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Abstract— In the last years, the study of complex networks
grows rapidly and search of tightly connected groups of nodes,
or community detection, has proved to be a powerful tool
for analyzing the real systems. Randomized algorithms are
effective for detecting communities but there is no set of optimal
parameters that makes these algorithms create a good partitions
into communities for every input complex network. In this
paper we consider two randomized algorithms and, based
on the stochastic approximation, propose two new adaptive
modifications that adjust parameters to the input data and
create a good partitions for wider range of input networks.

I. INTRODUCTION

This paper is inspired by V. Blondel plenary talk at ECC-
2014 [1]. Historically, the network research was a part of
graph theory since the resolution of the Seven Bridges of
Konigsberg problem by Leonhard Euler [2]. In 1920 the
social networks research began [3]. The attention shifted
from a small networks to a large networks with billions
of nodes, the techniques of networks static analysis have
being developed. Basically, the queueing theory, that also
considers networks of requests for telephone exchange, used
the Poisson distribution to describe streams of requests, for
example [4].

The research of complex networks was developing over
the last 20 years. The complex networks were successfully
used in many areas including power systems, education,
sociology [5], crime investigation [6], epidemiology [7],
bioinformatics [8] and the research of the Internet topol-
ogy [9], [10].

The degree is one of the typical characteristics of network
nodes, and it is defined as the number of outgoing edges.
During the research process of complex networks, based on
the real systems [5]–[10], it revealed that P (s) distribution,
defined as the ratio of the number of nodes with degree
s to the total number of nodes, significantly differs from
the Poisson distribution, that is expected for random graphs
of Erdos–Renyi [11]. Besides that, networks based on real
systems are characterized by a short paths between any of
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two nodes, and a large number of small cycles [12]. It shows
that models proposed by graph theory and methods of static
analysis will not work well for those graphs.

Essentially, the community presence is the common prop-
erty of the networks considered in [5]–[10]. A community
is a group of nodes with a large amount of connections
inside the group but with small amount of connections with
nodes outside the group. The ability to find and analyze
such groups of nodes gives us a huge possibilities for
research of real systems presented as complex networks [13].
Closely related groups of nodes in social networks present
people belonging to communities. Closely related groups
of nodes in the Internet correspond to pages devoted to
common themes [12]. The communities in networks that
describe interaction within genes are related to functional
modules [14]. The search of such groups of nodes is called
community detection in graphs or clustering.

In 2010 Ovelgoenne and Geyer-Schulz proposed the
Randomized Greedy algorithm for community detection in
graphs [15]. Later, in 2012 they described Core Groups
Graph Cluster algorithm [16]. Both of these algorithms are
very sensitive to the input parameters, which affect the
quality of the final partition. Moreover, there is a question,
how to choose the optimal parameters to get the best results
on various sets of graphs. In this paper we consider the new
adaptive algorithms that solve this problem. Also, our algo-
rithms are suited to the case of drifting optimal parameters.

The paper is organized as follows. The required informa-
tion about graphs, complex networks, community detection
techniques and algorithms of stochastic approximation are in
Section II. In Section III the Adaptive Randomized Greedy
algorithm and its properties are presented. Section IV de-
scribes the Adaptive Core Groups Graph Cluster algorithm,
its possible applications and its iterative modification. The
conclusions are in Section V.

II. PRELIMINARY
Consider a graph G = (V,E), where V 6= ∅ is a set of

nodes, E is a set of edges, and the cardinalities of V and E
are N and L respectively.

Communities (groups or clusters) are the sets of nodes
P = {C1, . . . , CK} such that

⋃K
i=1 Ci = V and ∀i, j ∈

1, . . . ,K Ci ∩ Cj
i 6=j

= ∅.

A partition into communities P = {C1, . . . , CK1
} is

based on the partition P̃ = {C̃1, . . . , C̃K2
} iff ∀i ∈

1, . . . ,K1 ∃j ∈ 1, . . . ,K2 such that Ci ⊆ C̃j .
A graph is said to have community structure if the nodes

of the graph can be easily grouped into sets of nodes such
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that each set of nodes is densely connected internally. Two
communities are adjacent to each other if there is an edge
between them.

Modularity

In 2004 Newman and Girvan proposed the modularity
function Q to measure the strength of division of a network
into communities [17].

Assume we have K communities, then the normalized ad-
jacency matrix e is a symmetric matrix of size K×K, where
eij is the ratio of the number of edges from community i to
community j, to the total number of edges in the graph.
The trace of this matrix tr e =

∑
i∈1,...,K eii shows the

ratio of the number of nodes inside communities, to the total
number of nodes in the graph. Thus, a good partition into
communities has a high value of the trace of the matrix e.

