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Abstract— The Sign-Perturbed Sums (SPS) randomized algo-
rithm is adapted to the procedure of data treatment of dynamic
fracture tests. The original method is modified and applied
for nonlinear regression function describing the strain rate
dependence of material strength at the framework of structure-
temporal approach. Ordinary there are few observation points
of goal parameter with random noises with unknown statistical
distribution, hence this stipulates the choice of SPS-algorithm
for this problem. It is proved that SPS-procedure permits to
define confidence intervals for dynamic strength parameter τ
with proper accuracy in this case. The applicability of this
method is demonstrated on example of experimental data
treatment of dynamic fracture of a concrete.

I. INTRODUCTION

The problem of observations with following estimation
of parameter values is typical procedure in modern engi-
neering. If we concern direct measurements obtained by
uncomplicated way then there are common methods allow
us to determine some interval of values for the parameter
with certain degree of an accuracy. These methods based on
the assumption of the normal distribution of random noises
and they demand a large number of data points, for example
least meant squares (LMS) method. The main peculiarity of
such methods is absolute confidence of obtained intervals,
that is no necessary in most practical cases where it is
enough to know that one or another parameter takes up the
value from certain interval with sufficiently great probability.
Additionally there is often no large quantity of data points
for the analysis and there is no information about noises.
Thus, we should apply some other methods in these cases
which are capable to make some estimation of parameter
value. One of these methods is SPS-procedure [1], which
allows us to determine the confidence interval under very
weak assumptions about the random noise and relatively
small quantity of data points.

The measuring of material strength and rheological param-
eters is one of the main problems in mechanical engineering.
The tests to measure static strength or Young elastic modulus
have been normalized during the time and are performed by
standard direct stress machine. These experiments are not
labor consuming and provide a lot data points for analysis.
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Thus, traditional methods like LMS permit to obtain an
average value of required parameter with certain degree of
an accuracy, for example σc ∈ [σc−;σc

+]. Also, direct
observations stipulate that the physical sense of the measured
parameter is established and well-known, and all researchers
have unified conception about final result.

The more complicated situation is observed in dynamics,
where material strength cannot be characterized by one
parameter of the critical stress. Experimental test results
demonstrate that under intensive impacts, specimens can
resist to stress level significantly higher than their static
strength σc and stress value at fracture moment σ∗ depends
on rate of loading and a shape of breaking pulse [2–9].
There is a common point of view that in dynamics fracture
occurs at the time moment when breaking stresses reach the
maximum like in statics, then the value of σ∗ could be noted
as material dynamic strength σd depending on the strain-
rate of load. These strain-rate dependencies are interpreted
as passport specifications of materials in certain approaches.
However, the variety of strain-rate curves is infinite due to
strong influence of impact condition to σd value, and it is
impossible to describe material strength by the same way
when fracture is initiated by threshold impacts. In these cases
stress level at the breaking moment can be less even the static
strength, this phenomenon is called the fracture delay effect.

The peculiarities of dynamic fracture mentioned above
served to development of essential other ways to describe the
dynamic strength of materials. One of them is the structure-
temporal approach based on the incubation time criterion
of fracture [10, 11]. The main idea of this criterion is
that fracture does not occur instantly and every transient
process has own characteristic time. The addition of only
one parameter - incubation time τ allows us to predict
stress level at the fracture moment and calculate strain-rate
dependencies for all type of impacts. This approach was
successfully applied for many different dynamic problems
such as predicting of dynamic strength for different materials
and condensed matters e.g. dynamic fracture of rocks and
concretes, dynamic yielding of metals, acoustic ultrasonic
cavitation of liquids etc [11–14]. Thus, the incubation time
τ in couple of static critical stress σc is completely deter-
mine the dynamic strength of material at the framework of
structure-temporal approach.

