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Abstract | New algorithms of the simultaneously perturbation stochastic

approximation (SPSA) are considered under \almost" arbitrary noise in mea-

surements of an unknown multi-variable minimized function. The function is

measured sequently not at a point of the previous estimate but at estimate's

slightly excited position for all vector components simultaneously. The of-

fered algorithms use only one or two values of noisy measurements of the

unknown function per each iteration. They give not only consistent estimates

of unknown parameters but also they have so simple form that these algo-

rithms \are naturally included" into implementation on new quantum elec-

tronic device for calculation of approximate value of the gradient vector of

multi-variable function.

Index Terms| Multi-dimensional optimization, parameter estimation, ran-

domized algorithm, SPSA, simultaneous perturbation, stochastic approxima-

tion, random direction, linear regression, �ltering, prediction, quantum com-

puting.

I. INTRODUCTION

Recently electronics development has closely approached to creating intelligent control

devices. Even now we have a real possibility of e�ective use of new algorithms of mathe-

matical theories of optimization, optimal and adaptive control, identi�cation of dynamic

systems unknown parameters and design of experiments for practice problems solving.

Earlier for some problems we could only try to get the most probable set that contains

a vector of unknown parameters of the functioning dynamic system (or plant). But now

the opportunity to get more precise solutions for them appears.

The exact solution of any problem can be found in the case when there is a precise

formulation. In our real existing world all connections and relationships are so diÆcult

and many{sided that it is impossible to give a strict mathematical description for many

phenomena. Typically theoretic approach is to choose a mathematical model close to a

real process and to include di�erent noises (disturbances) into it. Noises represent some

kind of \roughness" of the mathematical model from the one side and are characteristics

of outside uncontrolled perturbations of a plant or a system from the other. During the

last 50 years in majority of mathematical researches some \useful" probabilistic properties

are arrogated to \noises" so that it would be easy to develop algorithms for task solving

and then to prove mathematically the consistency of algorithms based on these properties.

For instance, the most frequent assumptions are measurements noises independence and
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zero{mean. In the engineering the validity of the algorithms that are based on \least{

squares method" or on \maximum likelihood method" is mostly grounded at probabilistic

noise properties assumptions without enough basis. As a matter of fact it is inexpedient

to use these algorithms in the conditions of a possible enemy counteraction. It is well

known to specialists in the theory of the unknown parameters identi�cation that if the

\noise" is a deterministic unknown function (an enemy \jam" a signal) or the observation

noise is a probabilistic \dependent" sequence, then the getting decisions is wrong. Then

some theorists say that observation sequence is \degenerate" (not rich) and the solutions

of such kind of problems are not studied at all. Another relevant problem is insuÆcient

\variety" of the observations sequence. For example, the main purpose of adaptive control

synthesis is a minimization of system state vector deviation from the speci�c trajectory

that frequently turns to the \degenerate" sequence of observations. It causes complexity

of the identi�cation problem, for successful realization of which a "variety" of observations

should be supplied.

At the case of the \bad" observation noise the ground of a new approach to solving of

problems of estimation and optimization is the using of trial simultaneous perturbations

(disturbances). For the purpose of \enriching" information in the observation channel

sometimes there is a possibility to include a new simultaneous perturbation with well{

known probabilistic properties into the input system channel. In several problems the

measurable random process that is already presented in a system is a such simultaneous

perturbation. In control systems it is natural to add the trial simultaneous perturbations

(actions) through a control channel. In other cases the simultaneous perturbation role can

be played by randomization of an experiment design. Frequently it is possible to apply

the methods which already became conventional for updated system with the simultane-

ous perturbation in order to research the convergence of new algorithms and their �elds

of applicability. Sometimes this updated system is the rewritten old one in the other

form. One of the remarkable characteristics of such type of algorithms is a convergence

under the \almost" arbitrary noise. A considerable restriction for using these algorithms

is an assumption of \weak correlation" or \independence" of the measurement noise and

the simultaneous perturbation which is added into the system, while there are no other

assumptions about measurement noise properties. This restriction is natural in the case

when the noise is generated from either an \unknown but bounded" deterministic func-

tion or by an enemy, who does not know real values and probabilistic properties of our

simultaneous perturbation.

It is enough strangely that for a long time it was not the understanding that searching

algorithms with sequential estimate f�ng changing in an axis direction of some random

centered vector �n (mean value is zero)

�n = �n�1 ��nYn;

can converge to a true parameters vector �? in the conditions when the observations Yn
are done with an "almost" arbitrary noise and Yn are determined by previous estimate

�n�1 and the vector �n of simultaneous perturbation. In this paper the algorithms of such

type are named \randomized algorithms of an estimation" because the substantiation of
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their convergence under \almost" arbitrary noise essentially uses a \stochastic" nature of

the simultaneous perturbation. In the nearest future the caution attitude to stochastic

algorithms and their outcomes will be signi�cantly changed. The modern generation of

computers will be replaced with a new kind of quantum computers. These new computers

are stochastic systems, because their work is based on Heisenberg uncertainty principle of

quantum mechanics. Probably, taking into account capabilities of quantum parallelism,

the randomized algorithms of the optimization and estimation will lie down naturally into

the basis of the future quantum computing devices.

A. Preview Example

Let's consider a problem of the detecting of the scalar \useful" signal 'n, which is

known and can be present or be absent in an observation channel. Suppose that f'ng is
the realization of some sequence of independent identically distributed random values with

the mean valueM' and the �nite dispersion �
2
'
. At each time moment n the measurement

yn is made with additive bounded noise vn. Assume that cases f�? = 1g and f�? = 0g
correspond to the situation when a signal is present or absent in the receiver. We can

write the sequence of equations

yn = 'n�
? + vn; n = 1; 2; : : : :

The our objective is to determine the value of �? based on available input-output mea-

surements yi; 'i; i � N .

A classical approach to a solving of this problem is the consideration of stochastic

problem setting where noises are generated by the sequence of random variables with

known probabilistic properties. For instance consider the sequence of estimates f�ng
which are generated by the least mean squares method

�̂n =

P
n

k=1 'kykP
n

k=1 '
2
k

:

It is well-known that in the case of independent identically distributed random noises vn
the sequence f�ng converges with the probability 1 to the true value �? when random

sequences f'ng and fvng are independent, fvng is bounded in the mean squares sense

and the mean value of vn is equal zero (Mv = 0). In the case Mv 6= 0 it converges to the

value

�? +
MvM'

�2
'

:

When the mean value Mv is unknown and absolute value of the second item is more the

1 the previous estimates does not help us to solve the problem.

An alternative method is the membership set approach which based on a priori infor-
mation about the level Cv of measurement noises:

jvnj � Cv; n = 1; 2; : : : :

Then at the time moment N the membership set

�N = \N

n=1f� 2 R : jyn � 'n�j � Cvg
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is the set of all possible values of parameter that are consistent with the observation

scheme. But it is not possible to show the convergence of the sets sequence f�Ng to the

point �? as N ! 1 under some general assumptions. An advantage of this approach

is that it doesn't require any speci�c conditions on the noise types. The disadvantage

is, however, that an accuracy of the estimation directly depends on a noise level. The

quality of estimates isn't so good when a noise level is high. This approach leads to the

pessimistic answer for the question about possibility to precisely identify the unknown

value of parameter �?. The main purpose of this contribution is to show that in the

suÆciently general cases this pessimistic answer not close the possibility to solve the

identi�cation problem.

How to solve the initial problem? Denote �n = 'n �M', n = 1; 2; : : : are centered

inputs. Suppose that Efj�nj4g <1, �1 6= 0 and sequences f�ng and fvng are indepen-
dent ( or fvng is formed by an \unknown but bounded" deterministic function). Let's

both parts of equation for yn are multiplied by �n. We derive

�nyn = �2
n
�? +�nM'�

? +�nvn

and
1

n

nX
k=1

�kyk =
1

n

nX
k=1

�2
k
�? +

1

n

nX
k=1

�kM'�
? +

1

n

nX
k=1

�kvk; n = 1; 2; : : : :

The �rst and second terms in the right part converge to �2
'
� and zero with the probability

1 as n ! 1. It is possible to show that the last term converges to zero too. Hence the

sequence f�̂ng; n = 1; 2; : : : ; formed by the rules

�̂n =

P
n

k=1�kykP
n

k=1�
2
k

; n = 1; 2; : : :

converges to �? with the probability 1. So we can get a precise solution of the initial

problem for suÆciently large N . In the recurrent form the last method can be rewritten

as randomized algorithm which is above.

