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Abstract— Multidimensional stochastic optimization plays an
important role in analysis and control of many technical
systems. To solve the challenging problems of multidimensional
optimization, it was suggested to use the randomized algorithms
of stochastic approximation with perturbed input which have
simple forms and provide consistent estimates of the unknown
parameters for observations under “almost arbitrary” noise.
They are easily “incorporated” in the design of quantum devices
to estimate gradient vector of a multi-variable function.

I. INTRODUCTION

Surprisingly, researchers did not notice for a long time
that in case of noisy observations yn, search algorithms with
sequential (n = 1,2, . . .) changes in the estimate θ̂n−1 along
some random centered vector ∆n

θ̂n = θ̂n−1−∆nyn,

might converge to a true vector of controlled parameters θ ?

under not only “good”, but also under “almost arbitrary”
additive disturbances. This happens when observations yn are
taken at some point defined by the previous estimate θ̂n−1
and the randomized vector ∆n which is called the simul-
taneous test perturbation (disturbance). Such algorithms are
called randomized estimation algorithms. Their convergence
under “almost arbitrary” noises is demonstrated through
stochastic (probabilistic) properties of the test perturbation.
In the near future, experimenters will radically change their
current, sometimes, cautious attitude to stochastic algorithms
and their results. Modern computing devices will be sup-
planted by quantum computers, which operate as stochastic
systems due to the Heisenberg principle of uncertainty. By
virtue of possibility of quantum parallelism, randomized-
type estimation algorithms will, most probably, form the
underlying principle of future quantum computing devices.

Initially, stochastic approximation (SA) was introduced in
the 1951 article in the Annals of Mathematical Statistics
by Robbins and Monro [1] and was further developed by
Kiefer and Wolfowitz [2] for optimization problems of
iterative determining of the stationary point θ ? (point of a
local minimum or maximum) of some twice continuously
differentiable function F(·) when for each chosen value x∈R
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(which is called an input) one can observe with a random
noise the corresponding function F(·) value at the point x

y(x) = F(x)+noise.

They proved that for any θ̂0 ∈ R the recurrent sequence
obeying the rule (procedure)

θ̂n = θ̂n−1−αn
y(x+n )− y(x−n )

2βn
, x±n = θ̂n−1±βn,

where {αn} and {βn} are some given decreasing numerical
sequences: ∑

∞
n=1 αn = ∞, ∑

∞
n=1 α2

n β−2
n < ∞, converges to the

point θ ?. The main requirement is that the observation
noise is conditionally zero-mean. It is usually assumed
to be satisfied. It can be formulated as follows: for the
statistics G(x,β ) = y(x+β )−y(x−β )

2β
, which sampled values are

precisely observed or calculated, the conditional expectation
is close to the gradient (derivative) of the function F(·):
EG(x,β ) ≈ ∇F(x) for a small β (Here and further E is
a symbol of the mathematical expectation). The Kiefer–
Wolfowitz (KW) procedure originally appeared as a tool
for statistical computations, it was further developed to the
separate field of the control theory. Now this topic has
wide variety of applications in such areas as adaptive signal
processing, adaptive resource allocation in communication
networks, system identification, adaptive control, etc.

In general, behavior of the sequence of estimates deter-
mined by the algorithm of stochastic approximation depends
on the choice of the observed statistic functions G(x,β ). A
convergence rate of estimates of SA algorithms seems to
be the main motivation to modify original algorithms. The
properties of estimates of the KW procedure and some of
its generalizations were studied in details in many books
(see, e.g. [3]–[6]). The estimate convergence rate depends
on the smoothness of the function F(·). If it is twice
differentiable, then the mean-square error of the conventional
KW algorithm decreases as O(n−

1
2 ); if it is three times

differentiable, as O(n−
2
3 ) [7]. V. Fabian [8] modified the

KW procedure by using, besides an approximation of the
first derivative, higher-order finite-difference approximations
with certain weights. If the function F(·) has ` continuous
derivatives then the Fabian algorithm provides the mean-
square convergence rate of the order O(n−