All dynamic tests are more elaborate and labor consuming
than static ones, moreover, tests with direct measuring of
incubation time are very complicated to be realized. Thus,
the value of τ could be obtained implicitly by ensuring
good correspondence between a model theoretical curve and
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a scatter of the experimental data. Any method could be
applied for fitting of the model curve, e.g. LMS-method, but
it gives only one value of the incubation time and there is
no any estimation of inaccuracy when we have the lack of
experimental data productive of an absence of any adequate
variability in observations. It should be repeated that standard
estimation algorithms use typically the condition of persistent
excitation in data. However, this condition is difficult to
ensure in the considered problem due to complexity of
dynamic tests and hence low quantity of experimental data
points. This often results in a degenerate observation data
and complicated identification problems.

The well-known set-membership approach to identifica-
tion uses no statistical properties of the noise but assume
some known upper bounds on uncertain system compo-
nents instead. The purpose of the approach is typically to
compute some upper or lower set estimates on the set of
data-consistent parameters and no convergence of this set
estimates to the true unknown parameter vector can be
achieved without any significant additional assumptions (see,
e.g. [15, 16]). In the context of considered problem, the using
of robust estimates of minimax methods gives a very wide
interval for τ , with a high inaccuracy and this result is very
conservative. The boundary values of this minimax interval
of τ correspond to model curves passed through low and
high points of the experimental data.

New SPS-procedure suggested in [1] provide rigorously
guaranteed non-asymptotic confidence interval for the un-
known parameters of a linear dynamical control plant in
the small-sample setting. We adopt this approach to the
problem of evaluation of the incubation time τ for nonlinear
regression function. This way is proper to this problem,
because it can to provide a confidence region of τ with
admissible for engineering rate of accuracy. Approximately
ten data points are enough to determine an average value
of incubation time with the accuracy ε = 20 − 35%. The
applicability of the new algorithm to the incubation time
approach will be illustrated on few dynamic fracture tests of
concrete [17].

The paper is organized as follows. Section II describes
main aspects of the structural-temporal approach and ways of
incubation time criterion application to prediction of dynamic
material strength. In Section III, we introduce a formal prob-
lem setting. Section IV introduces the main assumptions and
describes a special SPS method. The illustrative experiments
examples are presented in Section V. Section VI concludes
the paper.

II. INCUBATION TIME APPROACH

The general form of the incubation time criterion of
fracture is:

1

τ

∫ t

t−τ

(
σ(t′)

σc

)α
dt′ ≤ 1 (1)

where σ(t′) describes to loading stress, τ is incubation time
of fracture, α is dimensionless parameter, for most brittle
materials α = 1. According to (1), fracture does not occur
while left part of criterion is less than one. The fracture

moment t∗ corresponds to the time value t when the left
part of criterion for the first time become to equal to one.

The linear growth of stresses until the fracture is realized
in most experimental schemes in dynamic fracture tests.
Thus, the impact shape function can be determined by strain-
rate of load ε̇ and elastic modulus k:

σ(t) = h(t)kε̇t (2)

where h(t) is Heaviside step function. Substitution the func-
tion (2) to criterion (1) leads to follow equation for fracture
time t∗:

h(t∗)

(
t∗
τ

)α+1

− h(t∗ − τ)
(
t∗
τ
− 1

)α+1

= s (3)

where s = (α + 1)(σc/(kε̇τ))
α is dimensionless parameter,

which value depends on strain-rate of load impacts. Fracture
time t∗ could not be negative, hence h(t∗) = 1, and there are
two eventualities when t∗ > τ or t∗ ≤ τ . From expression
(3) it follows, that s = 1 for t∗ = τ , hence final equation set
determining fracture moment t∗ is:{

(t∗/τ)
α+1 = s, s < 1,

(t∗/τ)
α+1 − (t∗/τ − 1)α+1 = s, s ≥ 1.