B. Earlier Works

The idea of using random inputs to eliminate bias was put forward by Fisher [1] as

the randomized principle in the design of experiments. The problem of linear regression

parameters estimation was considered in [2{7] at the case of nonstandard assumptions

about the observation noises. Some generalization of the usual LR problem setting were

discussed in the [2] and [3]. There were supposed that the vector of unknown param-

eters can be time-varying and the algorithms for the estimation of the mean value of

parameters were o�ered. In the partial case of centered random input signals and time

invariant regression parameters the linear regression problems were considered by Plyak

and Goldenshluger [4] with an arbitrary noise. But the algorithms which were suggested

in [4] doesn't achieve an optimal rate of convergence in the general case. The possibility

to get strongly consistent parameter estimates was also discussed in [5] when the noises

are bounded and deterministic and the input sequences are suitably chosen.
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As an important partial case of the randomized estimation algorithms there are algo-

rithms of the simultaneously perturbation stochastic approximation (SPSA) [8{12]. The

main features of the SPSA algorithms are the following: at each algorithm iteration we

need only one or two values of an unknown minimized function measurements and the

unknown function is measured not at a point of the previous estimate but at estimate's

slightly excited position for all unknown vector components simultaneously. The con-

vergence analysis of SPSA algorithm under the \almost" arbitrary noise was originated

in [8]. In Polyak and Tsybakov [9] the algorithms of the same type were considered in

\good" observation noise conditions, and their asymptotic optimality among a wide class

of recurrent algorithms was proved. The term \SPSA algorithm" was o�ered in the [11] by

Spall. He showed that in multi-dimensional case the essential reduction of measurements

quantity at each iteration, in comparison with a classical Kiefer-Wolfowitz procedure of

stochastic approximation, does not increase amount of iterations, which are necessary for

obtaining the same accuracy of the estimation. Historically many authors (see [13, 14])

have been using another term, random direction stochastic approximation (RDSA) for

denomination of the algorithms being looked at in the papers mentioned above. For the

\training" of neuron networks SPSA algorithms were also o�ered in the [15] and [16]. The

competence of SPSA algorithms under the \almost" arbitrary noise were considered in

[7, 17{21].

The �ltering problems with random inputs in an observation channel were discussed

in Zhang [22, 23] for linear systems with non-Gaussian disturbances and in [7, 24] with

almost arbitrary noise.

One of the possible way of a representation of the SPSA algorithm as quantum com-

puting circuit is given in [20].

C. Contents of This Paper

The paper is organized as follows. In the next section, we state the problem of a

minimization of an unknow function and main assumptions about the functions. We

consider the multi-variable objective function like an average risk and we suppose that it

is possible to measure values of the integrand loss function with the "almost" arbitrary

noise only. This approach is more general than it usually studied. In Section III, we o�er

three types of SPSA algorithms. There is shown that the sequence of received estimates

converges to the true value of the unknown parameters with the probability 1 and in the

mean-square sense. In Section IV, we study the question how to increase the mean-square

rate of convergence. In Section V, we formulate the linear regression problem and the

main assumptions about inputs (regressors) and noises. Further we o�er the randomized

stochastic approximation (RSA) and mean squares (RMS) algorithms for estimation of the

vector of the unknown LR parameters. There is shown that the sequences of generated

estimates converges to the true value of the unknown parameters almost sure and in

the mean-square sense. In Section VI, we study the �ltering problem at the case of

random inputs (regressors) in an observation channel and mixed type of uncertainties.

The process, which is being �ltered, is generated from a white noise sequence through a

stable linear �lter. The observation noises are formed from the values of an \unknown but
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bounded" deterministic function or at the case of random observation noise we assume

that it is bounded in the mean square sense and independent with inputs. There is

o�ered to use the randomized least mean squares (RLMS) algorithm for the prediction.

The upper boundary of the mean value of the prediction errors is established. It can be

suÆciently small under appropriate choice of the probabilistic distribution of regressors. In

Section VII, we give examples and numerical simulations to demonstrate the performance

of our schemes. Under various types of observation noises the typical behavior of the

o�ered estimates compares with the one of the standard LMS or KF estimates. The

numerical results indicate two facts when observation noises don't satisfy any \good"

statistical properties. Firstly, our estimation and �ltering schemes outperform standard

algorithms. Secondly, it is possible to achieve the value of averaged errors much less

then the observation noise level. Section VIII is devoted to the representation of SPSA

algorithms on a quantum computing device. In Appendix, we go through the proofs of

the main results.

II. PROBLEM STATEMENT AND MAIN ASSUMPTIONS

Let F (w; �) : Rp�Rd ! R
1 be a continuously di�erentiatable on the second argument

of the function, x1; x2 : : : is an observation plan, a sequence of points selected by an

experimenter where the observation value of the unknown function F (wn; �) is accessible
at each iteration n = 1; 2; : : : with additive noise vn

yn = F (wn; xn) + vn:

Here fwng is an uncontrollable sequence of random vectors wn 2 R
p with an identical

unknown distribution Pw(�) which has a �nite support.

Problem statement. It is required to �nd the unknown vector �? which minimizes a

function

f(�) =

Z
Rp

F (w; �)Pw(dw)

by using the observations y1; y2 : : :. Usually the problem of function f(�) minimization is

considered when using more simple observation model

yn = f(xn) + vn;

which is easily included in above. Generalization made in the problem statement is

dictated, as a minimum, by tendency to take into account the case of multiplicative noise

in observations

yn = wnf(xn) + vn:

This case is included in the general scheme with the function F (w; x) = wf(x).

We adopt the following notations. Ef�g is used to denote the expectation of a random

variable. The Euclidean norm of a vector x in Rd is denoted by kxk. The scalar product
in Rd is denoted by h�; �i. I is d-dimensional identity matrix. The trace of a matrix A
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is denoted by Tr[A]. A > 0 means that A is a positive de�nite matrix. The maximum

(minimum) eigenvalue of A is denoted by �max(A) (�min(A)), and the Euclidean norm of

A is de�ned as its maximum singular value, i.e.

kAk =
p
�max(AAT):

Let's formulate the main assumptions.

(A.1) Function f(�) has a unique root in Rd at some point �? = �?(f(�)) and

hx� �?(f(�));rf(x)i � �kx� �?(f(�))k2; 8x 2 Rd

with some constant � > 0.

(A.2) the gradient of a f(�) Lipschitz condition holds

krf(x)�rf(�)k � Akx� �k; 8x; � 2 Rd

with some constant A > �.

(A.3) Function f(�) 2 C` is `{times continuously di�erentiable and for all its partial

derivatives up to the order ` the Holder condition of order � (0 < � � 1), holds on

Rd so that

jf(x)�
X
j�lj�`

1
�l!
D

�lf(�)(x� �)
�lj � Mkx� �k
 ;

where 
 = `+ � � 2, M | some constant,
�l = (l(1); : : : ; l(d))T 2 N

d is a multi-index, l(i) � 0; i = 1; : : : ; d;

j �l j= l(1) + : : :+ l(r); �l! = l(1)! � � � l(d)!;
x 2 R

d ; x
�l = (x(1))l

(1) � � � (x(d))l(d); D�l = @j
�lj=(@x(1))l

(1) � � � (@x(d))l(d):
If 
 = 2 then M = A=2 in the condition (A.1) .

III. BASIC ALGORITHMS AND TRIAL SIMULTANEOUS
PERTURBATIONS

Let f�ngn=1;2;::: is an observable sequence of independent random vectors. f�ng is

called trial simultaneous perturbation. �n 2 Rd and its distribution function is Pn(�).
Let �0 2 � be some initial vector and f�ng, f�ng| some numerical sequences tending

to zero. Consider three algorithms for constructing the plan of experiments fxng and the

sequence of estimates f�ng. The �rst one is8<
:
xn = �̂n�1 + �n�n; yn = F (wn; xn) + vn ;

�̂n = �̂n�1 � �n

�n
Kn(�n)yn;

(1)
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that uses one measurement per each iteration. Next algorithms, the \smoothed" versions

of the Kiefer-Wolfowitz procedure, use two measurements8<
:
x2n = �̂n�1 + �n�n; x2n�1 = �̂n�1 � �n�n;

�̂n = �̂n�1 � �n

2�n
Kn(�n)(y2n � y2n�1);

(2)

8<
:
x2n = �̂n�1 + �n�n; x2n�1 = �̂n�1;

�̂n = �̂n�1 � �n

�n
Kn(�n)(y2n � y2n�1):

(3)

In all algorithms there are some smoothed vector-functions (kernels) Kn(�) : Rd ! R
d ; n =

1; 2; : : : with the �nite support: Kn(x) = 0 for kxk � C�, where C� is some constant.

These functions and the trial simultaneous perturbation distribution functions Pn(�) sat-
isfy the following conditionsZ

Kn(x)Pn(dx) = 0;

Z
Kn(x)x

TPn(dx) = I; (4)

sup
n

Z
kKn(x)k2Pn(dx) <1; n = 1; 2; : : : :

The �rst time the algorithm (2) was proposed by Kushner and Clark in the book

[13] for the case of uniform distributed trial perturbation and functions Kn(x) = x: In

the [8] the algorithm (1) was considered with the same kernel function but with more

general type of the trial distribution under \almost" arbitrary measurement noise. Both

algorithms (1) and (2) were proposed by Polyak and Tsybakov in the [9] with kernel vector-

functions Kn(�) of the more general type and the uniform distributed trial simultaneous

perturbation. In the [11] Spall began to consider the algorithm (2) with general type of

the trial simultaneous perturbation distribution and the vector-functions

Kn(�n) =

0
BBBB@

1

�
(1)
n

1

�
(2)
n

...
1

�
(d)
n

1
CCCCA :

In the [19] was o�ered the algorithm (3) with the same vector-functions Kn(�) and the

same type of the trial simultaneous perturbation distribution

For some technical reasons we modify the algorithm (1)8<
:
xn = �̂n�1 + �n�n; yn = F (wn; xn) + vn ;

�̂n = P�n
(�̂n�1 � �n

�n
Kn(�n)yn);

(5)
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where f�ng is a sequence of convex closed sets �n � Rd, which contain the point �? for

all suÆciently large n � 1, P�n
is a projector on �n. Let dn = diam�n be Euclidean

diameter of the set �n. If we know beforehand the convex closed set �, which contains the

point �? then �n = �. In the contra case the sequence fdng can be in�nitely increasing.

