерации 2n+1 у одного случайно выбранного узла незначительно менялась производительность на величину случайно равномерно выбранную из интервала [-0, 05; 0, 05], т. е. $\delta_{\theta} = 0, 05/50 = 0, 001$. (При этом дополнительно обеспечивалось условие того, что уменьшение производительности того или иного узла не приводило бы к величинам меньшим $\theta_{\min} = 0, 01$ и большим $\theta_{\max} = 2$).

Поток поступающих заданий $\{q_{t-1}\}$ моделировался по распределению Пуассона со средним значением 50.

В алгоритме были выбраны $\alpha = 0,01, \beta_n^+ = \beta_n^- = 1, \{\Delta_n\}$ последовательность бернуллиевских случайных векторов из \mathbb{R}^{49} , принимающих значения $\pm \frac{1}{7}$ с равными вероятностями $\frac{1}{2}$. В этом случае $c_{\Delta} = 1$.

К результатам вычислений эмпирического функционала (11) на каждой итерации искусственно добавлялась нецентрированная случайная ошибка с $c_v = 0, 2$.

На рис. 1, 2 показаны типичные результаты моделирования зависимости нормализованного времени выполнения пакета заданий $\frac{T(\mathcal{U}(\hat{\theta}_{t},q_{t-1}))}{q_{t-1}}$ и среднего отклонения загруженности вычислительных узлов от оптимального сбалансированного значения. Как можно видеть на рис. 1, производительность компьютерной сети с течением времени стремится к оптимальному значению.

5. Заключение

Рассмотренные в статье поисковые алгоритмы стохастической аппроксимации с рандомизацией на входе выделяются из множества остальных замечательными характеристиками:

- асимптотически оптимальная скорость сходимости [19];
- минимальность числа измерений в пределах данной итерации [22];
- состоятельность при произвольных внешних помехах в наблюдениях [11, 17];
- работоспособность в нестационарных задачах [39];
- "естественность" реализации на квантовом компьютере [13].

Работа выполнена при поддержке Министерства образования и науки РФ (УИН RFMEFI60414X0035).

ПРИЛОЖЕНИЕ

Доказательство теоремы 1.

Доказательство во многом похоже на соответствующее доказательство в [39], в котором используется следующая вспомогательная лемма 1 из [38]. Лемма 1. [38] Если $e_n > 0, \alpha, m > 0, \alpha m < 1, b, \bar{l} \ge 0$,

(14)
$$e_n \leqslant (1 - \alpha m) e_{n-1} + 2\alpha b \sqrt{e_{n-1}} + \alpha \bar{l}, \ n = 1, 2, \dots,$$

тогда для любого $\varepsilon > 0$ существует такое N, что $\forall n > N$ $e_n \leq \left(\frac{b + \sqrt{b^2 + m\bar{l}}}{m}\right)^2 + \varepsilon$.

 \mathcal{A} о к а з а т е л ь с т в о л е м м ы 1. Для всякого $0 < \rho < m \alpha$, воспользовавшись неравенством $2\alpha b \sqrt{e_{n-1}} \leq \rho e_{n-1} + (\alpha b)^2 / \rho$ и формулой для суммы геометрической прогрессии, из условия (14) выводим

$$e_n^2 \le (1 - (\alpha m - \rho))e_{n-1}^2 + \alpha(\alpha b^2/\rho + \bar{l}) \le \dots \le (1 - (\alpha m - \rho))^n e_0^2 + \alpha \frac{\alpha b^2/\rho + l}{\alpha m - \rho}$$

Для всякого $\varepsilon > 0$, выбрав N = 0, если $e_0 = 0$, или $N = \lceil \frac{\ln \varepsilon - 2 \ln e_0}{1 - (\alpha m - \rho)} \rceil$ (здесь и далее $\lceil \cdot \rceil - ф$ ункция целой части), получаем $e_n^2 \leqslant \varepsilon + \alpha \frac{\alpha b^2 m^2 + \rho \bar{l}}{\rho(\alpha m - \rho)}$. Минимизируя по ρ , получаем заключение леммы 1. \Box