(4)

Thus, we obtain the strain-rate dependence of the dynamic
threshold of fracture by substitution the solution of (4) to
shape function of load stresses (2) σ∗(ε̇) = kε̇t∗. Let us
assume the parameter α = 1 since this value corresponds
to dynamic behavior of the concrete in experimental tests
which hereafter are analyzed. Then roots of the equation (4)
could be expressed in an explicit form and critical fracture
stress is follow:

σ∗(ε̇) = ϕ(τ, ε̇) =

{
σc +

τ
2kε̇, ε̇ ≤ 2σc

kτ ,√
2σcτkε̇, ε̇ > 2σc

kτ .
(5)

The application of the incubation time criterion is demon-
strated on example of impact compressive fracture test on
the concrete [17]. The theoretical curve in comparison with
experimental points is shown in Fig.1. The value of τ =
10.02µs (full line) is calculated by LMS-method, as it is
mentioned above this result does not provide any information
about inaccuracy of this value. Another minimax method
gives very wide interval for incubation time value τ ∈
[7.52; 15.02]µs, and does not provide any information about
properties, that new experimental points would lie in this
interval. Hence, we apply new SPS-method of data treatment,
which gives, at first, more accurate interval for possible
values of τ and, at second, degree of its confidence in a
proper range.

III. PROBLEM DESCRIPTION

We can choose ε̇ as an acting factor in dynamic test
experiments and get the correspondence to observation σ∗.
Dynamic test data are satisfied to the following model of N
observations with noise:

σ∗i = ϕ(τ, ε̇i) + vi, i = 1, 2, . . . , N (6)
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Fig. 1: Dynamic fracture of the concrete [17]. Blue points
are experimental data. Lines are theoretical curves plotted
by incubation time fracture criterion: full line - least mean
squares method; dash line - min & max robust method

where vi is a independent random noise (an inaccuracy)
with symmetrical distribution. If we assume that the strain-
rate dependence is obeyed to principles of structure-temporal
approach, then function:

ϕ(τ, ε̇i) = kε̇t∗(τ) (7)

where t∗ is fracture moment predicted by incubation time
criterion by solving the equation (4).

The equation (7) permits to calculate fracture stress for
different τ , then the least mean square method (LMS) gives
the best fitted value of the incubation time, for that follow
sum has a minimum value:

N∑
i=1

(ϕ(τ, ε̇i)− σ∗i)2 → min
τ
. (8)

However, we do not able to get a sufficiently good confidence
interval for unknown τ without significant restrictions for the
noise vi when N is small.

Objective: Our goal is to construct confidence regions
for unknown τ that have guaranteed user-chosen confidence
probabilities for finite, and possibly small, number of data
points. It must be defined by the observations of outputs
{σ∗i}Ni=1 and known acting factors {ε̇i}Ni=1 which may be
chosen. The constructed regions are quasi distribution-free,
as the only assumption on the noise has a property of
symmetry. This is important since in practice the knowledge
about the noise distribution is limited. Additionally, the
confidence regions should contain the least-squares point
estimate.

IV. SPS PROCEDURE FOR CONSTRUCTING OF
CONFIDENCE REGIONS

For a finite number of observations we can use the
following procedure which is similar to SPS procedure from

[1]. The LMS estimate is obtained as the solution of the
equation

H0(τ) =

N∑
i=1

(σ∗i − ϕ(τ, ε̇i))
dϕ(τ, ε̇i)

dτ
= 0 (9)

where

dϕ(τ, ε̇)

dτ
=

{ 1
2kε̇, ε̇ ≤ 2σc

kτ ,
1√
2τ

√
σckε̇, ε̇ > 2σc

kτ .
(10)

We will try to exploit the information in the data as
much as possible while assuming minimal prior statistical
knowledge about the noise. Our core assumption is the
symmetry of the noise. For some M > 0 we generate M×N
Bernoulli random values βij = ±1 with probability 1

2 , and
introduce M − 1 sign-perturbed sums

Hj(τ) =

N∑
i=1

βij(σ∗i − ϕ(τ, ε̇i))
dϕ(τ, ε̇i)

dτ
, (11)

j = 1, 2, . . . ,m− 1.
If τ? is a nominal value of τ then H0(τ

?) and Hj(τ
?) have

the same distribution since {vi} are symmetric. Therefore,
there is no reason why a particular |Hj(τ