Denote W = supp(Pw(�)) � R
p ; Fn�1 | �-algebra generated by �̂0; �̂1; : : : ; �̂n�1, which

are formed by algorithm (5) (or (2), or (3)); for algorithms (2) or (3)

�vn = v2n � v2n�1; �wn =

�
w2n

w2n�1

�
; dn = 1;

for the algorithm (5)

�vn = vn; �wn = wn:

Theorem 1 If the condition (A.1) is held for the function f(�) = EfF (w; �)g;
(A.2) for functions F (w; �) 8w 2 W ;

(4) for functions Kn(�) and Pn(�); n = 1; 2; : : :;

8� 2 R
d functions F (�; �) and r�F (�; �) uniformly bounded on W ;

8n � 1 random values �v1; : : : ; �vn and vectors �w1; : : : ; �wn�1 don't depend on �wn;�n, random

vector �wn doesn't depend on �n;
Ef�v2

n
g � �2

n
; n = 1; 2; : : : :

If
P

n
�n =1 and �n ! 0; �n ! 0; �2

n
��2
n
(1 + d2

n
+ �2

n
)! 0 as n!1;

then the sequence of estimates f�̂ng, generated by the algorithm (5) (or (2), or (3)),

converges to the point �? in the mean-square sense Efk�̂n � �?k2g ! 0 as n!1:

Moreover, if
P

n
�n�

2
n
<1 and with the probability 1X

n

�2
n
��2
n
(1 + Ef�v2

n
jFn�1g) <1;

then �̂n ! �? as n!1 with the probability 1.

The proof of Theorem 1 is given in Appendix.

Remark 1. For the function F (w; x) = wf(x) conditions (A.1,2) of Theorem 1 are

held when they are satis�ed for the function f(x).

Remark 2. Under ful�llment of Theorem 1 conditions, measurement noises vn are

\almost" arbitrary one in some sense. They can be either the nonrandom "unknown but

bounded" deterministic sequence or the realization of some stochastic process with any

kind of internal dependences. In particular, it is not necessary to assume anything about

the dependence between vn and �-algebra Fn�1.

Remark 3. The condition of independence of measurement noise and trial simultaneous

perturbation can be loosed. As in [18] it is enough to require the tending to zero the

conditional correlation between vn and Kn(�n) as n ! 1 with the rate being not less

than

kEfvnKn(�n)jFn�1gk = O(�n
�n

)

with the probability 1.
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IV. RATE OF CONVERGENCE

Let's consider a particular structure of the trial simultaneous perturbation distribution

functions and some special kind of vector functions Kn(�); n = 1; 2; : : : which satisfy

the conditions (4). By using these functions, the algorithm (2)( or (3), or (5)) achieves

asymptotically optimummean{square rate of convergence O(n� 
�1

 ) as in the [9], provided

the researched function satis�es to the condition of a smoothness (A.3).

Let independent random vectors f�ng be distributed identically at n = 1; 2; : : :, all

components of the vectors �n are independent among themselves and have symmetrical

as to zero identical scalar distribution function P� distinct from zero only within some

interval [�C�; C�] � R; C� > 0.

Further we shall consider vector functions Kn(�) independent from n

Kn(x) = K(x) = (K(1)(x); : : : ;K(d)(x))T; x 2 Rd; n = 1; 2; : : : ;

components of which K(i)(�); i = 1; : : : ; d are calculated using the formulas

K(i)(x) = K0(x
(i))
Y
j 6=i

K1(x
(j)); i; j = 1; : : : ; d; x 2 R

d : (6)

determined by two scalar bounded functions K0(�) and K1(�) (kernels) with the �nite

support [�C�; C�], satisfying the conditionsZ
uK0(u)P�(du) = 1;

Z
ukK0(u)P�(du) = 0; k = 0; 2; : : : ; `;

(7)Z
K1(u)P�(du) = 1;

Z
ukK1(u)P�(du) = 0; k = 1; : : : ; `� 1:

In particular, for the scalar case (d = 1) the de�nition of K(�) is K(x) = K0(x).

It is simple to be convinced that functions K(�) together with the distribution function
of a trial simultaneous perturbation

Pn(x) = P(x) =

dY
i=1

P�(x
(i))

satis�es the conditions (4) while ful�lling the conditions (7).

Let's indicate some possible ways of the construction of kernels functions K0(�) and
K1(�) which satisfy the conditions (7). Let fpm(�)g`m=0 is some system of polynomials on

an interval [�C�; C�], orthogonal relative to a measure generated by distribution P�(�).
Let's take

K0(u) =

`X
m=0

ampm(u) ; am = p0
m
(0)=

Z
C�

�C�
p2
m
(u)P�(du);
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K1(u) =

`�1X
m=0

bmpm(u) ; bm = pm(0) =

Z
C�

�C�
p2
m
(u)P�(du)

and check that so de�ned functions K0(�) and K1(�) satisfy the conditions (7). Really, the
function uk can be presented as

uk =

kX
j=0

cjpj(u);

where cj are numeric coeÆcients. Therefore, for the kernel K0(�) which is constructed by

orthogonal polynomials, we get

Z
ukK0(u)P�(du) =

`X
m=0

kX
j=0

Z
C�

�C�
amcjpm(u)pj(u)P�(du) =

kX
j=0

cjp
0
j(0) = Æk;1;

after taking a derivative from the formula of the uk expansion and then putting u = 0.

Here Æi;j = 1 if i = j, and Æi;j = 0 otherwise. The kernel K1(�) satis�es to conditions (7)

too. This fact is proved more simply.

For the construction of kernels K0(�) and K1(�) on an interval [�1=2; 1=2] it was o�ered
in [9] to use orthogonal Legendre's polynomials pm(�); m = 0; 1; : : : ; ` with the uniform

probabilistic distribution of trial perturbation components on an interval [�1=2; 1=2]. In
this case for initial values of ` = 1; 2 (i.e. 2 � 
 � 3) we have

K0(u) = 12u;K1(u) = 1;

for next values of ` = 3; 4 (i.e. 3 < 
 � 5)

K0(u) = 5u(15� 84u2); K1(u) = 9=4� 15u2:

Note, that by de�nitions K0(u) = 0 and K1(u) = 0 as juj > 1=2.

In many practical cases the possibility of using more general (than in [9]) consideration

of the trial simultaneous perturbation distributions and the other orthogonal polynomials

set is caused by the problem statement itself, which sometimes contains a type of the trial

perturbation distribution P� or suggests more convenient one. Solving some problems it

is possible to use trial simultaneous perturbation distributions belonging to some narrow

�xed class only.

The following theorem gives suÆcient conditions where the asymptotic rate of conver-

gence of algorithm (2) ( or (5)) is optimal.

Theorem 2 Let be �n = �n�1; �n = � n�
1
2
 ; � > 0:

If the followning conditions are ful�lled:

(A.1,3) under 
 � 2; �� > 
�1
2�


for the function f(�) = EfF (w; �)g;
(A.2) for functions F (w; �) 8w 2 W ;
(7) for functions K0(�); K1(�) and P�(�);
8� 2 R

d functions F (�; �) and r�F (�; �) uniformly bounded on W ;

dnn
�1+ 1

2
 ! 0 as n!1;

8n � 1 random vectors �wn;�ndon't depend on �v1; : : : ; �vn; �w1; : : : ; �wn�1, random vector �n

11



doesn't depend on �wn;
Ef(v2n � v2n�1)

2=2g � �22 ; (Efv2ng � �21);

then for the sequence of estimates f�ng, generated by the algorithm (2) ( or (5)), the

mean-square convergence rate is

Efk�̂n � �?k2g = O(n� 
�1

 )

asymptotically when n!1.

The proof of Theorem 2 is also given in Appendix.

Remark 4. De�ne � = 1 when fvng are independent and mean{zero, � = 2 in other

cases. The constants K̂ =
R kK(x)k2P(dx) and �K =

R kxk
kK(x)kP(dx) are bounded

because vector-functions K(�) are bounded and supp(P�(�)) is �nite. At the case M > 0

in the proof of Theorem 2 the best value of parameters and quantitative evaluations of

the asymptotic convergence rate will be established for the algorithms (2) and (5)

�? = 1=(��?); �? = (2�(�i + �2
i
=i)K̂)

1
2
 (
p

(
 � 1)M �K)�

1

 ;

Efk�̂n � �?k2g � n�

�1

 �iK̂


�1

 �K

2

 + o(n�


�1

 );

�i = 

1+



 (
 � 1)
1�



 ��2(�(�i + �2
i
=i))


�1

 M

2

 ; i = 1; 2:

Here �1 = sup
w2W

�
F (w; �?) + 1

2
(r�F (w; �

?))2
�2
; corresponds to the algorithm (5); and

for the algorithm (2) �2 =

= sup
w1;w22W

�
2jF (w1; �

?)� F (w2; �
?)j+ (r�F (w1; �

?))2 + (r�F (w2; �
?))2
�2
=8:

In the case of F (w; x) = f(x), the iteration asymptotic convergence rate is always

better for the sequence of estimates formed by the algorithm (2), which using two obser-

vation, than for the algorithm (5), which can be clearly seen from views �1 and �2. The

algorithm (2) advantage stops being indisputable if we try to compare the algorithms'

behavior taking into account the number of measurements (twice as much measurements

needs to be made at each iteration when using the algorithm (2)). Comparing values �1

and 2�2, it is easily convincing that if 2
1


�1�22 � �21 > �1 � 2
1


�1 �2 then the asymptotic

rate of convergence that takes into account the number of measurements is better for the

algorithm (5) than for (2) .