Обозначим: $\nu_n = \|h(\hat{\theta}_{2n} - \theta_{2n})\|, \ \bar{f}_n = f_{w_{2n}}(\mathbf{x}_{2n}) - f_{w_{2n-1}}(\mathbf{x}_{2n-1}), \ s_n = \frac{\alpha}{\beta_n}(\bar{f}_n + \bar{v}_n)\mathbf{K}_n(\mathbf{\Delta}_n), \ \tilde{\mathcal{F}}_{n-1} = \sigma\{\mathcal{F}_{2n-2}, w_{2n-1}, w_{2n}\}, \ \mathbf{d}_t = \hat{\theta}_{2\lceil \frac{t-1}{2}\rceil} - \theta_t.$ В соответствии с моделью наблюдений (1) и алгоритмом (5) получаем

(15)
$$\nu_n^2 = \|h(\mathbf{d}_{2n})\|^2 + \|s_n\|^2 - 2\langle h(\mathbf{d}_{2n}), s_n \rangle,$$

так как $s_n = \frac{\alpha}{\beta_n} (y_{2n} - y_{2n-1}) \mathbf{K}_n(\boldsymbol{\Delta}_n).$

По предположению 6.6 имеем

$$E_{\tilde{\mathcal{F}}_{n-1}}\bar{v}_n\mathbf{K}_n(\boldsymbol{\Delta}_n) = E_{\tilde{\mathcal{F}}_{n-1}}\bar{v}_nE_{\tilde{\mathcal{F}}_{n-1}}\mathbf{K}_n(\boldsymbol{\Delta}_n) = E_{\tilde{\mathcal{F}}_{n-1}}\bar{v}_n \cdot 0 = 0.$$

Следовательно, усредняя при условии σ -алгебры $\tilde{\mathcal{F}}_{n-1}$ обе части неравенства (15) и используя предположение δ , можем ограничить $E_{\tilde{\mathcal{F}}_{n-1}}\nu_n^2$ следующим образом:

(16)
$$E_{\tilde{\mathcal{F}}_{n-1}}\nu_n^2 \leqslant \|h(\mathbf{d}_{2n})\|^2 - 2\langle h(\mathbf{d}_{2n}), \frac{\alpha}{\beta_n} E_{\tilde{\mathcal{F}}_{n-1}} \bar{f}_n \mathbf{K}_n(\boldsymbol{\Delta}_n) \rangle + \\ + 2c_{\boldsymbol{\Delta}}^2 \frac{\alpha^2}{\beta_n^2} E_{\tilde{\mathcal{F}}_{n-1}} (\bar{v}_n^2 + \bar{f}_n^2).$$

Заметим, что в силу алгоритма (5) имеем $f_{w_t}(\mathbf{x}_t) = \tilde{f}_t(h(\mathbf{x}_t))$. Разложив $\tilde{f}_t(h(\mathbf{x}_t))$ для $t^{\pm} = 2n - \frac{1}{2} \pm \frac{1}{2}$ по формуле Тейлора, выводим

$$f_{w_{t^{\pm}}}(\mathbf{x}_{t^{\pm}}) = f_{w_{t^{\pm}}}(\widehat{\theta}_{2n-2}) \pm \langle \nabla_{t^{\pm}}(\rho_{t^{\pm}}), \beta_n^{\pm} \mathbf{\Delta}_n \rangle,$$

где $\rho_{t^{\pm}} \in (0,1), \nabla_{t^{\pm}}(\rho_{t^{\pm}}) = \nabla \tilde{f}_{t^{\pm}}(h(\hat{\theta}_{2n-2}) \pm \rho_{t^{\pm}}\beta_n^{\pm}\Delta_n).$

Так как $E_{\tilde{\mathcal{F}}_{n-1}}\varphi_n(\widehat{\theta}_{2n-2})\mathbf{K}_n(\mathbf{\Delta}_n) = \varphi_n(\widehat{\theta}_{2n-2})E_{\tilde{\mathcal{F}}_{n-1}}\mathbf{K}_n(\mathbf{\Delta}_n) = 0$, применяя предположение 3, в силу ограниченности $\|\mathbf{\Delta}_n\|$ и (4) для второго слагаемого в (16) имеем

$$-2\langle h(\mathbf{d}_{2n}), \frac{\alpha}{\beta_n} E_{\tilde{\mathcal{F}}_{n-1}} \bar{f}_n \mathbf{K}_n(\boldsymbol{\Delta}_n) \rangle \leqslant -2 \frac{\alpha}{\beta_n} \langle h(\mathbf{d}_{2n}), \sum_{t^{\pm}} E_{\tilde{\mathcal{F}}_{n-1}} \langle \nabla_{t^{\pm}}(\rho_{t^{\pm}}), \beta_n^{\pm} \boldsymbol{\Delta}_n \rangle \mathbf{K}_n(\boldsymbol{\Delta}_n) \rangle \leqslant$$