However the partition which consists of one community
has the highest trace value and it says nothing about the com-
munity structure of the graph. To solve this problem, consider
a vector a = (a1, . . . , aK)T where ai =

∑
j∈1,...,K eij is the

ratio between the number of edges connected to community
i and the total number of edges in the graph, and consider
the modularity function Q [17]:

Q(G,P ) =
∑

i∈1,...,K
(eii − a2i ) = tr e−

∑
i∈1,...,K

a2i . (1)

The quality of the partition is described by the value of
Q: the higher the better (maximum is 1).

So the community detection problem can be formulated as
follows: find a partition into communities with the highest
modularity Q.

This problem was proved to be NP-complete by Brandes
et al. [18], nonetheless to determine the change of the
modularity after the union of the two communities i and
j only one operation is required: ∆Q = 2(eij − aiaj). The
union operation has a time complexity of O(min(ni, nj)),
where ni and nj are the number of adjacent communities to
community i and j respectively.

Randomized Greedy (RG)

In 2010 Ovelgoenne and Geyer-Schulz proposed the Ran-
domized Greedy algorithm, which effectively maximizes
modularity [15]: first, it splits the graph into K = N parts,
and then on each iteration it takes k arbitrary communities
with their neighbors and unites the pair which gives the
highest increase of the modularity (if any). The final result
of the algorithm is the partition into communities which has
the greatest global modularity.

In this paper, RG with parameter k is denoted as RGk.

Core Groups Graph Cluster (CGGC)

In 2012 Ovelgoenne and Geyer-Schulz won the 10th DI-
MACS Implementation Challenge in Category Graph Parti-
tioning and Graph Clustering by presenting the Core Groups
Graph Cluster scheme [16]. The main idea is to create a good
initial partition using s initial algorithms and then split the
rest of nodes by using the final algorithm: see Algorithm 1.

Algorithm 1 Core Groups Graph Cluster

Input: G = (V,E), set of initial algorithms, final algorithm;
Output: clustering of G;

1: S = ∅;
2: for each initial algorithm do
3: create a partition into communities Si of the graph G;
4: end for
5: create an intermediate partition P̃ based on partitions S;
6: create a partition by using the final algorithm for P̃ ;

Core Groups Graph Cluster scheme has an iterative version
which repeats lines 1–5 several times until it gives an
advantage and uses an intermediate partition P̃ on the line 3.

The above described algorithms depend on various set of
parameters: RGk depends on k, CGGC depends on s and
the selected initial and final algorithms.

Unfortunately, there is no set of optimal parameters that
make these algorithms create good partitions for every input
graph, so we have to pick up the optimal arguments for each
graph separately.

Simultaneous Perturbation Stochastic Approximation (SPSA)

Stochastic approximation was introduced in 1951 by
Robbins and Monro [19] and was further developed for
optimization problems by Kiefer and Wolfowitz [20]. In 1954
Blum extended the stochastic approximation algorithm to the
multidimensional case [21]. In case of m-dimensional space,
the conventional KW-procedure which is based on finite-
difference approximations of the function gradient vector
uses 2m observations on each iteration (two observations
for approximations of each component of the gradient m-
vector). In 80s-90s, the simultaneously perturbation stochas-
tic approximation (randomized version of stochastic approx-
imation with one (or two) measurements per iteration) was
proposed by Granichin in 1989 [22], Polyak and Tsybakov
in 1990 [23], and Spall in 1992 [24].

Stochastic approximation algorithms have shown to be
effective in minimization of stationary functional problem
solving. In [25]–[27] similar algorithms with constant step-
size were applied to time varying functionals.

The simultaneous perturbation stochastic approximation
algorithm with constant step size is described in Algorithm 2.

The SPSA is well suited for creation of adaptive modifica-
tions of algorithms which will adapt to the input parameters.
In this paper we apply a discrete version of SPSA algorithm
with constant step size to RG and CGGC for choosing a set
of optimal parameters automatically.

For testing of proposed algorithms, we use the test
graphs from the 10th DIMACS Implementation Challenge,
which are located here: http://www.cc.gatech.edu/
dimacs10/archive/clustering.shtml. The qual-
ity of the final partition is scored by the value of the
modularity function Q (see (1)).