Let's consider the scalar case, d = 1, and F (w; x) = f(x), 
 = 2, the trial perturbation

f�ng formed by uniformly distributed independent random variables lying on an interval

[�1
2
; 1
2
], K(x) = 12x; jxj � 1=2, measurement noises fvng are random independent zero{

mean values,fvng : Efv2ng � �2
v
, For algorithm (2) we have

Efk�̂n � �?k2g � 9A�v

4
p
3�2

n�1=2 + o(n�1=2); �? =
1

��?
; �? =

4
p
�vp

A 4
p
3
;

and for (5) Efk�̂n��?k2g � 4; 5
p
f(�?)2 + �2

v
=(
p
6�2)n�1=2+o(n�1=2): Hence, if f(�?)2 <

�2
v
, then it is more preferable to use the algorithm (5).

12



V. LR PARAMETER ESTIMATION

Consider a linear regression model

yn = 'T
n
�?
n
+ vn; �?

n
= �? + wn; n = 0; 1; : : : (8)

Here yn 2 R1 is an output of the observation made at time n, input 'n 2 Rd is a vector

that is known at time n, and vn 2 R1; wn 2 Rd represent the noises (disturbances). The

unknown parameters vector �? is to be estimated from the observations yi; 'i; i � n:

Let Fn be the �-algebra generated by f'0; : : : ; 'n; w0; : : : ; wn; v1; : : : ; vng, F̂n be the

�-algebra generated by f'0; : : : ; 'n; w0; : : : ; wn; v0; : : : ; vn+1g; and ~Fn be the �-algebra

generated by f'0; : : : ; 'n; w0; : : : ; wn+1; v0; : : : ; vn+1g; Fn�1 � F̂n�1 � ~Fn�1 � Fn :

We make the following Assumptions.

(A) The inputs f'ngn�0 form a sequence of independent identically distributed random

vectors with known bounded mean values kEf'ngk =M' <1 and 'n is indepen-

dent of ~Fn�1. The random vectors �n = 'n�Ef'ng have a symmetric distribution

function P(�) (i.e. P(
) = P(�
) for any Borel set 
 � R
d), Ef�n�

T
n
g = B > 0,

Efk�nk4g �M4 <1.

(B) 8n wn is independent of F̂n�1 and Efwng = 0. The noises fvngn�1 and fwngn�1
satisfy one of the conditions:

(i) Ef v2
n
jFn�1g � �2

v
<1; a:s:; Efkwnk2g � �2

w
<1;

(ii) Efv2
n
g � �2

v
<1; Efwnw

T
n
g � Qw <1;

where �v; �w are some constants, Qw is a symmetric matrix.

Note that standard assumptions about observation noise fvng in LR parameter es-

timation with random inputs are somewhat di�erent [25]. It is assumed, in particular,

that Efvng = 0, and fvng is a sequence of independent identically distributed random

variables, and fvng are independent of f'ng.
Let's study the randomized stochastic approximation estimator (RSA) for the model

(8)

�̂n = �̂n�1 � �n��n('
T
n
�̂n�1 � yn); n = 1; 2; : : : ; (9)

where �n � 0 is a nonrandom step{size and � is a positive de�nite symmetric matrix. We

also suppose that the initial value �̂0 is an arbitrary nonrandom vector in Rd .

Theorem 3 Let Assumption (A) be ful�lled and the sequence f�ng satisfy

1X
n=1

�n =1; �n ! 0 as n!1: (10)

If Assumption (Bi) holds and
P1

n=1 �
2
n
< 1 then for the estimates generated by the

algorithm (9) we have �̂n ! �? a.s. as n!1.
If Assumption (Bii) holds then Ef(�̂n � �?)(�̂n � �?)Tg ! 0 as n!1:

13



In the case when � = B�1 the result of Theorem 3 follows from Theorem 1 immediately

with

F (w; x) =
1

2
(x� �? � w)T(x� �? � w):

The algorithm (9) is equal to the (2).

The following theorem establishes the rate of convergence for the algorithm (9).

Theorem 4 Let Assumptions (A) and (Bii) be ful�lled, �n = n�1, and ��B + 1
2
I be a

Hurwitz matrix, i.e. all its eigenvalues lie in the left half{plane.

Then for the algorithm (9) we have

Ef(�̂n � �?)(�̂n � �?)Tg � n�1 S + o(n�1); (11)

where S is a solution of matrix equation

� B S + S B � � S = �R�: (12)

Here R = (�2
v
(1 +M2

'
�) +M2

'
Tr[Qw])B + Ef�n�

T
n
Qw�n�

T
n
g and � > 0 is any small

positive constant.

The proof of Theorem 4 is given in Appendix.

Equation (12) can be explicitly solved in the case when � = B�1, Tr[Qw] = 0 and

M' = 0. For the algorithm

�̂n = �̂n�1 � (nB)�1'n('
T
n
�̂n�1 � yn); (13)

we have

Ef(�̂n � �?)(�̂n � �?)Tg � n�1�2
v
B�1 + o(n�1):

The same rate of convergence holds for the algorithm (13) when vn are independent zero{

mean random variables, see [25]. Moreover, it was shown in the [25] that this choice of

�n and � is an optimal for algorithms of similar kinds.

Remark 5: In Theorem 4 statement in the case of equalities in Assumption (Bii) the

equality also holds in the equation (11) for the rate of convergence.

Now we consider the randomized least squares estimator (RMS) for the regression

model (8): 8<
:
�̂n = �̂n�1 � �n�n('

T
n
�̂n�1 � yn);

�n = �n�1 � �n�1�n�
T
n
�n�1=(1 + �T

n
�n�1�n); �0 = 
�10 I;

(14)

where 
0 > 0 is a small positive number (regularization parameter, see [26, 27]). We again

assume that the initial value �̂0 is an arbitrary nonrandom vector in R
d .

Theorem 5 Let Assumption (A) be ful�lled.

If Assumption (Bi) holds then for the algorithm (14) �̂n ! �? a.s. as n!1.

If jvnj � Cv; kwnk � Cw; k�nk � C� a.s. then for the algorithm (14)

Ef(�̂n � �?)(�̂n � �?)Tg ! 0 as n!1: Here Cv; Cw; C� <1 are some constants.
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The proof of Theorem 5 is also given in Appendix.

VI. PREDICTION OF THE SIGNAL (FILTERING)

We'll study the special case of the problem of �ltering when the observations are

related by equations

yn = 'T
n
�?
n
+ vn; n = 0; 1; : : : (15)

Here yn 2 R
1 is an observation made at time n and 'n is a d-dimensional vector that is

known at time n, vn 2 R
1 represents an observation noise, and the vector signal process

f�?
n
g, �?

n
2 R

d is generated from a white noise sequence through a stable linear �lter

�?
n+1 = A�?

n
+ wn+1; �

?

0 2 R
r ; (16)

where A is a known stable matrix (i.e. kAk < 1), fwng and fvng satisfy conditions (Bii).

It is the objective of the problem of the prediction for one step to estimate the vector

�?
n+1 from measurements yi; 'i; i � n. Let �̂n+1 be a current estimate of the vector �?

n+1.

The quality of prediction (the �ltering performance) is determined by the mean value of

square of the prediction error

Efk�̂n+1 � �?
n+1k2g:

Usually in the �ltering problem statement deterministic sequence of vectors f'ng is con-
sidered. Here we will suppose that vectors 'n; n = 1; 2; : : : are random and satisfy As-

sumption (A).

The randomized least mean squares algorithm (RLMS) is de�ned recursively by

�̂n+1 = A�̂n � �A��n('
T
n
�̂n � yn); n = 0; 1; : : : ; (17)

where � > 0 is a step{size and � is a positive de�nite symmetric matrix. We suppose

that the initial value �̂0 is some vector in Rd .

The prediction errors satisfy by the following equation which can be obtained by

substituting (15) and (16) into (17):

�̂n+1 � �?
n+1 = A(I� ���n�

T
n
)(�̂n � �?

n
)� �A��n(Ef'ngT(�̂n � �?

n
)� vn)� wn+1:

If Assumptions (A) and (Bii) hold then successively taking the conditional expectations

with respect to �-algebra Fn and ~Fn�1 we conclude that

Efk�̂n+1 � �?
n+1k2j ~Fn�1g � (1� 2��min(B�) + �2k�k2M4

4 )kAk2k�̂n � �?
n
k2+

+�2(Ef'ngT(�̂n � �?
n
)� vn)

2k�k2Tr[B] + Tr[Qw]:

Further, taking the unconditional expectation from the last inequality we obtain for the

mean value of the square of prediction errors with any � > 0

Efk�̂n+1 � �?
n+1k2g � b(�; �)Efk�̂n � �?

n
k2g + �2(1 +M'�)k�k2Tr[B]�2v + Tr[Qw];
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where

b(�; �) = (1� 2��min(B�) + �2k�k2M4)kAk2 + �2(M' +
1

�
)M'k�k2Tr[B]: (18)

The next result follows directly from the last inequality.