$$\leq 2\frac{\alpha}{\beta_{n}} \|h(\mathbf{d}_{2n})\| ((\beta_{n}^{+})^{2} + (\beta_{n}^{-})^{2}) M c_{\Delta}^{3} - 2\frac{\alpha}{\beta_{n}} \langle h(\mathbf{d}_{2n}), \sum_{t^{\pm}} E_{\tilde{\mathcal{F}}_{n-1}} \langle \nabla_{t^{\pm}}(0), \beta_{n}^{\pm} \Delta_{n} \rangle \mathbf{K}_{n}(\Delta_{n}) \rangle \leq \\ \leq 2\frac{\alpha}{\beta_{n}} (\nu_{n-1} + \|h(\theta_{2n} - \theta_{2n-1})\| + \|h(\theta_{2n-1} - \theta_{2n-2})\|) ((\beta_{n}^{+})^{2} + (\beta_{n}^{-})^{2}) M c_{\Delta}^{3} - \\ (17) \qquad -2\frac{\alpha}{\beta_{n}} E_{\tilde{\mathcal{F}}_{n-1}} \left(\langle h(\theta_{2n} - \theta_{2n-1}), \beta_{n}^{-} \nabla_{t^{-}}(0) \rangle + \sum_{t^{\pm}} \langle h(\mathbf{d}_{t^{\pm}}), \beta_{n}^{\pm} \nabla_{t^{\pm}}(0) \rangle \right).$$

По предположению 4 имеем

$$E_{\mathcal{F}_{2n-2}} \|h(\mathbf{d}_{2n})\|^2 \leqslant E_{\mathcal{F}_{2n-2}} \|h(\mathbf{d}_{2n-1})\|^2 + 2\delta_{\theta}\nu_{n-1} + 3\delta_{\theta}^2 \leqslant \nu_{n-1}^2 + 4\delta_{\theta}\nu_{n-1} + 4\delta_{\theta}^2.$$

Усредняя последнее слагаемое в (17) последовательно по отношениям к σ алгебрам \mathcal{F}_{2n-1} и \mathcal{F}_{2n-2} , используя предположение 1, получаем

$$E_{\mathcal{F}_{2n-2}} - 2\frac{\alpha}{\beta_{n}} E_{\mathcal{F}_{2n-1}} \left(\langle h(\theta_{2n} - \theta_{2n-1}), \beta_{n}^{-} \nabla_{t^{-}}(0) \rangle + \sum_{t^{\pm}} \langle h(\mathbf{d}_{t^{\pm}}), \beta_{n}^{\pm} \nabla_{t^{\pm}}(0) \rangle \right) \leqslant 2E_{\mathcal{F}_{2n-2}} \frac{\alpha}{\beta_{n}} (\beta_{n}^{-} \| h(\theta_{2n} - \theta_{2n-1}) \| (M \| d_{t^{-}} \| + c_{1}) - \alpha \mu \| d_{t^{-}} \|^{2} + \beta_{n}^{+} \mu (2 \| h(\theta_{2n} - \theta_{2n-1}) \| \| d_{t^{-}} \| + \| h(\theta_{2n} - \theta_{2n-1}) \|^{2})).$$

Из последних двух неравенств для усреднения второго слагаемого в (16) имеем

(18)
$$-E_{\mathcal{F}_{2n-2}}2\langle h(\mathbf{d}_{2n}), \frac{\alpha}{\beta_n}h(\bar{f}_n\mathbf{K}_n(\mathbf{\Delta}_n))\rangle \leqslant -2\,\mu\,\nu_{n-1}^2 +$$

$$+2\frac{\alpha}{\beta_{n}}((\nu_{n-1}+2\delta_{\theta})((\beta_{n}^{+})^{2}+(\beta_{n}^{-})^{2})Mc_{\Delta}^{3}+\beta_{n}^{-}\delta_{\theta}(M\nu_{n-1}+M\delta_{\theta}+c_{1})+\beta_{n}^{+}\mu(2\delta_{\theta}(\nu_{n-1}+\delta_{\theta})+\delta_{\theta}^{2})).$$