Also, for evaluation of quality of the algorithm we gen-
erated a graph auto40 with N = 40000 which consists of
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Algorithm 2 SPSA with constant step size

Input: function f , initial approximation θ̂0 ∈ Rm, perturba-
tion d ∈ R \ {0}, step size α ∈ Rm, and ε > 0;

Output: θ̂n;
1: n = 0;
2: repeat
3: n = n+ 1;
4: choose ∆n ∈ Rm such that ∆ni

= ±1 and ∆ni
∼

B
(
1, 12
)
;

5: θ−n = θ̂n−1 − d∆n and θ+n = θ̂n−1 + d∆n;
6: y−n = f(θ−n ) and y+n = f(θ+n );
7: θ̂n = θ̂n−1 − α∆n

y+n−y
−
n

2d ;
8: until |θ̂n − θ̂n−1| < ε
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Fig. 1: The dependence of modularity Q and k for different
graphs. Note that k ∈ N, but for clarity the graphs are
continuous.

K = 40 communities and with probability psame = 0.1 and
pdiff = 10−4 that there is an edge between any two nodes
inside one community, and any two nodes from different
communities.

III. ADAPTIVE RANDOMIZED GREEDY (ARG)

Depending on the input graph, average modularity of the
final partition of RGk is the highest on small k (Fig. 1a), or
grows with increasing k (Fig. 1b).

The RGk’s iteratrion has a time complexity of O(k), so
we take the following quality function:

f(Q, k) = − lnQ+ β ln k , (2)

in which β ≥ 0 can be considered as β = ln γ
ln 2 , where γ it

the necessary increase of Q, if k will increase by 2 times.
The usage of SPSA is substantiated for a convex quality

function. Based on the function values for k ∈ N, the quality
function can be extended to a continuous function, using
linear functions between natural numbers. On the basis of
the experiments (see Fig.2), it can be said that the quality
function f is similar to convex.

As you can see in Fig. 2b, sometimes to have the highest
value of the quality function we should use a large β.
However, there is a small β which gives high results.

For using SPSA, let us split the RG algorithm into steps
of length σ iterations. During each step we use the fixed k
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Fig. 2: The quality function with β = 0, β = 0.1, and β =
0.2 for different graphs

and every 2 steps we choose two new values of k, based on
the best value of k from the previous iteration.

Also, the quality function uses the average of the growth
of modularity over the last σ steps. In this way, the algorithm
is Algorithm 3.

In despite of RG, ARG has five independent parameters.
However, according to the test results on graphs cond-mat-
2003, caidaRouterLevel and cnr-2000, the parameters α and
σ almost have no effect on the final partition, unlike d and k̂0
which strongly affect the results. Nonetheless, there is the set
of parameters that provides high results: α = 10, σ = 1000,
d = 5, k̂0 = 8.

Often, the use of a small β gives a better division than
β = 0 (see Fig. 3).

Comparison of RG and ARG

In Tables I and II, RGk and ARG are compared by the
average modularity and by the running time for different k:
• k = 1 is a minimal value for k
• k = 3 is a value, which often gives high results
• k = 10 is a value, which gives stable results in the sense

of better comparative values on average
• k = 50 is an example for large k
The ARG was run with the following parameters: α = 10,

σ = 1000, d = 5, k̂0 = 8, β = 0.05.
In most cases, some RGk algorithms give a better result

than ARG, but on the other hand, ARG has stable results
like RG10 and has a higher average modularity than RG10.
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Algorithm 3 Adaptive Randomized Greedy

Input: G = (V,E), initial approximation k̂0 ∈ N, perturba-
tion d ∈ N, step size α ≥ 0, significance of the running
time β ≥ 0, number of iterations per step σ ∈ N;

Output: clustering of G;
1: n = 0, split the graph G into K = N communities;
2: repeat
3: n = n+ 1;
4: k−n = max{k̂n−1 − d, 1} and k+n = k̂n−1 + d;
5: calculate the average of the growth of modularity Q−n

over the next σ iterations: take k−n arbitrary communities
with their neighbors and unite the pair which gives the
highest increase of the modularity, repeat again;

6: calculate the average of the growth of modularity Q+
n

over the next σ iterations for k+n ;
7: y−n = − lnQ−n + β ln k−n and y+n = − lnQ+

n +
β ln k+n ;

8: k̂n = max
{

1,
⌊
k̂n−1 − α y

+
n−y

−
n

k+n−k−n

⌋}
;

9: until there are no communities that can be united
10: return the partition into communities which has the

greatest value of modularity;
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Fig. 3: The dependence of modularity Q and the running
time t of ARG and coefficient β for graph cond-mat-2003

Usage of ARG as the initial algorithm for CGGC

The running time of CGGC equals the sum of the running
time for each initial algorithm plus the running time of
the final algorithm. Therefore, on the one hand the initial
algorithms should work fast but on the other hand, there is
no sense in algorithms which give bad partitions.