Theorem 6: Let Assumption (A) and (Bii) be ful�lled. Then the mean value of the

square of prediction errors of the estimates f�̂ng generated from the algorithms (17) 8� > 0

and suÆciently small �: b(�; �) < 1; satisfy the next inequality

Efk�̂n+1 � �?
n+1k2g �

Tr[Qw] + �2(1 +M'�)k�k2Tr[B]�2v
1� b(�; �)

+ b(�; �)nEfk�̂0 � �?0k2g;

where the constant b(�; �) is determining from (18).

Let's suppose that � = B�1, kAk�2 = 1 +O(�3) Efk�̂0 � �?0k2g = 0. Denote

r(�) =
M4 + (M' + 1=�)M'Tr[B]

2�2min(B)
:

In this case for the suÆciently small � result of Theorem 6 leads to the inequality

Efk�̂n+1 � �?
n+1k2g � D(�; �) + O(�2);

where

D(�; �) =
1

2
Tr[Qw]

� 1
�

+ r(�) +

�
r(�)2 +

(1 +M'�)Tr[B]�
2
v

Tr[Qw]�
2
min(B)

�
�
�
: (19)

From the last expression the trade{o�s between the �ltering ability and noise sensi-

tivity are clearly visible. If M' = 0 then the similar result one can get directly from the

[28] (theorem 4, p. 764) for the tracking problem solving.

Minimizing the expression for D(�; �) with respect to � one obtain

�? =

�
r(�?)2 +

(1 +M'�
?)Tr[B]�2

v

Tr[Qw]�
2
min(B)

�� 1
2

;

where �? is the minimum point of the function

�D(�) =
1

2
Tr[Qw]

�
r(�) + 2

q
r(�)2 + (1 +M'�)Tr[B]�2v�

�2
min(B)=Tr[Qw]

�
: (20)

If M' = 0 then the function D(�; �) is independent of �. Hence we get

�? = 2�2min(B)

s
Tr[Qw]

M2
4Tr[Qw] + 2�2min(B)Tr[B]�

2
v

and

�D? =
Tr[Qw]

4�2min(B)

�
M4 + 2

q
M2

4 + 2�2min(B)Tr[B]�
2
v
=Tr[Qw]

�
:
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level of decisionmaking

�? = 0

ordinary MS

RMS (14)
RSA (9)

�? = 1

level of decisionmaking

ordinary MS

RMS (14)
RSA (9)

Fig. 1. Detecting useful signal

In the case when regressor's vectors can be arbitrary chosen from d{dimensional cube

[�1; 1]d it is easy to conclude from the last equation that random vectors with the prob-

abilistic distribution of Bernoulli (�1) are more appropriate as regressors.

Let d = 1, �2
w
= Tr[Qw] << �2

v
and f'ng be a scalar independent Bernoulli process

(Probf'n = �'g = Probf'n = � �'g = 1=2). We have �?A� � �w=j �'j�v: Note that this
value equals approximately the limit value of Kalman coeÆcient for the optimal Kalman

�lter when noises fvng are independent and equal ��v with the identical probability.

VII. EXPERIMENTAL RESULTS

A. Signal detecting

Let's consider a problem of the detecting of a known signal 'n which was stated in

introduction. At each time moment n the measurement yn is made with additive bounded

noise vn:

yn = 'n�
? + vn; n = 1; 2; : : : :

The case f�? = 1g corresponds to the situation when a signal is present in the receiver and
f�? = 0g is absent. The our objective is to determine the value of �? based on available

input-output measurements yi; 'i; i � N .
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level of decisionmaking

LMS �̂n = �̂n�1 � 0:1�n(�n�̂n�1 � yn)

RLMS �̂n = �̂n�1 � 0:1�n(�n�̂n�1 � yn)

Fig.2 Tracking useful signal

At the simulation on the computer the useful signal f'ng was selected as uniformly

distributed on an interval [0:5; 1:5] and was also observed on a hum of noises, which

were determined from an "unknown but bounded" deterministic function, jvnj � Cv = 2.

Fig. 1 shows the typical trajectories of estimates which were generated by the three

algorithms in the two cases when useful signal was (or wasn't ) present in the receiver.

Some deterministic sequence with average value more than +1 (displaced from zero) was

used as an observation noise in the simulation on computer. The level of observation

noise is so high that estimates generated from the ordinary mean squares (MS) algorithm

exceed the decisionmaking level almost always without the dependence from presence or

absence of a signal, while the algorithms (9)and (14) give the correct answers after 50

iterations.

In the following example the useful signals f'ng and observation noises fvng satisfy

above conditions but useful signals \are actuated" in an observation channel temporarily,

though its value are accessible to the experimenter during the all observation period. The

problem is to design a rule, on which at each moment one could answer the question: does

the useful signal acts in the observation channel or there is just noise being registered.

The observation noises were formed by some deterministic sequence which average value

is zero. But �rst half of its values are the positive numbers with average value more than

+1 and last half are the negative numbers with average value less than �1. Comparison

RLMS with the ordinary least mean squares algorithm (LMS) shows that RLMS tracking

the changes of useful signal parameters more precisely, it gives only 13% of incorrect

answers, see Fig.2.

B. Filtering

Let's consider the simple scalar case: d = 1. Investigated process f�?
n
g is generated

through a stable linear �lter (16)

�?
n+1 = 0:9999�?

n
+ wn+1; n = 0; 1; : : :

with A = 0:9999 and �?0 = 0 from the values of an independent process fwng uniformly

distributed on interval [�1
3
; 1
3
]: Efwng = 0; Efw2

n
g = 2

81
: At each time moment n one can

measure the values 'n and yn which are related with �?
n
by the equation (15), where vn

represent immeasurable bounded noise (disturbance): jvnj � 2.
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Fig. 3. Estimates of �ltering at white noises case

�?
n (21) (22) (23)

At the computer simulation the random values f'ng was selected as uniformly dis-

tributed on an interval [0:5; 1:5]. Observations of the process f�?
n
g were made on the time

interval from n = 1 to 199. A quality of the prediction was determined by

~D(f�̂ng) = 1

199

199X
n=1

k�̂n � �?
n
k2:

Minimizing function �D(�) (see (20)) with respect to � one can obtain �? = 0:269. Hence

for the RLMS algorithm (15) an optimal step{size �? is 11:3808, � = 1=48, and the

correspondence value of D(�?; �?) is 1:3699 that less than �2
v
= 4.

Under di�erent kind of observation noises we compare the performances of three tra-

jectories of prediction estimates which were generated by the RLMS

�̂n+1 = 0:9999(�̂n � 0:2371('n � 1:0)('n�̂n � yn)); (21)

by the ordinary least mean squares algorithm (LMS)

�̂n+1 = 0:9999(�̂n � 0:2371'n('n�̂n � yn)); (22)

and by the Kalman �lter (KF)

�̂n+1 = 0:9999�̂n � kn'n('n�̂n � yn); (23)

kn =
0:9999
n�1
16
3
+ 
n�1'2n

; 
n = 
n�10:9999
2 � '2

n

2
n�1

16
3
+ 
n�1'2n

+
2

81
; 
0 = 0:

Fig. 3 and 4 are showing in the typical cases of them behaviors.
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�?
n (21) (22) (23)

Fig. 4. Estimates of �ltering at "unknown but bounded" non{random noises
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The numerical results are summarized in Table I. It is well{known that KF estimates

(23) give an optimal performance index when fvng and fwng are Gaussian white noises,

behavior of the LMS estimates (22) is suÆciently good when fvng and fwng are centered
independent random processes. Therefore behavior of the estimates (22),(23) is suÆciently

good in the �rst case though the level of the observation noises fvng is high (see Fig. 3).

In the second case when the observation noises fvng is zero{mean but non{regular and in

the case of unknown constant noise the mean values of the prediction errors of algorithms

(22) and (23) are equal approximately to the square of the level of observation noises (see

Fig. 4). But the performance indexes of the RLMS estimates are approximately identical

in all considered cases and they are in 5-7 times less than the square of the level of the

observation noises.

TABLE I
AVERAGED ERRORS OF VARIOUS ALGORITHMS

~D((21)) ~D((22)) ~D((23))

vn = 4:0 � (rand()� 0:5) 0.5309 0.1803 0.1256

vn = 0:1 � sin(n) + 1:9 � sign(50� nmod100) 0.5700 2.8254 2.2640

vn = 2:0 0.5954 3.1387 2.5335

vn = �2:0 0.7826 3.4989 3.9582

VIII. QUANTUM COMPUTER AND RANDOMIZED ALGORITHMS

During the last couple of years the area of the randomized stochastic approximation

algorithms has been constantly getting wider. The algorithms' implementation simplicity

allows to use them not only in special computing devices but also in the design of a

classical type electronic devices with an immediate use of \simultaneous perturbation"

principal [29]. E�ectiveness of a method is explained from two basic moments:

� Only one or two measurements of function values are required for the calculation of

the approximate value of a multivariable function gradient.

� Algorithms have robustness qualities of a very high degree in a sense that the estimation

algorithms convergence is proved under the \almost" arbitrary noises in function

measurements.

The main problem of a convergence substantiation which arises in practical use of

SPSA algorithms is the way of generation of trial simultaneous perturbations. They are
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to be independent from noises in the observation channel as well as the components of a

trial simultaneous perturbation vector should be independent between themselves. The

eÆciency of o�ered algorithms reduces when we use a classical computer2 that sequentially

executes elementary operations one by one ( in comparison with theoretical results).