`−1
` ) for odd `. In

computational terms, Fabian’s algorithm is overcomplicated,
the number of observations at one iteration is growing rapidly
with smoothness and dimensionality; also, at each step one
has to invert a matrix. If a sequence of estimates converges
to the desired point of θ ? then B. Polyak [9] and A. Juditsky
[10] proposed to improve the process of convergence by
using averaging.
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In many applications, the knowledge about statistic char-
acteristics of the measurement noises may be insufficient. For
example, noises are the values of an unknown deterministic
function. In this case, one encounters appreciable difficulties
in motivating applicability of the conventional KW procedure
whose estimate often does not converge to the desired point.
However, this does not suggest that in dealing with these
problems one must abandon the easily representable SA
algorithms. The observation can be enriched by adding
into the algorithm and observation channel a new random
simultaneous perturbation ∆. We modify the KW proce-
dure using instead G(x,β ) the new randomized statistics
G̃(x,β ,∆) = G(x,β∆) where ∆ is an observed realization of
the Bernoulli random variable which is equal to ±1 with the
same probability. For many practical cases, we can assume
that ∆ does not correlate with an observation noise, and,
using the Taylor expanding formula for the function F(·),
we obtain for new statistics G̃(x,β ,∆) that EG̃(x,β ,∆) =
∇F(x) +O(β ). For a sufficiently small β this means that
statistics G̃(x,β ,∆) is a “good” approximation “in the mean
sense” of the gradient (derivative) of the function F(·). A
simpler statistics

Ḡ(x,β ,∆) =
∆

β
y(x+β∆),

that at each iteration (step) uses only one observation has
the same property. This statistics was used in [11] for con-
structing a sequence of consistent estimates for a dependent
observation noise (almost arbitrary noise). The essence of
the perturbation ∆ is an exciting action because it is used
mostly to make the non-degenerate observations.

In [12] the SA algorithm was extended to the multidimen-
sional case. When θ ∈ Rd , the conventional KW-procedure
based on finite-difference approximations of the function
gradient vector uses 2d observations at each iteration to
construct the sequence of estimates (two observations for
approximations of each component of the d-dimensional gra-
dient vector). Let ∆ be an d-dimensional Bernoulli random
vector. The randomized statistic Ḡ(x,β ,∆) admits to use a
computationally simpler procedure with only one measure-
ment of the function F(·) [13]–[15]. The generalization of
the G̃(x,β ,∆) to the multidimensional case is

G̃(x,β ,∆) =


...
1
∆i
...

 y(x+β∆)− y(x−β∆)

2β
.

It was used by J. Spall [16] in the suggested a simultaneous
perturbation stochastic approximation (SPSA) algorithm. He
showed that for a large n the probabilistic distribution of
appropriately scaled estimation errors is approximately nor-
mal. He used the formula obtained for the asymptotic error
variance and a similar characteristic of the KW procedure to
compare overall performances of algorithms. It was noticed
that the SPSA algorithm has the same order of a convergence
rate as the KW procedure if other things being equal.
Moreover, appreciably fewer observations are used in the

multidimensional case (by the factor of d as n → ∞). In
[17], [18], algorithms, similar to SPSA, were suggested to
be used for neuron networks training because they could be
implemented by a small set of simple components.

It is important to note, that the asymptotic mean-square
convergence rate can be increased without increasing the
number of measurements of the function at each iteration
in case when we use randomized SA algorithms under
conditions of sufficiently smooth functions F(·). For the case
where some generalized index of a function F(·) smoothness
is equal to γ (γ = `+1 when all partial derivatives of orders
up to ` inclusive satisfy the Lipschitz condition), B. Polyak
and A. Tsybakov [14] proposed to use statistics

G̃γ(x,β ,∆) = Kγ(∆)
y(x+β∆)− y(x−β∆)

2β
(1)

and
Ḡγ(x,β ,∆) =

1
β

Kγ(∆)y(x+β∆), (2)

where Kγ(·) is a vector-function with a finite support (a
differentiable kernel) determined by orthogonal Legendre
polynomials of a degree smaller than γ . The corresponding
randomized algorithms provide the mean-square convergence
rate O(n−

γ−1
γ ) of a sequence of estimates. They demonstrated

also that for a wide class of iterative algorithms this con-
vergence rate is optimal in some asymptotically minimax
sense, that is, it cannot be improved neither for any other
algorithm nor for any other admissible rule of choosing
the measurement points (This fact for odd ` was earlier
established by H.-F. Chen [19]).

The algorithm with more general view of a gradient vector
stochastic approximation

Ĝγ(x,β+,β−,∆) = Kγ(∆)
y(x+β+∆)− y(x−β−∆)

β++β−
(3)

is considered in [20] and in [21] with Kγ(∆) ≡ ∆. It was
motivated by practical applications. The partial case with
β− ≡ 0 and Kγ(∆) ≡ ∆ was proposed by H.-F. Chen, T.
Duncan and B. Pasik-Duncan [22].