?)| should be bigger
or smaller than another |Hj′(τ

?)| and the probability that a
particular |Hj(τ

?)| is the m-th largest one in the ordering of
{|Hj(τ

?)|}M−1j=0 will be the same for all j, including j = 0
(the case where there are no sign-perturbations). As can take
on different values, this probability is exactly 1

M .
Algorithm:
1) Given a (rational) confidence probability p ∈ (0, 1),

set integers M > q > 0 such that p = 1− q/M .
2) Generate N(M − 1) i.i.d. random signs {βij} with

Prob{βij = 1} = Prob{βij = −1} = 1
2 for i ∈

{1, 2, . . . , N} and j ∈ {1, 2, . . . ,M − 1}.
3) Set

T̂ := {τ : SPS Indicator(τ) == 1}.

Procedure:SPS Indicator(τ)

1) For the given τ compute the prediction error for i ∈
{1, 2, . . . , N}

δi(τ) = σ∗i − ϕ(τ, ε̇i).

2) Evaluate

H0(τ) =

N∑
i=1

δi(τ)
dϕ(τ, ε̇i)

dτ
,

Hj(τ) =

N∑
i=1

βijδi(τ)
dϕ(τ, ε̇i)

dτ
,

for j ∈ {1, 2, . . . ,M − 1}.
3) Order scalars |Hj(τ)| from smallest to biggest.
4) Compute the rank R(τ) of |H0(τ)| in the ordering,

where R(τ) = 1 if |H0(τ)| is the smallest in the
ordering, R(τ) = 2 if |H0(τ)| is the second smallest,
and so on.

5) Return 1 if R(τ) ≤M − q, otherwise Return 0.
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Note that the LMS estimate τ̂ has by definition the
property that H0(τ̂) = 0. Therefore, the LMS estimate τ̂
is included in the SPS confidence region.

The probability that τ? belongs to T̂ is given in the
following Theorem.

Theorem 1. If the noise has a property of symmetry then

Prob{τ? ∈ T̂ } = 1− q

M
(12)

where M , q, T̂ from Steps 1 and 3 of the algorithm described
above.

Proof: The function ϕ(τ, ε̇) is convex continuous and
monotonically increasing with growth of parametric variable
τ since the derivative dϕ(τ)/dτ is positive for every τ > 0.
Also, the critical strain-rate ε̇c = 2σc/kτ decreasing with
growth of τ , hence ϕ(τ1, ε̇) > ϕ(τ2, ε̇) for every ε̇ under
condition that τ1 > τ2. Therefore, if τ is not among the
interval obtained by minimax method - τ /∈ [τmin; τmax],
then modeling curves lie higher or below of all data points
on the plot (Fig.1).

Let us consider the case τ < τmin when all predicted val-
ues of the strength are less the experimental ones: ϕ(τ, ε̇) <
σ∗i,∀i = 1, ..., N. Then all terms of the sum H0(τ) in (9)
are positive and this sum is greater then every other sum
Hj(τ), since some terms of the last one are negative due
to random signs βij , i.e. |H0(τ)| > |Hj(τ)|,∀τ < τmin
and j = 1, ...,M − 1. Therefore, R(τ) = M and all values
of τ < τmin are rejected by SPS Indicator(τ) procedure.
Analogous reasoning leads to all values of τ > τmax are
also separated. All terms of the sum H0(τ) are negative and
|H0(τ)| > |Hj(τ)|, since Hj(τ) contains certain positive
terms. Thus, the minimax region contains the interval T̂
derived by SPS-method.