The title \simultaneous perturbation" itself has an insistent demand for practical use to

be \parallel". At the same time the problem of a parallel calculations organization on

computers of classical type is diÆcult when it deals with the large dimensionality of a

function arguments vector (�ve, tens, . . . , thousands).

In the given section, the model of \hypothetical" quantum computer will be con-

sidered. O�ered above algorithms can be realized most eÆciently on this new kind of

computers. In other words, it will be considered below is an example of design of an

electronic quantum device that calculates for \one step" the \good" approximation of the

gradient vector of an unknown multivariable function with rather high degree of an ac-

curacy. The word \hypothetical" is consciously quoted since after the P. Shor report [30]

on the Berlin mathematical congress in 1998 many serious authors began to write about

quantum computers as an engineering of the nearest future. In August 2000 the �rst

practical successive result was declared (Reuters, "IBM Says It Develops Most Advanced

Quantum Computer").

A. The Quantum Circuit Model

Firstly let's describe the mathematical model of quantum computer producing cal-

culation on determined circuits. There have been a considerable number of important

developments in the �eld of an extension of classical information{theoretic concepts to

a quantum{mechanical setting (see [31],[32]). The classical computer treats bits, receiv-

ing values from the set f0; 1g. It is equipped with a �nal set of schemes, which can be

applied to the sets of bits. The quantum computer treats the quantum bits (or qubits),

representing typically a two{state microscopic system, possibly an atom or nuclear spin or

polarized photon, the behavior of which (e.g., entanglement, interference, superposition,

stochasticity, . . . ) can be accurately explained using the rules of quantum theory [33] only.

Mathematically, a state (more precisely, a pure state) of a qubit is a unit vector in the

complex space C 2 with inner product. The quantum states are invariant concerning multi-

plication by scalar value. Let's denote base vectors of this space j0i, j1i. Assume that the

quantum computer is equipped with a discrete set of fundamental components, called by

quantum schemes. Each quantum scheme is an unitary transformation, which acts on a

�xed number of qubits. One of the fundamental principles of a quantum computer model

is that the joint quantum state space of a system, consisting from k two{state systems, is

the tensor products of their individual Hilbert spaces. Thus, the quantum state space of

k qubits systems is the complex projective space C 2k . The basis vectors set of this state

space can be parameterized by bits lines of length k

jb1b2 : : : bki = jb1i 
 jb2i 
 : : :
 jbki:
2By term \classical" we mean \nonquantum" throughout this paper.
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Let's assume, that the \classical" information, bits line of the length l; l � k, is a

quantum computer input. Originally in the quantum calculation the last qubits with

number i > l get the value of j0i. The executed circuit is created from the �nal quantity

of quantum schemes operating with these qubits. At the end of calculation the quantum

computer comes into some state, which is a unit vector in the space C 2k . This state can

be presented as

W =
X
s

 sjsi;

where the summation by s is done for all binary lines of length k,  s 2 C ;
P

s
j sj2 = 1.

Sizes j sj are named as probabilistic amplitudes, and W is named as a superposition of

the basis vectors jsi. The quantum mechanics uncertainty Heisenberg principle states

that it is impossible to measure the quantum system received state precisely. However

some capabilities to execute the measurement for all qubits (or subset of qubits) exist.

The quantum system state space is a Hilbert space. The state measurement concept is

equivalent to a scalar product in this Hilbert space with some speci�c vector V

hV;W i (= hV jW i):

Usually the projection on some basis state is used for measuring. The measurement result

is an outcome of calculation.

B. Quantum Circuit for the Approximation of a Function Gradient

Let's consider the part of the SPSA algorithm (1) with Bernoulli trial simultaneous

perturbation and Kn(x) = x, which calculates the approximation of a gradient vector

rf(X) � (ĝ(1)(X); ĝ(2)(X); : : : ; ĝ(d)(X))T of a function f(�) : Rd ! R at a point X 2 Rd.

Suppose that p binary digit is used for representation of numbers in our computer (in

modern computers, most frequently p = 16; 32; 64) and k = p � d. For all x 2 R binary

representation of x in the form of the bits line is denoted as sx = b
(1)
x : : : b

(p)
x . Let's assume

that we have some quantum circuit that calculates function f(X) values. To be more

precise, it is possible to consider that the unitary transformation is given: Uf : C
2k ! C

2k .

It maps one basis element

jsx(1) : : : sx(d)i = jb(1)
x(1)

: : : b
(p)

x(1)
: : : b

(1)

x(d)
: : : b

(p)

x(d)
i

to another basis element

jsf(X)00 : : : 0i = jb(1)
f(X)

: : : b
(p)

f(X)
00 : : : 0i = Uf jsx(1) : : : sx(d)i

for all X = (x(1); : : : ; x(d))T 2 Rd

Assume that our \hypothetical" quantum calculator contains at least three k{qubits

registers: input I, transferring the \classical" input data to the \quantum"; worker W ,

permitting to manipulate the \quantum" data; and simultaneous perturbation �. For the

quantum circuit design, which realizes the approximate calculation of a gradient vector
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of a function f(�), several \standard" quantum (unitary) transformations are required.

They can be applied to the data stored in registers. The outcome of transformation is

saved in the register to which transformation was applied.

Sum U+R. It adds to the vector another one which is stored in register R.

Turn of the �rst qubits UR1;p+1;:::;(d�1)p+1
. It transforms the state of qubits numbered as

1; p+ 1; : : : ; (d� 1)p+ 1 to the state 1p
2
(j0i+ j1i).

Shift by j qubits USj
. It shifts state vector by j qubits, adding new j0i.

For the approximate calculation of a function f(�) gradient at the point X the following

algorithm can be used.

1. To send zero to all three registers I;W;�.
2. To submit the line of bits sX to an input register I. To transform the register � :

I := jsxi; � := UR1;p+1;:::;(d�1)p+1
�:

3. To calculate function's value f(X + 2�j�); 0 � j � p� 1 in register W

W := UfU+IUSj
U+�W;

4. To measure the outcome of calculations

ĝ(i)(X) = hUS
�(i�1)p

�;W i (= hUS
�(i�1)p

�jUfU+IUSj
U+�jW i); i = 1; 2; : : : ; d:

The last expressions are equivalent to the function f(�) gradient approximation expression

rf(X) � �f(X + 2�j�):

It is not so hard to show that the approximate accuracy represents smallness size

o(2�j). If it was known that the function f(�) has continuous partial derivatives up to the

order ` > 3 inclusively then it is possible to make measurements (step 4) not with vector

� but with some extent transformation UK� by the analogy to Theorem 2. Probably, an

order of approximation error will decrease.

C. One Approach of Creating the Intelligent System

Let's look at some achievements in the contemporary mathematics and computer

engineering of the past century which allow us to look with a great optimism at the solution

of the problem in the future. The �rst computers were specialized for solution of the

concrete tasks. It was based both on the economic reasons and on the weak development

of electronic components. For a short time the engineering progress has allowed to develop

the universal computer and theoretical development has made it possible to e�ectively

solve many of the tasks set. The �nal conception of the universal programming language
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appeared in the middle of 70th and during the 80-90th years the programming technology

has been on a top of its development. However we are still left with considerable problems

tied with the machine's ability to make a quick and e�ective decision in tasks with a large

data dimension (matrix transformation, large number factorization, Fourier or Laplace

transformation, calculation of function convolution and so on). A lot of them form a

minimal base of any arti�cial intelligence system.

Today the most practical way is a creation of fast computing devices for solving con-

crete tasks based on a possibility of the development of \parallel" fastest algorithms for

processing the large sizes of data. Two directions are the most perspective. The �rst

one (almost developed) is to create the classical electronic devices as VLSIC using the

high-speed technologies. Such devices will allow in the real time to convert matrixes of

the large dimensionalities which is necessary in many tasks of recognition. Second and

even more perspective direction in the development of computing devices in a future is

the use of \quantum computers". Channels for data transfer in such computer will be

more informative. For implementation of a �xed structure of parallel calculations the

special set of atoms (molecule) will be used. Probably in a future it will be possible to

attain the highest speed of calculations by using the equivalence of the descriptions of

many phenomenons in micro and macro world.

Despite of wide use of specialized parallel processors many reseachers agree that we

still don't have the common methodology for a development of appropriate algorithms and

devices. Probably we move to the necessity to comprehensively analyze a lot of arti�cial

intelligence tasks. We need to somehow classify their settings and possible algorithms for

their solution and to create a convenient formal logical means for the description of the

tasks, algorithms and data.

Let's take a look at one of the possible solutions of creating some kind of an intelligent

system. The term \intelligent" means here the ability of a system to adapt to the real

world conditions by making the e�ective choice of the task to solve in the current moment.

Such system could consist of two parts : internal one and ensuring interaction with the

external world. Set of sensor controls and power installations controlling various organs of

the device will link it with the external world. The internal part will match the following

conditions:

� for each considered particular task the system has the particular device which is able

to optimize the solving of this task by an appropriate choosing of the system's

parameter from some �nal set,

� information from external world must be delivered to all such devices simultaneously.

By this conditions the system is able to interpret and to process the data received from

external world through di�erent devices simultaneously (in parallel).