The algorithms which are based on statistics (1)–(3) have
significant advantages:
• the asymptotically optimal rate of convergence;
• the minimum amount of measurements within the cur-

rent iteration;
• the consistency with almost arbitrary interference;
• the operability in nonstationary problems;
• a “natural” implementation on a quantum computer.

These properties are established in practice and theoreti-
cally substantiated. Consistency of randomized algorithms
of stochastic approximation in the multidimensional case
under almost arbitrary noise was established in [13], [22]–
[24]. In [25], [26] the convergence study of the randomized
SA algorithm with one observation under almost arbitrary
noise was extended to the case of additional multiplicative
noise and weakers dependence between perturbation ∆ and
observation noises. In [27] the detailed analysis of asymptotic
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properties of the resulting estimates sequence was made.
Authors show that the optimal distribution for the com-
ponents of ∆ is the symmetric Bernoulli distribution. The
effectiveness of this simple distribution is confirmed in many
practice examples for the finite sample of observations too.
Sometimes it is desirable to choose a different distribution in
practical problems. For example, in [28] the robot controller
is using a symmetric uniform distribution which consists of
two parts when neighborhood of zero is removed.

Stochastic approximation algorithms were initially proven
in case of the stationary functional. Randomized SA algo-
rithms are considered for the case of time-varying qual-
ity functionals in [29]–[32]. A possible implementation of
randomized stochastic approximation algorithms on a quan-
tum computer is studied in [33]. Randomized algorithm
for stochastic approximation in the machine self-learning
problem is proposed and justified in [34]. An optimization
of a server processing queue is considered in [35]. In [21],
[36] SPSA method has been proposed for estimation of
the centers of thermal updrafts for the adaptive autonomous
soaring of multiple UAVs. For a multi-plant differential game
a leader-follower strategies is proposed in [37] based on a
randomized stochastic approximation algorithm. SPSA like
method was used for an active optimization in studying the
quality of educational process in high school [38]. In all
these examples, traditional assumptions of an independence
and zero-mean of an external noise are not held due to
specifics of these problems. The randomization promotes not
only a speed up of data processing but also a reduction of
negative influence of an “almost” arbitrary external noise of
observations.

The severe portion of applications of stochastic approxi-
mation algorithms is concerned with adaptive systems. It is
based on the fact that SA algorithms have properties useful
for uncertain environments. These important properties allow
these algorithms to track typical behavior of such system.
Furthermore, these algorithms are memory and computation-
ally efficient which makes them applicable to a real time
dynamic environment. These properties made the algorithms
applicable in a such new field as soft computing where
they are used for the “parameter tuning”. The algorithms
for neural networks training and reinforcement learning are
notable among these. They are used in a popular learning
paradigm for autonomous software agents with applications
in e-commerce, robotics, etc. They are also widely applied
in economic theory, providing a good model for collective
phenomena, when they are modeled behavior of individual
bounded rational agents.

This paper presents the main ideas of a randomized
stochastic approximation. It is organized as follows: in
Section II, we state a formal problem setting of a mean-
risk optimization. Section III introduces the exciting testing
perturbation as randomization and estimation algorithms. In
Section IV, the convergence of estimates is studied. Section V
deals with the non-constrained optimization in the context
of tracking. Section VI shows a possible way of a quantum
computing for the algorithm implementation.

II. MEAN-RISK OPTIMIZATION

Many practical applications need to optimize one or an-
other mean risk functional. Although sometimes extremal
values can be established analytically, the engineering sys-
tems often deal with an unknown functional whose value or
gradient can be calculated at the given points.

Let f (θ ,w) : Rd×W→R, W⊂Rr, be a θ -differentiable
function and let x1,x2, . . . be a sequence of measurement
points chosen by the experimenter (observation plan), at
which the value y1,y2, . . . of the function f (·, ·) is accessible
to observation at every instant t = 1,2, . . . , with additive
external noise vt

yt = f (xt ,wt)+ vt , (4)

where wt ∈W, t = 1,2, . . ., are uncontrollable random vari-
ables (vectors).

Formulation of the problem. Using the observations
y1,y2, . . ., construct a sequence of estimates {θ̂(n)} of an
unknown vector θ ? minimizing the mean-risk functional

F(θ) = Ew f (θ ,w)→min
θ

. (5)

Here and further Ew is a symbol of the conditional mathe-
matical expectation of respect to w.

Usually, minimization of the function F(θ) is studied with
a simpler observation model

yt = F(xt)+ vt .