It should be noted that the δi(τ) = vi for the nominal
value of τ . Then applying Lemma 1 from [1], it is follows
that Hj(τ) are i.i.d, since βij are i.i.d signs and δi(τ) are
symmetric. Thus, the probability that some Hj(τ) takes a
certain place in the ordering {|Hj(τ)|}M−1j=0 is equal to 1/M

for ∀τ ∈ T̂ . Then Theorem 1 is proved. �

V. EXPERIMENTS

Results of SPS-procedure application to experimental data
of dynamic fracture tests of the concrete are shown in Fig.2.
There are two experimental series for concretes with a little
different in values of the static strength σ

(1)
c = 42.5MPa

and σ
(2)
c = 40.8MPa. All calculations were performed for

the first series of data points, the second one is used to check
of the obtained results.

These values of confidence probabilities 90% and 99.8%
were achieved by follows values of SPS-procedure parame-
ters M = 200, q = 20 and M = 500, q = 1. This gives us
two intervals of incubation fracture time τ0.9 ∈ [8.0; 10.4]µs
and τ0.998 ∈ [7.4; 14.7]µs, while LMS-method provides
τ = 8.7µs. We can see that 99.8% confidence interval
approximately coincides with the minimax estimation. It
is the direct consequence from the Theorem. Thus, SPS-
procedure allow us to calculate incubation time value with
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Fig. 2: Dynamic fracture of concrete [17]: blue circles -
σ
(1)
c = 42.5MPa; orange circles σ(2)

c = 40.8MPa. Red
line is plotted by LMS-method τ = µs; dotted lines are
plotted by SPS-procedure for τ0.90 ∈ [8.0; 10.4]µs; Dashed
lines - τ0.998 ∈ [7.4; 14.7]µs

relatively small inaccuracy 20% with quite big degree of
confidence 90%. Also, the orange checking points of the
seconds series lie into wide 99.8% confidence region, while
only three of them are almost in the 90% interval.
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Fig. 3: Dynamic fracture of concrete [17]: blue circles -
σ
(1)
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c = 40.8MPa. Dotted
lines are plotted by SPS-procedure for τ0.995 ∈ [7.5; 11.3]µs;
Dashed lines - τ0.998 ∈ [7.4; 14.7]µs

The interesting result is obtained for the follow parameters
of the SPS-procedure M = 200, q = 1 when we calculate the
99.5% confidence region (Fig.3). In spite of approximately
the same confidential probability 99.8% and 99.5% the
second interval is significantly narrower than the first one,
but its rate of accuracy is not greater than 30%.
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VI. CONCLUSIONS

The main problem in dynamic fracture mechanics is
absence of standard methods to compute and predict the limit
characteristics of intensive impacts for different materials
and condensed matters. The incubation time approach proved
itself as good instrument for solution of mentioned problems,
but it also has not standard procedure to analyze experimental
data for estimation of the incubation time value. The main
difficulty is that incubation time τ could be measured only
implicitly by performing complicated dynamic test, therefore
standard measuring methods based on the law of a large
numbers do not work. The proposed application of SPS-
procedure shows how to calculate incubation time with
given proper inaccuracy under limit quantity of experimental
points. This SPS-algorithm also permits to estimate the
confidence of obtained intervals for parameter τ that it is
very important for applications.

The further researches are intended to make more weak
assumptions on random noises like in works [18–20] and to
perform real experimental test with the given by adaptive
approach values of the acting factor ε̇ in accordance to
principles presented in [21]. Also we want to consider
materials which behavior corresponded to case α > 1. There
is no explicit form of solution in this case, but the main
peculiarities of the nonlinear regression function would be
the same.

REFERENCES

[1] B. Csaji, M. C. Campi, , and E. Weyer, “Sign-perturbed sums: A new
system identification approach for contructing exact non-asymptotic
confidence regions in linear regression models,” IEEE Trans. on Signal
Processing, vol. 63, no. 1, pp. 169–181, 2015.

[2] J. D. Campbell and W. G. Ferguson, “The temperature and strain-
rate dependence of shear strength of mild steel,” The Philosophical
Magazine, vol. 21, pp. 63–82, 1970.

[3] A. J. Rosakis, J. Duffy, and L. B. Freund, “The determination of
dynamic fracture toughness of alsi 4340 steel by the shadow spot
method,” J. Mech. Phys. Solids, vol. 32, no. 4, pp. 443–160, 1984.