We can imagine many ways of realization of such system. Further we'll discuss one of

them. Suppose that we want to have a system able to solve any problem of some �nal

set:

fP1; P2; : : : ; Pmg:
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Here the m is some integer (may be equal 1; 2; 3 or suÆciently large 100000; 1000000). For

instance our \hypothetical" device can be presented as some big complicated molecule

consisting of smaller parts (particular devices)

fD1; D2; : : : ; Dmg

curled up in spiral or ball one by another. It is possible to consider each of them as some

\quantum computer". Such form of spatial representation allows to suppose that some

biological or physical in
uence acts to the all of particular devices simultaneously. We'll

assume that the behavior of each of units is determined by their internal structure, input


ow of data and some parameters �(i) from some set �(i) with �nal dimension

Di = Di(�
(i)); �(i) 2 �(i); i = 1; 2; : : : ; m:

Suppose that each of units is equipped with special register which indicate the performance

index of data w processing

fi = fi(w; �
(i)); i = 1; 2; : : : ; m:

The parameters of data processing can be passed to devices among with the input data.

The objective of complete system is to make choice of the unit with higher performance

index and to give them the foreground process. The general system's parameter is denoted

by

� =

0
BB@
�(1)

�(2)
...

�(m)

1
CCA ; � 2 � = �(1) 
 � � � 
�(m):

Let's de�ne the function

F (w; �) = �
mX
i=1

fi(w; �
(i)):

This scheme satis�es both of above conditions.

Here we came to the concept of the \informational resonance". If a partial performance

index fi of some units \i" tends to +in�nity then we'll say that unit \i" has a resonance.

After the data is delivered from all the sensors to the all devices, these devices begin to

work and solve each its own task. There can be three di�erent situations:

� only one device has resonance,

� several devices have resonance,
� none of the devices has resonance.
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In the �rst case the resonant device accepts control on the system. In the second case the

system should determine which device to use. It can be done by choosing the device with

the greatest value of fi . The third case means that none of the devices has resonance

with the data but we need to choose the strong rule of a system behavior. Assume that

this rule is determined by setting the system parameter � 2 � � Rd. We have a problem

of the stochastic multi-dimensional optimization. There is an e�ective SPSA algorithm

(1) for solving this problem. We need to include the quantum circuit of them into our

intelligent system. And in the third case it would be chosen as foreground process.

IX. CONCLUSION

The stochastic optimization considerably expands the range of practical problems,

for which it is possible to �nd the precisely optimum solution regarding standard de-

terministic methods. The stochastic optimization algorithms e�ectively allow to decide

problems in such areas as information network analysis, based simulation optimization,

a pattern recognition and classi�cation, neuron networks training, image processing and

a non-linear control. It is expected that the stochastic optimization role will continue

to grow together with thickening of modern systems so as the population increment and

the natural recourse exhaustion initiates using more heavy technologies in spheres where

they were unnecessary before. Since the �rst quantum computers working on stochastic

principles appeared already, the logic of a modern computers development also lead to

replacement of conventional deterministic algorithms by stochastic ones.

APPENDIX

In this appendix we give the proofs of Theorems 1,2,4 and 5.

A. Proof of Theorem 1

Firstly let's consider the algorithm (5). Using properties of projection, at rather large

n, when �? = �?(f(�)) 2 �n, it is easy to get the following inequality

k�̂n � �?k2 � k�̂n�1 � �? � �n

�n
Kn(�n)ynk2 :

Applying the operation of conditional expectation by �{algebraFn�1 to the last inequality,

we have

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2�

�2�n
�n
h�̂n�1 � �? ;EfKn(�n)ynjFn�1gi+ (24)

+
�2
n

�2
n

Efy2
n
kKn(�n)k2jFn�1g:
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By virtue of Theorem about mean value from the condition (A.2) for the function F (�; �)
it follows

jF (w; x)� F (w; �?)j � 1

2
r�F (w; �

?)2 + (A+
1

2
)kx� �?k2; x 2 R

d :

From here by virtue of the function F (�; �) uniform boundedness it is obtained

F (w; �̂n�1 + �nx)
2 � (�1 + (2A+ 1)(k�̂n�1 � �?k2 + k�nxk2))2

uniformly on w 2 W . By virtue of the condition (4) we get

Efv2
n
kKn(�n)k2jFn�1g � sup

x

Kn(x)
2�2

n
:

For the last term in the right part (24) from the last two inequalities, taking into account

boundedness of vector functions Kn(�) and compactness of their support, we have

Efkynk2kKn(�n)k2jFn�1g � 2Efv2
n
kKn(�n)k2jFn�1g+

+2

Z Z
F (w; �̂n�1 + �nx)

2kKn(x)k2Pn(dx)Pw(dw) �

� C1 + C2((d
2
n
+ 1)k�̂n�1 � �?k2 + �2

n
) + C3�

2
n
:

Here and below Ci; i = 1; 2; : : : are designated as some positive constants.

Further we shall consider

��1
n
EfynKn(�n)jFn�1g =

= ��1
n

Z Z
F (w; �̂n�1 + �nx)Kn(x)Pn(dx)Pw(dw)+ (25)

+��1
n
EfvnKn(�n)jFn�1g:

For the second term by virtue of condition (4) and independence of vn and �n the following

could be obtained

EfvnKn(�n)jFn�1g = EfvnjFn�1g
Z
Kn(x)Pn(dx) = 0:

The function r�F (�; �) is uniform bounded, which implies thatZ
Rp

r�F (w; x)Pw(dw) = rf(x):

Using the condition (4), we shall transform the �rst term in right part the (25) to the

following

��1
n

Z Z
F (w; �̂n�1 + �nx)Kn(x)Pn(dx)Pw(dw) = rf(�̂n�1)+
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Z �
��1
n

Z
F (w; �̂n�1 + �nx)Kn(x)Pn(dx)�r�F (w; �̂n�1)

�
Pw(dw) = rf(�̂n�1)+

+

Z Z
Kn(x)x

T

Z 1

0

(r�F (w; �̂n�1 + t�nx)�r�F (w; �̂n�1))dtPn(dx)Pw(dw):

For an absolute value of the second term in the last equality we have

���Z Z Kn(x)x
T

Z 1

0

(r�F (w; �̂n�1 + t�nx)�r�F (w; �̂n�1))dtPn(dx)Pw(dw)
����

�
Z Z

kKn(x)kkxkAk�nxkPn(dx)Pw(dw) � C4�n

by the ful�llment of conditions (4) for Kn(�) and (A.2) for any function F (w; �). Hence,
for the second term in the right part of inequality (24) we get

�2�n
�n
h�̂n�1 � �?;EfKn(�n)ynjFn�1gi � �2�nh�̂n�1 � �?;rf(�̂n�1)i+

+2C4�n�nk�̂n�1 � �?k:
Using assessments obtained above for the second and third terms of (24), we obtain

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2 � 2�nh�̂n�1 � �?;rf(�̂n�1)i+

+2C4�n�nk�̂n�1 � �?k+ �2
n

�2
n

�
C1 + C2((d

2
n
+ 1)k�̂n�1 � �?k2 + �2

n
) + C3�

2
n

�
:

Using the condition (A.1) for function f(�) and inequality

k�̂n�1 � �?k � "�1�n + "��1
n
k�̂n�1 � �?k2
2

;

which is true at any " > 0, we get

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2
�
1� (2�� "C4)�n + C2�

2
n
��2
n
(d2

n
+ 1)

�
+

+"�1C4�n�
2
n
+
�2
n

�2
n

�
C1 + C2�

2
n
+ C3�

2
n

�
:

Let's select the " so small that "C4 < � and let n be rather great. Using the conditions

of Theorem 1 for the numeric sequences, we shall transform the last inequality into the

form

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2(1� C5�n) + C6(�n�
2
n
+ �2

n
��2
n
(1 + �2

n
)):

From here by virtue of Theorem 1 conditions
P

n
�n =1 and

P
n

�2
n

�2
n

(1+�2
n
) <1 a.s. it is

shown that all conditions of Robbins{Siegmund Lemma [34] necessary for the convergence

with the probability 1 are held and �n ! �? as n!1. For the mean-square convergence
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proof in an appropriate Theorem 1 conditions we shall take unconditional expectation

from both parts of the last inequality

Efk�̂n � �?k2g � Efk�̂n�1 � �?k2g(1� C5�n) + C6(�n�
2
n
+ �2

n
��2
n
(1 + �2

n
)):

The convergence of estimates f�ng sequence to the point �? in a mean-square sense follows

from [35](ch.2,s.2).

The proof for the algorithm (2) is a little bit di�erent.