Thus, ARG is well suited as the initial algorithm for
CGGC for graphs with N >> 2σ.

According to Tables III and IV, RGk with small k is
not suitable as the initial algorithm (for example, see RG3

for cond-mat-2003), and is also not suitable as the final
algorithm for CGGC.

In addition, we do not know in advance the best k for
the specific graph and we can not estimate the quality of
partition made by RGk. CGGC takes a long running time,
so it is unprofitable to run CGGC few times to find the best
k. So it makes sense to use ARG as the initial algorithm,
and as the final algorithm if it is possible.

TABLE I: Average modularity for RGk and ARG on differ-
ent graphs

RG1 RG3 RG10 RG50 ARG
as-22july06 0.65281 0.64658 0.64024 0.63479 0.64264
cond-mat-2003 0.00012 0.19727 0.70738 0.69403 0.71193
auto40 0.78944 0.79988 0.80417 0.80273 0.80174
caidaRouterLevel 0.01938 0.81101 0.79883 0.79300 0.80216
cnr-2000 0.90237 0.91192 0.91144 0.90997 0.91039
eu-2005 0.92765 0.92559 0.91780 0.90416 0.91048
in-2004 0.00026 0.97836 0.97185 0.97596 0.97616

TABLE II: The running time of RGk and ARG on different
graphs, milliseconds

RG1 RG3 RG10 RG50 ARG
as-22july06 177 189 231 464 238
cond-mat-2003 58 184 463 931 474
auto40 4,652 4,591 6,017 12,558 6,479
caidaRouterLevel 852 9,114 10,244 15,217 11,514
cnr-2000 26,083 26,056 27,137 33,592 29,054
eu-2005 202,188 200,686 207,689 246,170 225,748
in-2004 9,208 487,953 553,196 607,408 617,345

IV. ADAPTIVE CORE GROUPS GRAPH
CLUSTERING (ACGGC)

To create an adaptive algorithm that will be able to work
on graphs of any size, we can use SPSA for choosing
the initial algorithms. Also, we can build the intermediate
partition based on the few best partitions. The algorithm is
Algorithm 4.

The described ACGGC algorithm has many parameters,
however the following set of them gives high results for all
considered graphs (see Tables V and VI): d = 2, α = 1000,
l = 6, k̂0 = 5, kmax = 50, r = 0.05.

Decreasing kmax reduces the computing time, and in
addition, it often increases the modularity.

Comparison of CGGC and ACGGC

Table VII contains test results for 5 modifications of
CGGC and ACGGC, that are compared by the average
modularity:
• ACGGCI is ACGGC with d = 2, α = 1000, l = 6,
k̂0 = 5, kmax = 50, r = 0.05, and the final algorithm
is RG10

TABLE III: Modularity of the partitions, which were con-
structed by CGGC with the initial algorithm Ainit and the
final algorithm Afinal

Ainit RG3 RG10 ARG
Afinal RG3 RG10 RG3 RG10 RG3 RG10

cond-mat-2003 0.16840 0.71155 0.44934 0.74794 0.42708 0.74872
auto40 0.80628 0.80645 0.80633 0.80645 0.80628 0.80647
caidaRouterLevel 0.84078 0.85372 0.84031 0.84448 0.83671 0.85279

TABLE IV: The running time of CGGC with the initial
algorithm Ainit and the final algorithm Afinal on different
graphs, milliseconds

Ainit RG3 RG10 ARG
Afinal RG3 RG10 RG3 RG10 RG3 RG10

cond-mat-2003 2.0 2.3 4.7 4.8 4.8 4.9
auto40 47.0 46.6 57.7 57.2 65.7 65.8
caidaRouterLevel 94.0 93.7 104.2 104.3 115.1 118.5
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Algorithm 4 Adaptive Core Groups Graph Clustering

Input: G = (V,E), initial approximation k̂0 ∈ N, perturba-
tion d ∈ N, step size α ≥ 0, number of steps l ∈ N,
upper bound of kmax ∈ N≥2, and r ∈ (0, 1];

Output: clustering of G;
1: n = 0, S = ∅;
2: repeat
3: n = n+ 1;
4: k−n = max{1, k̂n−1 − d}, k+n = min{kmax, k̂n−1 +
d};