Рассмотрим квадрат разности \bar{f}_n^2 . Используя представление $\bar{f}_n = \varphi_n(h(\hat{\theta}_{2n-2})) + \sum_{t^{\pm}} \beta_n^{\pm}(\langle \nabla \tilde{f}_{w_{t^{\pm}}}(h(\theta_{t^{\pm}})), \mathbf{\Delta}_n \rangle + \langle \nabla_{t^{\pm}}(\rho_{t^{\pm}}) - \nabla \tilde{f}_{w_{t^{\pm}}}(h(\theta_{t^{\pm}})), \mathbf{\Delta}_n \rangle)$, свойство симметричности распределения Δ_n и предположение 2, для $E_{\tilde{\mathcal{F}}_{n-1}}\bar{f}_n^2$ выводим

$$E_{\tilde{\mathcal{F}}_{n-1}}\bar{f}_{n}^{2} \leqslant 3\varphi_{n}(h(\hat{\theta}_{2n-2}))^{2} + 3c_{\Delta}^{2}\left(\left(\sum_{t^{\pm}}\beta_{n}^{\pm}\nabla\tilde{f}_{w_{t^{\pm}}}(h(\theta_{t^{\pm}}))\right)^{2} + M^{2}\left(\sum_{t^{\pm}}\beta_{n}^{\pm}(\|h(\mathbf{d}_{t^{\pm}})\| + \beta_{n}^{\pm}c_{\Delta})\right)^{2}\right)$$

Усредняя по σ -алгебре \mathcal{F}_{2n-2} и используя предположения 2–6, получаем

$$E_{\mathcal{F}_{2n-2}}\bar{f}_n^2 \leqslant 3(c_3\nu_{n-1}^2 + c_4 + c_{\Delta}^2(\beta_n^2c_2 + M^2(\beta_n(\nu_{n-1} + \delta_\theta) + ((\beta_n^+)^2 + (\beta_n^-)^2)c_{\Delta})^2)).$$

Суммируя полученные оценки, усредняя (16) по σ -алгебре \mathcal{F}_{2n-2} , выводим следующее неравенство:

$$E_{\mathcal{F}_{2n-2}}\nu_n^2 \leqslant \left(1 - \alpha \left(2\mu - 6\alpha c_{\Delta}^2 \left(\frac{c_3}{\beta_n^2} + M^2 c_{\Delta}^2\right)\right)\right)\nu_{n-1}^2 + 2\alpha \left(\frac{(\beta_n^+)^2 + (\beta_n^-)^2}{\beta_n}Mc_{\Delta}^3(1 + 6\alpha M c_{\Delta}^2) + \left(\frac{M\beta_n^- + 2\mu\beta_n^+}{\beta_n} + 6\alpha M^2 c_{\Delta}^4\right)\delta_\theta\right)\nu_{n-1} + 2\alpha \left(\frac{M\beta_n^- + 2\mu\beta_n^+}{\beta_n} + 6\alpha M^2 c_{\Delta}^4\right)\delta_\theta$$

$$+2\alpha\left(\left(2\frac{(\beta_{n}^{+})^{2}+(\beta_{n}^{-})^{2}}{\beta_{n}}Mc_{\Delta}^{3}+\frac{\beta_{n}^{-}}{\beta_{n}}(M\delta_{\theta}+c_{1})+3\mu\frac{\beta_{n}^{+}}{\beta_{n}}\delta_{\theta}^{2}\right)\delta_{\theta}+\right.\\\left.+\alpha c_{\Delta}^{2}\left(c_{v}^{2}+3\left(\frac{c_{4}}{\beta_{n}^{2}}+c_{\Delta}^{2}\left(c_{2}+M^{2}\left(\delta_{\theta}+\frac{(\beta_{n}^{+})^{2}+(\beta_{n}^{-})^{2}}{\beta_{n}}c_{\Delta}\right)^{2}\right)\right)\right)\right)\leqslant$$

$$(19)\qquad\qquad\leqslant(1-\alpha m)\nu_{n-1}^{2}+2\alpha b\nu_{n-1}+\alpha\bar{l}.$$