[4] D. A. Shockey, L. Seaman, and D. R. Curran, Material behavior under
high stress and ultrahigh loading rates. Springer US, New York,
1983.

[5] G. R. Johnson and W. H. Cook, “Fracture characteristics of three
metals subjected to various strains, strain rates, temperatures and
pressures,” Engineering Fracture Mechanics, vol. 21, pp. 31–48, 1985.

[6] V. S. Nikiforovsky and E. I. Shemyakin, Material behavior under high
stress and ultrahigh loading rates. Novosibirsk,[in Russian], 1979.

[7] K. Ravi-Chandar, “Experimental challenges in the investigation of
dynamic fracture of brittle materials,” Physical Aspects of Fracture.
NATO Science Series, Ser. II : Mathematics, Physics and Chemistry,
vol. 32, pp. 323–342, 2001.

[8] J. F. Kalthoff and S. Wincler, “Failure mode transition at high rates
of shear loading,” vol. May, 1987, pp. 161–176.

[9] G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, “Dynamic
yield and tensile strength of aluminum single crystals at temperatures
up to the melting point,” Journal of Applied Physics, vol. 90, no. 1,
pp. 136–143, 2001.

[10] Y. V. Petrov and A. A. Utkin, “Dependence of the dynamic strength
on loading rate,” Mater. Science, vol. 25, no. 2, pp. 153–156, 1989.

[11] Y. V. Petrov, “Incubation time criterion and the pulsed strength of
continua: Fracture, cavitation, and electrical breakdown,” Doklady
Physics, vol. 49, no. 4, pp. 246–249, 2004.

[12] A. A. Gruzdkov and Y. V. Petrov, “Cavitation breakup of low- and
high-viscosity liquids,” Technical Physics, vol. 53, no. 3, pp. 291–295,
2008.

[13] N. M. Pugno, “Dynamic quantized fracture mechanics,” International
Journal of Fracture, vol. 140, no. 1-4, pp. 159–168, 2006.

[14] Q. Z. Wang, S. Zhang, and H. P. Xie, “Rock dynamic fracture tough-
ness tested with holed-cracked flattened brazilian discs diametrically
impacted by shpb and its size effect,” Experimental Mechanics, vol. 50,
pp. 877–885, 2010.

[15] E.-W. Bai, K. M. Nagpal, and R. Tempo, “Bounded-error parame-
ter estimation: Noise models and recursive algorithms,” Automatica,
vol. 32, no. 7, pp. 985–999, 1996.

[16] F. Blanchini and M. Sznaier, “A convex optimization approach to
synthesizing bounded complexity hinf filters,” IEEE Transactions on
Automatic Control, vol. 57, no. 1, pp. 219–224, 2012.

[17] L. Yong and X. Kai, “Modelling of dynamic behaviour of concrete
materials under blast loading,” International Journal of Solids and
Structures, vol. 41, pp. 131–143, 2004.

[18] K. Amelin, N. Amelina, O. Granichin, and O. Granichina, “Combined
procedure with randomized controls for the parameters’ confidence
region of linear plant under external arbitrary noise,” in Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012,
pp. 2134–2139.

[19] K. Amelin and O. N. Granichin, “Randomized control strategies under
arbitrary external noise,” IEEE Transactions on Automatic Control,
vol. 61, no. 5, pp. 1328–1333, 2016.

[20] A. Senov, K. Amelin, N. Amelina, and O. N. Granichin, “Exact
confidence regions for linear regression parameters under external
arbitrary noise,” Proc. of the 2014 American Control Conference
(ACC) Portland, USA, 4-6 June, pp. 5097–5102, 2014.

[21] O. N. Granichin, “The nonasymptotic confidence set for parameters
of a linear control object under an arbitrary external disturbance,”
Automation and Remote Control, vol. 73, no. 1, pp. 20–30, 2012.

1656