5: create a partition P−n by using RGk−n and add it into
S, the modularity is Q−n ;

6: create a partition P+
n by using RGk+n and add it into

S, the modularity is Q+
n ;

7: y−n = − lnQ−n and y+n = − lnQ+
n and update Qbest;

8: k̂n = max
{

1, min
{
kmax,

⌊
k̂n−1 − α y

+
n−y

−
n

k+n−k−n

⌋}}
9: until n = l

10: S̃ = {Si ∈ S such that Q(G,Si) ≥ (1− r)Qbest};
11: create an intermediate partition P̃ based on partitions S̃;
12: apply the final algorithm to the intermediate partition P̃ ;

TABLE V: Modularity of the partitions which were con-
structed by ACGGC with different kmax on different graphs

kmax +∞ 50 20 10 6
polbooks 0.527237 0.527237 0.527237 0.527082 0.526985
adjnoun 0.299720 0.299690 0.299859 0.300141 0.299676
football 0.603324 0.603324 0.604184 0.604266 0.604266
jazz 0.444739 0.444739 0.444739 0.444739 0.444739
celegans 0.439770 0.439368 0.439750 0.439460 0.439431
email 0.573470 0.573416 0.573652 0.573756 0.573513
netscience 0.953033 0.908130 0.842085 0.793289 0.768572
cond-mat-2003 0.737611 0.743572 0.749595 0.749894 0.739200

• ACGGCII is ACGGC with d = 2, α = 1000, l = 8,
k̂0 = 5, kmax = 20, r = 0.05, and the final algorithm
is RG10

• CGGC10
10 is CGGC with RG10 as the initial algorithm,

RG10 as the final algorithm, and with s = 16
• CGGC10

3 is CGGC with RG3 as the initial algorithm,
RG10 as the final algorithm, and with s = 16

• CGGC3
10 is CGGC with RG10 as the initial algorithm,

RG3 as the final algorithm, and with s = 16

where the best result, and . . .the. . . . . . . .second. . . . .best. . . . . . .result.
Table VII shows that ACGGC usually works better than

CGGC. In [16] was shown that CGGC with a large s
provides a high value of modularity, therefore in our tests

TABLE VI: The running time of ACGGC with different kmax
on different graphs

kmax +∞ 50 20 10 6
polbooks 5.029 4.976 4.615 4.207 4.087
adjnoun 6.115 6.099 5.481 4.952 4.744
football 7.179 7.155 6.377 5.820 5.584
jazz 23.66 23.25 20.92 19.12 18.59
celegans 23.85 23.49 22.48 20.92 20.01
email 70.06 72.89 68.34 63.85 62.97
netscience 477.97 85.40 46.08 38.26 30.89
cond-mat-2003 41,950 9,596 6,075 5,092 4,166

TABLE VII: Modularity of the partitions which were
constructed by ACGGC and CGGC on different graphs,
where 1pgpGiantCompo, 2as-22july06, 3cond-mat-2003,
4caidaRouterLevel

ACGGCI ACGGCII CGGC10
10 CGGC10

3 CGGC3
10

karate . . . . . . . . . .0.417242 0.417406 0.415598 0.396532 0.405243
dolphins 0.524109 . . . . . . . . . .0.523338 0.521399 0.523338 0.522428
chesapeake . . . . . . . . . .0.262439 . . . . . . . . . .0.262439 . . . . . . . . . .0.262439 . . . . . . . . . .0.262439 0.262370
adjnoun 0.299704 . . . . . . . . . .0.299197 0.295015 0.292703 0.290638
polbooks . . . . . . . . . .0.527237 . . . . . . . . . .0.527237 . . . . . . . . . .0.527237 0.526938 0.526784
football 0.603324 . . . . . . . . . .0.604266 . . . . . . . . . .0.604266 0.599537 0.599026
celegans 0.439604 . . . . . . . . . .0.438584 0.435819 0.436066 0.432261
jazz 0.444739 . . . . . . . . . .0.444848 0.444871 0.444206 0.444206
netscience 0.907229 . . . . . . . . . .0.835267 0.724015 0.708812 0.331957
email . . . . . . . . . .0.573333 0.573409 0.571018 0.572667 0.567423
polblogs 0.424107 . . . . . . . . . .0.423208 0.422901 0.421361 0.390395
pgpGiant1 0.883115 . . . . . . . . . .0.883085 0.882237 0.882532 0.880340
as-22jul2 0.671249 . . . . . . . . . .0.670677 0.666766 0.669847 0.665260
cond-mat3 0.744533 . . . . . . . . . .0.750367 0.751109 0.708775 0.413719
caidaRou4 0.846312 . . . . . . . . . .0.855651 0.851622 0.858955 0.843835
cnr-2000 0.912762 0.912783 0.912500 . . . . . . . . . .0.912777 0.912496
eu-2005 0.938292 . . . . . . . . . .0.936984 0.935510 0.936515 0.936420
in-2004 . . . . . . . . . .0.979844 0.979771 0.979883