B. Proof of Theorem 2.

The proof scheme in many respects repeats the proof of Theorem 1. At �rst let's

consider the algorithm (5) . Using properties of projection and applying the operation of

conditional expectation by �{algebra Fn�1, for rather large n, at which �
? 2 �n, we get

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2� (26)

�2�n�1+ 1
2
 (�̂n�1 � �?;EfynK(�n)jFn�1g) + �2n�2+

1

Efy2

n
kK(�n)k2jFn�1g:

By virtue of (6) and condition (7) we have
R K(x)P(dx) = 0. Thus, by the independence

of �n and vn we derive EfvnK(�n)jFn�1g = 0; and, hence,

EfynK(�n)jFn�1g =
Z Z

F (w; �̂n�1 + �n�
1
2
 x)K(x)P(dx)Pw(dw):

Note that by virtue of (6) and (7) we obtain

��1n
1
2


Z X
j�lj�`

1
�l!
D

�lf(�̂n�1)�
j�ljn�

j�lj
2
 x

�lK(x)P(dx) = rf(�̂n�1):

From the de�nition of the function f(�) one can get

��1n
1
2
EfynK(�n)jFn�1g = rf(�̂n�1)+

+��1n
1
2


Z
(f(�̂n�1 + �n�

1
2
 x)�

X
j�lj�`

1
�l!
D

�lf(�̂n�1)�
j�ljn�

j�lj
2
 x

�l)K(x)P(dx):

Ful�llment of the condition (A.3) implies the inequality

���Z (f(�̂n�1 + �nx)�
X
j�lj�`

1
�l!
D

�lf(�̂n�1)�
j�ljn�

j�lj
2
 x

�l)K(x)P(dx)
����

� M

Z
kx�n� 1

2
 k
kK(x)kP(dx) �M �K�
n�
1
2 :
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Using obtained above assessments for the second and third terms in the right part

(26) from the ful�llment of a condition (A.1) for a function f(�) and inequality

k�̂n�1 � �?k � "�1n�

�1
2
 M �K�
�1 + "(n�


�1
2
 M �K�
�1)�1k�n�1 � �?k2
2

;

fair at any " > 0 we derive

Efk�̂n � �?k2jFn�1g � k�̂n�1 � �?k2 � 2��n�1(�̂n�1 � �?;rf(�̂n�1))+

+2��n�1�

�1
2
 M �K�
�1k�̂n�1 � �?k+ �2n�2+

1

Efy2

n
kK(�n)k2jFn�1g �

� k�̂n�1 � �?k2(1� ��(2�� ")n�1) + n�2+
1

 (��2
�1"�1M2 �K2+

+�2K̂�(

Z Z
F (w; �̂n�1 + �n�

1
2
 x)2P(dx)Pw(dw) + Efv2

n
jFn�1g)):

As in the proof of Theorem 1 from condition (A.2) we obtain

jF (w; �̂n�1 + �n�
1
2
 x)j � p

�1 + (2A+ 1)(k�̂n�1 � �?k2 + k�n� 1
2
 xk2)

uniformly on w 2 W . Taking into account the unconditional expectation we conclude

Efk�̂n � �?k2g � Efk�̂n�1 � �?k2g(1�  n�1 + o(n�1)) + C1n
1


�2 + o(n

1


�2);

where  = ��(2�� "); C1 = ��2
�1"�1M2 �K2 + �2K̂�(�1 + �21). By lemma 9 from [35] if

 > (
 � 1)=
 then for arbitrary " > 0 we have

n1�
1

Efk�̂n � �?k2g � C1(��(2�� ")� 
 � 1



)�1 + o(1): (27)

The inequality  > (
 � 1)=
 is equvivalent to the condition 2��� > (
 � 1)=
.

The proof for the algorithm (2) is di�erent in some details. In particulary it is nessesary

to use the inequality

1

2
(F (w1; � + x)� F (w2; � � x))2 � �2 + 2(2A+ 1)2(kxk2 + k� � �?k2)2;

which is held uniformly on w 2 W . In a result of the proof is deduced inequality which is

similar to (27) with the constant C2 = ��2
�1"�1M2 �K2 + �2K̂�(�2 + �22=2) instead the

C1.

If we want to compare the constants C1 and C2 then we can to use the formula

C1 = C2 + K̂�2�(�1 + �21 � �22=2� �2):

The right part of the (27) (or of the similar inequality for the algorithm (2)) is a

function of �; � and ". Optimizing by this parameters we can to derive the optimal

values �?; �? "? = 2�=
.

The proof of Theorem 2 and the second remark to it is completed.
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C. Proof of Theorem 4

Let �n = �̂n�1 � �?
n
, �n = vn � Ef'ngT�n, Dn = (�̂n � �?)(�̂n � �?)T.

Rewrite the matrix equation (12) as

(�B � 1

2
I)S + S(B� � 1

2
I) = �R�:

Since ��B+ 1
2
I is a Hurwitz matrix, by Lyapunov`s Lemma there exists a positive de�nite

matrix S which is a solution of matrix equation (12).

From (8) and (9) taking the conditional expectation sequentially with respect to �-

algebra ~Fn�1 and F̂n�1 we conclude in view of assumption (A) and the second part of

assumption (Bii) that

EfDnjF̂n�1g � Dn�1 � �n(�BDn�1 +DT
n�1 B�) + �2

n

�
kDn�1kEfk�nk4g�2+

+�
�
(v2

n
(1 +M2

'
�) + kDn�1k��1 +M2

'
Tr[Qw])B + Ef�n�

T
n
Qw�n�

T
n
g
�
�
�
:

Now, taking the unconditional expectation and making use the �rst part of Assumption

(Bii), one can obtain for matrix Vn := EfDng
Vn � Vn�1 � �n(�BVn�1 +Vn�1B�) + �2

n
�R� + �2

n
O(kVn�1k);

where R is de�ned by Theorem 2. This implies Vn ! 0 as n ! 1 by Lemma 3 from

[36].

From the last inequality we have

Vn � Vn�1 � n�1�BVn�1 � n�1Vn�1B� + n�2�R� + n�2O(kVn�1k):
Denote Wn = nVn � S. Then in view of Theorem 2 conditions we obtain

Wn �Wn�1 � (n� 1)�1(�B� 1

2
I)Wn�1 � (n� 1)�1Wn�1(B�� 1

2
I) + n�2O(kWn�1k):

Hence applying again Lemma 3 of [36] we get Wn ! 0 as n! 1 and thus Theorem 4

is proved.

D. Proof of Theorem 5

The following auxiliary results from the [4] will be used in the proof of Theorem 5.

Lemma 1: Under the conditions of Theorem 5 the next facts hold:

(a)
1P
n=1

�T
n
�2
n
�n < 1 a.s. and

P1
n=1 k�nk4 �2max

(�n) <1 a.s.

(b)
1P
n=1

�T
n
�n�n = 1 a.s.

Substituting (14) into (8) we have

k�̂n � �?k2 = ((�̂n�1 � �?)T � �T
n
�n�

T
n
�n)((�̂n�1 � �?)� �n�n�

T
n
�n) + �2

n
�T

n
�2
n
�n+
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+((�̂n�1 � �?)T � �T
n
�n�

T
n
�n)�n�n�n + �n�

T
n
�n((�̂n�1 � �?)� �n�n�

T
n
�n):

Taking the conditional expectation with respect to �-algebra ~Fn�1 we obtain by an As-

sumption (A)

Efk�̂n � �?k2j ~Fn�1g � k�̂n�1 � �?k2 + Ef(vn � Ef'ngT�n)2 j ~Fn�1gEf�T
n
�2
n
�nj ~Fn�1g�

��T
n
Ef�n�

T
n
�nj ~Fn�1g(�̂n�1 � �?)� (�̂n�1 � �?)TEf�n�n�

T
n
j ~Fn�1g�n+

+�T
n
Ef�n�

T
n
�2
n
�n�

T
n
j ~Fn�1g�n:

Hence averaging sequentially over wn and vn yields

Efk�̂n � �?k2jFn�1g � (1 + Ef2M2
'
�T

n
�2
n
�n + k�nk4 �2max

(�n)jFn�1g)k�̂n�1 � �?k2�

� (�̂n�1� �?)TEf(�n�n�
T
n
+�n�

T
n
�n)jFn�1g(�̂n�1� �?) + �2

w
Efk�nk4 �2max

(�n)jFn�1g+
+(2�2

v
+M2

'
�2
w
)Ef�T

n
�2
n
�njFn�1g:

Further, applying the Robbins-Siegmund Lemma from [34] and taking into account (a)

we conclude that sequence fk�̂n � �?k2g has a �nite limit a.s. and

1X
n=1

(�̂n�1 � �?)TEf�n�n�
T
n
+�n�

T
n
�njF̂n�1g(�̂n�1 � �?) <1:

By (b)
P1

n=1 Ef�n�n�
T
n
jF̂n�1g = 1, therefore k�̂n � �?k2 ! 0 a.s. as n ! 1. The

proof of the �rst part of Theorem 5 is completed.

It follows from (14) that

�̂n = �n

nX
k=1

�k(yk � Ef'T
k
g�n�1); �n = (

nX
k=1

�k�
T
k
+ 
0I)

�1:

Denote �k = �k +�T
k
(�?

k
� �?). We have

Dn = �n

�

20�

?�?T +

nX
k=1

�k�
T
k
�2
k
� 
0�

?

nX
i=1

�T
i
�i � 
0

nX
i=1

�i�i�
?T +

nX
i;j=1
i6=j

�i�
T
j
�i�j

�
�n:

As in the [4] it is possible to show Ef�n�i�
T
j
�i�j�ng = 0 for any i 6= j; i; j = 1; : : : ; n

and Ef�n
0�?�T
i
�i�ng = 0 for i = 1; : : : ; n. Now we obtain by boundedness of vn, wn

and �n for suÆciently large n

EfDng = Ef�n(
20�?�?T +
nX

k=1

�k�
T
k
�2
k
)�ng � ĈEf�ng

with some constant Ĉ: Since
P

n

k=1�k�
T
k
!1 a.s. as n!1 and k�nk � 
�10 we obtain

by the Lebesgue dominated convergence Theorem that EfDng ! 0 as n ! 1. This

completes the proof of Theorem 4.
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