The generalization in the formulation (4) is motivated by
three reasons. At first, it takes into account the case of
multiplicative random perturbations in observations:

yt = wt f̄ (xt)+ vt .

At second, it allows to separate the observation noise with
“good” (e. g., zero-mean i.i.d.) statistical properties {wt}
and arbitrary additive external noise {vt}. (Of cause, this
separation is not need when we can assume that {vt} is
random zero-mean and i.i.d. too.) At third, we also encounter
problems where the optimized functional may vary in time
and its point of extremum may drift. In such cases, the
problems may be posed differently depending on the opti-
mization goals and measurable data. Usually two options of a
behavior of the drift {θt} of functional’s point of minimum
is considered.They differ in the answer to the question: is
there some random i.i.d. sequence with an expectation θ ??
The case of the positive answer is included into (5) setting
since we can consider additional disturbances wt = θt −θ ?.
More general non-stationary problem statement is

Ft(θ) = Eξt ,w fξt (θ ,w)→min
θ

, (6)

where { fξ (θ ,w)}ξ∈Ξ, is a family of θ -differentiable func-
tions: fξ (θ ,w) : Rd ×W → R, W ⊂ Rr, and for chosen
sequence x1,x2, . . . we can observe with additive external
noise vt a

yt = fξt (xt ,wt)+ vt , (7)
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where {ξt} is a uncontrollable sequence: ξt ∈ Ξ, wt ∈W,
t = 1,2, . . ., are uncontrollable random variables (vectors).

More precisely, it is needed to estimate the time-varying
point of minimum θt of the function Ft(θ).

The problem (5) is a partial case of (6) when θt ≡ θ ? and
Ξ = {ξ1}.

Let us state the main conditions which are usually assumed
for proving of theoretical results.
SA1 The function F(·) is strongly convex at the first argu-
ment, i.e. it has a unique minimum point θ ?

〈x−θ
?,∇F(x)〉 ≥ µ‖x−θ

?‖2, ∀x ∈ Rd

with a constant µ > 0.
SA2 The gradient ∇x f (θ ,w) satisfies ∀w ∈W the Lipschitz
condition: ∀x′,x′′ ∈ Rd

‖∇x f (x′,w)−∇x f (x′′,w)‖ ≤M‖x′−x′′‖,

with a constant M > µ .
SA3 Operation commutativity of the differentiation on x
and integration on w for the function f (x,w).

III. EXCITING TESTING PERTURBATION AS
RANDOMIZATION AND ESTIMATION ALGORITHMS

Let ∆n, n = 1,2, . . . be an observed sequence of inde-
pendent random variables in Rd , called the simultaneous
test perturbation, with distribution function Pn(·) and let
Kn(·) :Rd→Rd , n= 1,2, . . . , be some vector functions (ker-
nels) with compact supports which, along with distribution
functions of the test perturbation, satisfy the conditions∫

Kn(x)Pn(dx) = 0,
∫

Kn(x)xTPn(dx) = I,
supn

∫
‖Kn(x)‖2Pn(dx)< ∞, n = 1,2, . . . .

(8)

For example, we can choose a realization of a sequence
of independent Bernoulli random vectors from Rd with each
component independently assuming values ± 1√

d
with the

probabilities 1
2 as a sequence {∆n} and Kn(x)≡ dx as kernel

functions.
Let us take a fixed initial vector θ̂0 ∈ Rd and choose

sequences of positive numbers {αn}, {β+
n } and {β−n }. We

design two algorithms for constructing sequences of points
of observations {xn} and estimates {θ̂n}. The first algorithm
uses at every step (iteration) one observation{

xn = θ̂n−1 +β+
n ∆n, yn = f (xn,wn)+ vn,

θ̂n = θ̂n−1− αn
β
+
n

Kn(∆n)yn,
(9)

and the second one uses two observations{
x2n− 1

2±
1
2
= θ̂n−1±β±n ∆n,

θ̂n = θ̂n−1− αn
β
+
n +β

−
n

Kn(∆n)(y2n− y2n−1).
(10)

Algorithms (9) and (10) correspond to the statistics (2)
and (3) described above.

IV. CONVERGENCE OF ESTIMATES

Convergence of estimates generated by the algorithms (9)
and (10) is studied in details in [26] for the cases when
β−n = β+

n or β−n = 0. Here we present a similar result for the
general case of the algorithm (10).