В силу условия (6) теоремы 1 имеем $m\alpha < 1$ и $\alpha < \mu/\gamma$. Взяв безусловное математическое ожидание от обеих сторон (19), убеждаемся в том, что все условия леммы 1 выполняются для $e_n = E\nu_n^2$. Это завершает доказательство теоремы 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
- 2. Schweppe F.C. Uncertain Dynamic Systems. New York–London: Prentice–Hall, 1973.
- Фельдбаум А.А. О проблемах дуального управления / Методы оптимизации автоматических систем. М.: Наука, 1972.
- 4. Льюнг Л., Сёдерстрём Т. Идентификация систем: теория для пользователя. М.: Наука, 1991.
- 5. Цыпкин Я.З. Информационная теория идентификации. М.: Наука, 1995.
- 6. Bai E.W., Nagpal K.M., Tempo R. Bounded-error parameter estimation: Noise models and recursive algorithms // Automatica. 1996. V. 32. P. 985–999.
- 7. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М.: Наука, 2002.
- 8. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях. Техника линейных матричных неравенств. М.: ЛЕНАНД, 2014.
- 9. Соколов В.Ф. Оценка качества робастной системы управления при неизвестных верхних границах возмущений и помехи измерений // АиТ. 2010. № 9. С. 3–18. Sokolov V.F. Estimating performance of the robust control system under unknown upper disturbance boundaries and measurement noise // Automation and Remote Control. 2010. Т. 71. №. 9. Р. 1741–1756.
- Calafiore G., Polyak B.T. Stochastic algorithms for exact and approximate feasibility of robust LMIs // IEEE Trans. Autom. Control. 2001. V. 46. P. 1755–1759.
- 11. Граничин О.Н., Поляк Б.Т. Рандомизированные алгоритмы оценивания и оптимизации при почти произвольных помехах. М.: Наука, 2003.
- 12. Tempo R., Calafiore G., Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems: with Applications. New York: Springer-Verlag, 2013.

- 13. Granichin O., Volkovich Z. (V.), Toledano-Kitai D. Randomized Algorithms in Automatic Control and Data Mining. Springer, 2014.
- Robbins H., Monro S. A stochastic approximation method // Ann. Math. Statist. 1951. V. 22. P. 400–407.
- 15. *Kiefer J., Wolfowitz J.* Statistical estimation on the maximum of a regression function // Ann. Math. Statist. 1952. V. 23. P. 462–466.
- Blum J.R. Multidimensional stochastic appoximation // Ann. Math. Statist. 1954. V. 9. P. 737–744.
- 17. Граничин О. Н. Об одной стохастической рекуррентной процедуре при зависимых помехах в наблюдении, использующей на входе пробные возмущения // Вестн. Ленингр. ун-та. 1989. Сер. 1. №1(4). С. 19–21. Granichin O.N. A stochastic recursive procedure with correlated noises in the observation, that employs trial perturbations at the input // Vestnik Leningrad University: Mathematics (Vestnik Leningradskogo Universita. Matematika). 1989. V. 22. No. 1. P. 27–31.
- Граничин О.Н. Процедура стохастической аппроксимации с возмущением на входе // АнТ. 1992. № 2. С. 97–104. Granichin O.N. Procedure of stochastic approximation with disturbances at the input // Automation and Remote Control. 1992. V. 53. No. 2. P. 232–237.
- Поляк Б.Т., Цыбаков А.Б. Оптимальные порядки точности поисковых алгоритмов стохастической аппроксимации // Проблемы передачи информации. 1990. Т. 26. С. 126–133. *Polyak B.T., Tsybakov A.B.* Optimal orders of accuracy for search algorithms of stochastic optimization // Problems Inform. Transmission. 1990. V. 26. No. 2. P. 126– 133.
- Polyak B.T., Tsybakov A.B. On stochastic approximation with arbitrary noise (the KW case) / In: Topics in Nonparametric Estimation. Khasminskii R.Z. eds., // Advances in Soviet Math., Amer. Math. Soc., Providence, 1992. No. 12, P. 107–113.
- 21. Растригин Л.А. Статистические методы поиска. М.: Наука, 1968.
- Spall J.C. Multivariate Stochastic Aproximation Using a Simultaneous Perturbation Gradient Aproximation // IEEE Trans. Automat. Control. 1992. V. 37. No. 3. P. 332– 341.
- 23. Spall J.C. A one-measurement form of simultaneous perturbation stochastic approximation // Automatica. 1997. V. 33. P. 109–112.
- Поляк Б.Т. Сходимость и скорость сходимости итеративных стохастических алгоритмов. I. // АнТ. 1976. № 12. С. 83–94.
 Polyak B.T. Convergence and rate of convergence of recursive stochastic algorithms. I. // Automat. Remote Control. 1976. V. 37.