TABLE VIII: Modularity of the partitions and the running
time for ACGGC and ACGGCi on different graphs

ACGGC ACGGCi
Q t Q t

jazz 0.444739 23.68 0.444871 31.51
celegans 0.439724 23.92 0.446973 77.25
netscience 0.907922 86.38 0.909400 96.55
as-22july06 0.671205 2,329 0.674992 5,801
cond-mat-2003 0.743594 9,371 0.746731 11,654

we use s = 16.

Iterative ACGGC (ACGGCi)

The ACGGCi works the same way as CGGCi: we use
initial algorithms few times until it gives us a growth of
modularity. This approach does not greatly increase the
running time because on every iteration we process fewer
nodes than the last iteration.

Table VIII shows that modularity of ACGGCi a bit
greater than the modularity of CGGCi, however it takes
a longer time.

The CGGCi can be used as the final algorithm for
ACGGCi, and vice versa. This approach is reasonable
because one of these algorithms can be more effective in
clustering of an intermediate partition P̃ than another algo-
rithm. We call this approach combined clustering scheme.

The test results of combined clustering scheme are shown
in Table IX and Fig. 4. The→ character means that the right
hand side is used as the final algorithm for the left hand side.

The combined clustering scheme with CGGCi and
ACGGCi on the first phase gives better results than CGGCi
and ACGGCi.

TABLE IX: Modularity of the partitions and the running time
for ACGGCi and CGGCi with different final algorithms

Q t
ACGGCi → RG10 0.446973 77.25
CGGCi → RG10 0.445008 55.29
ACGGCi → CGGCi → RG10 0.447324 89.96
CGGCi → ACGGCi → RG10 0.445660 112.49
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Fig. 4: Modularity of the intermediate partitions of
ACGGCi → CGGCi → RG10 on celegans, where i
is iteration number, circles are the intermediate partitions,
squares are CGGCi

TABLE X: Modularity of the partitions for different iterative
algorithms

ACGGCiI ACGGCiII CGGCi combined
karate 0.417242 0.417406 0.417242 0.417242
dolphins 0.525869 0.525869 0.525869 0.525869
chesapeake 0.262439 0.262439 0.262439 0.262439
adjnoun 0.303731 0.303504 0.303571 0.303970
polbooks 0.527237 0.527237 0.527237 0.527237
football 0.604266 0.604407 0.604429 0.604407
celegans 0.446964 0.446836 0.445442 0.447234
jazz 0.444871 0.444871 0.444871 0.444871
netscience 0.908845 0.888422 0.725781 0.907443
email 0.576778 0.577000 0.576749 0.577110
polblogs 0.424025 0.422920 0.423281 0.423996

Comparison of CGGCi and ACGGCi

Table X contains the results of testing 4 algorithms that
are compared by the average modularity, where ACGGCiI ,
ACGGCiII and CGGCi are the iterative versions of
ACGGCI , ACGGCII and CGGC10

10 , and the combined
is ACGGCi→ CGGCi→ RG10.

V. CONCLUSION
In this paper, we described a new adaptive modifications of

randomized algorithms for community detection in graphs.
In Section III we proposed Adaptive Randomized Greedy

algorithm which has more stable results and works better
than non-adaptive Randomized Greedy (see Tables I and III).

In Section IV we considered Adaptive Core Groups Graph
Clustering scheme, which has more qualitative and stable
results than its non-adaptive version (see Table VII). Also
we described an iterative version of ACGGC that works
better than ACGGC and CGGCi (see Tables VIII and X).

The results of testing of algorithms with parameter adap-
tation revealed a greater efficiency in comparison with their
non-adaptive versions in the sense they work equally well
for different classes of problems, while the previous versions
require manual setting of parameters for each specific task.

We think the results can be used for the development of a
transport network. Further, we plan to apply our algorithms
to analyze the traffic in a city with an extensive network of
roads. The described techniques are also suited for assessing
the quality of educational programs.
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