Let Fn−1 be the σ -algebra of probabilistic events gen-
erated by the random variables θ̂0, θ̂1, . . . , θ̂n−1 formed
by the algorithm (10), and denote v̄n = v2n− v2n−1, w̄n =(

w2n−1
w2n

)
, βn = (β+

n +β−n )/2.

Assume that the following condition holds
SA4 Random vectors w̄n and ∆n are independent, random
vectors w̄2, w̄1, . . . , w̄n−1 do not depend on w̄n and ∆n.
If values v̄1, . . . , v̄n, ξ1, . . . ,ξ2n are random then they do not
depend on w̄n and ∆n too.

Theorem 1. Let conditions SA1–4 and (8) be satisfied.
If ∑n αn = ∞ and αn → 0, βn → 0, α2

n β−2
n (1+ Ev̄2

n)→
0 as n→ ∞,

then E‖θ̂n−θ ?‖2→ 0 as n→ ∞.
Moreover, if ∑n αnβ 2

n < ∞ and

∑
n

α
2
n β
−2
n (1+EFn−1 v̄2

n)< ∞, with probability 1,

then θ̂n→ θ ? as n→ ∞ with probability 1.
Proof: [Sketch of the proof of Theorem 1] The proof of

Theorem 1 is similar to the corresponding proof in [26]. Let
be νn = θ̂n− θ ?, By virtue the view of the algorithm (10)
and observation model (4) we can get the bounds

EFn−1‖νn‖2 ≤ (1− c1αn)‖νn‖2 + c2α
2
n β
−2
n (1+EFn−1 v̄2

n)

with constants c1 and c2 which are determined by Theorem 1
conditions, and all conditions of the Robbins-Siegmund
Lemma [39], that are necessary for the convergence of {θ̂n}
to the point θ ? as n→ ∞ with probability 1, are satisfied.
To prove the result of Theorem 1 for the mean-square
convergence, let us examine the unconditional mathematical
expectation of both sides of the last inequality

E‖νn‖2 ≤ E‖νn‖2(1− c1αn)+ c2α
2
n β
−2
n (1+Ev̄2

n).

The mean-square convergence of the sequence {θ̂(n)} to the
point θ ? is implied by Lemma 5 of [40]. This completes the
sketch of the proof of Theorem 1.

Remarks. 1. Instead of mean-square boundedness of noise
and disturbances we can use more weak assumptions about
their statistical moments of an order ρ : 1< ρ < 2 (see [33]).

2. The conditions of Theorem 1 hold for the function
w f̄ (x) if the function f̄ (x) satisfies conditions SA1–2.

3. The observation noise vn in Theorem 1 can be said
to be “almost arbitrary” since they may be nonrandom but
independent and bounded or they may also be a realization
of some stochastic process with arbitrary dependencies. In
particular, to prove the results of Theorem 1, there is no
need to assume that v̄n and Fn−1 are independent.

4. Though algorithms (9) and (10) may look alike, al-
gorithm (9) is more suitable for use in realtime systems if
observations contain arbitrary noise. For algorithm (10), the
condition that observation noise v2n and the test perturbation
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∆n are independent is rather restrictive, because the vector
∆n is used at the previous instant 2n−1 in the system. For
the algorithm (10) the noise v2n and the test perturbation
vector ∆n simultaneously appear in the system and they can
be regarded as independent only in the case when β−n = 0.

V. TRACKING

To analyze the quality of estimates we will apply the
following definition for the problem of minimum tracking
for mean-risk functional (6).

Definition. A sequence of estimates θ̂n has an asymptot-
ically efficient upper bound of residues of estimation L > 0

if ∀ε > 0 ∃N such that
√

E‖θ̂n−θn‖2 ≤ L+ ε ∀n > N.
In the nonstationary problem (6) stochastic approximation

algorithms commonly used with constant step-sizes [6], [29],
[32].

Further we will assume that the additional following
conditions are true.
SA5 The gradient of ∇ fξt is uniformly bounded at the
minimum points: E‖∇ fξt (θt ,wt)‖2 ≤ ḡ < ∞, (ḡ = 0 for the
case fξt (x,w) = Ft(x)).
SA6 Drift is bounded ‖θt − θt−1‖ ≤ δθ < ∞ and for any
arbitrary point x: EFt−1ϕt(x)2 ≤ ā‖x− θt−1‖2 + b̄, where
ϕt(x) = fξt (x,wt)− fξt−1

(x,wt−1).

SA7 The observation noise {vn} satisfies: |v2n− v2n−1| ≤
cv < ∞.