- Поляк Б.Т. Сходимость и скорость сходимости итеративных стохастических алгоритмов. II. // АнТ. 1977. № 4. С. 101–107. *Polyak B.T.* Convergence and rate of convergence of recursive stochastic algorithms. II. // Automat. Remote Control. 1977. V. 38. P. 537–542.
- 26. Цыпкин Я.З. Адаптация и обучение в автоматических системах. М.: Наука, 1968.
- 27. Поляк Б.Т., Цыпкин Я.З. Псевдоградиентные алгоритмы адаптации и обучения // АиТ. 1973. № 3. С. 45–68. Polyak B.T., Tsypkin Ya.Z. Pseudogradient algorithms of adaptation and learning // Automat. Remote Control. 1973. V. 34.
- Поляк Б.Т., Цыпкин Я.З. Адаптивные алгоритмы оценивания (сходимость, оптимальность, устойчивость) // АнТ, 1979, № 3, с. 71–84.
 Polyak B.T., Tsypkin Ya.Z. Adaptive estimation algorithms (convergence, optimality, stability) // Automat. Remote Control. 1979. V. 40. P. 378–389.
- 29. Поляк Б.Т., Цыпкин Я.З. Оптимальные псевдоградиентные алгоритмы адаптации // АнТ. 1980. № 8. С. 74–84. Polyak B.T., Tsypkin Ya.Z. Optimal pseudogradient adaptation procedure // Automat. Remote Control. 1980. V. 41. P. 1101–1110.
- 30. Поляк Б.Т., Цыпкин Я.З. Робастные псевдоградиентные алгоритмы адаптации // АнТ. 1980. № 10. С. 91–97. Polyak B.T., Tsypkin Ya.Z. Robust pseudogradient adaptation procedure // Automat. Remote Control. 1980. V. 41. P. 1404–1409.
- 31. Цыпкин Я.З., Позняк А.С. Оптимальные поисковые алгоритмы стохастической оптимизации // Докл. АН СССР. 1981. Т. 260. № 3. С. 550–553.
- 32. Поляк Б.Т., Цыпкин Я.З. Градиентные методы стохастической оптимизации // Измерения, контроль, автоматизация. 1989. № 3. С. 50–54.
- Назин А.В., Поляк Б.Т., Цыбаков А.Б. Пассивная стохастическая аппроксимация // АнТ. 1989. № 11. С. 127–134. Nazin A.V., Polyak B.T., Tsybakov A.B. Passive stochastic approximation // Automat. Remote Control. 1989. V. 50.
- 34. Поляк Б.Т. Новый метод типа стохастической аппроксимации // АнТ. 1990. № 7. С. 98–108.
 Polyak B.T. New stochastic approximation type procedures // Automat. Remote Control. 1990. V. 51. P. 937–946.
- Polyak B.T., Yuditskij A.B. Acceleration of stochastic approximation procedures by averaging // SIAM J. Control Optim. 1992. V. 30. No. 4. P. 838–855.
- 36. *Kushner H.J.*, Yin G.G. Stochastic Approximation Algorithms and Applications. New York: Springer–Verlag, 2002.
- 37. Borkar V.S. Stochastic Approximation. A Dynamical Systems Viewpoint. Cambridge University Press, 2008.
- Granichin O., Gurevich L., Vakhitov A. Discrete-time minimum tracking based on stochastic approximation algorithm with randomized differences // 48th Conf. Decision Control. Shanghai, China, 2009. P. 5763–5767.

- Granichin O.N., Amelina N.O. Simultaneous perturbation stochastic approximation for tracking under unknown but bounded disturbances // IEEE Trans. Automat. Control. 2015. V. 60. No. 5.
- Tsitsiklis J., Bertsekas D., Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms // IEEE Trans. Automat. Control. 1986. V. 31. No. 9. P. 803–812.
- 41. *Амелина Н.О., Фрадков А.Л.* Приближенный консенсус в стохастической динамической сети с неполной информацией и задержками в измерениях // АиТ. 2012. № 11. С. 6–29.

Amelina N.O., Fradkov A.L. Approximate consensus in the dynamic stochastic network with incomplete information and measurement delays // Automation and Remote Control. 2012. V. 73. No. 11. P. 1765–1783.

Рис. 1. Сходимость "загрузок" узлов к сбалансированным значениям.

Рис. 2. Среднее отклонение загруженности вычислительных узлов от оптимального сбалансированного значения.