The following theorem shows the asymptotically efficient
upper bound of residues of estimation by the algorithm (10).

Theorem 2. Let’s consider the randomized SA algorithm
with two measurements (10) where αn≡α , β+

n ≡ β , β−n ≡ 0,
Kn(∆n) =∆n, and ∆n be a sequence of independent identi-
cally distributed Bernoulli random vectors which components
are independent and equal ± 1√

d
with same probability 1

2 .
Let the conditions SA1–7 hold.
If k = 2µ−2α(M2+2 ā

β
)< 1/α and α < µ/M2, then the

sequence of estimates provided by the algorithm (10) has an
asymptotically efficient upper bound which equals to

L̄ =

(
4δθ

kα
+δθ

)2

−δ
2
θ +

l
k
, (11)

l = 4α

(
c2

v +2b̄
β 2 +3M2 +2ḡ

)
+4βM.

Theorem 2 is a partial case of a more general result in [20].
Remark. The result of the Theorem 2 shows that for the

case without drift (δθ = 0) the asymptotic upper bound is
L̄ = l/k. It can be made infinitely small under any noise level
cv, it is just needed to chose α and β sufficiently small. At
the same time for the case with drift, the bigger drift norm
δθ can be compensated by the choosing of the bigger step-
size α . This leads to the tradeoff between making α smaller
because we have noisy observations and making it bigger
because we have the drift of optimal points.

VI. ALGORITHM IMPLEMENTATION AND QUANTUM
COMPUTING

Till recently quantum computer was regarded exclusively
as a notional mathematical model. Of course, serious diffi-
culties are still encountered in designing a quantum computer
for everyday use. Nonetheless, intensive researches and de-
velopment projects permanently starting and continuing in
this field.

The representation of the algorithm (9) is associated with
something well-known for those people who is familiar with
fundamentals of “quantum computing”. Virtually all known
effective quantum algorithms implement a similar scheme:
• a preparation of an inputs “superposition”,
• processing,
• measuring of a result.
Let us examine the choice of the best computer for

implementation of the randomized stochastic optimization
algorithm with one measurement of the penalty function
per iteration. Realization of algorithm (9) on a quantum
computer is described in [33]. Recently, terminology and
axiomatic of quantum computation models have been greatly
refined. Below we describe a method of the algorithm (9)
representation for an implementation on a “hypothetical”
quantum computer, i.e., a method that is consistent with the
general logic of quantum computation algorithms.

Let f : Rd → R be a function satisfying the conditions
SA1–3. Let us assume that the quantum computer is an r-bit
machine. The unitary operation realizing the function f (θ)
on a quantum computer can be defined on all classical binary
chains x of length dr, defining the argument of the function

U f : |x〉|z〉 → |x〉|z⊕ f (x)〉,

where z is an arbitrary binary chain of length r and ⊕ is
a bit-by-bit operation of logical AND. This is a method of
defining an operator on the basis vectors. On all other vec-
tors, the operator is continued linearly. Clearly, the operator
constructed in this way is invertible and acts in a complex
space of dimension 2dr+r.

We estimate the minimum of a function, using algorithm
(9) which iteration has a form

x = θ̂ +β∆, y = f (x)+ v, θ̂ := θ̂ − γ(x− θ̂)y,

where γ = α/β 2.
To feed the computer input, let us prepare a superposition

of 2d perturbed values of the current estimate vector

x =
1

2
d
2

∑
∆i∈{−1,+1}d

|θ̂ +β∆i〉= Hβ |θ̂〉,

where ±1 are regarded as r-digit numbers, Hβ is the corre-
sponding unitary operator which is familiar to the traditional
in quantum computing Hadamard transformation.

Applying the unitary operator U f to |x〉|0〉, we obtain

U f |x〉|0〉=
1
2d ∑

∆i∈{−1,+1}d
|θ̂ +β∆i〉| f (θ̂ +β∆i)〉.
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By general properties of the quantum computation model,
after a state measurement, obtain with probability 1

2d a vector

|θ̂ +β∆i〉| f (θ̂ +β∆i)〉, ∆i ∈ {−1,+1}d .

Using first d r digits of this vector, we can easily determine
a random perturbation vector ∆n. According to algorithm
(9), its coordinates must be multiplied by the corresponding
value of the loss function at a perturbed point, i.e., by the
value at the last r digits of the measurement result.

Fig. 1. The quantum circuit for “on the fly” computing of the gradient.

Fig. 1 shows the quantum circuit for “on the fly” comput-
ing of the function f gradient.
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