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Abstract— In this paper, a new consensus problem, termed
differentiated consensuses, is studied. This consensus problem
is that, in a system with multiple classes, consensus is targeted
for each class, which may be different among classes. Specifi-
cally, we investigate differentiated consensuses in a distributed
stochastic network system of nodes (or agents), where tasks,
classified with different priorities, are serviced. The network
system is assumed to have switched topology, noise and delay
in measurement, and cost on the topology. The goal is to
reach/maintain balanced (equal) load, i.e. consensus, across
the network and at the same time to meet the topology cost
constraint, both for every priority class. A control protocol is
proposed. We prove that the proposed control protocol is able
to meet the topology cost constraint and achieve approximate
consensus for each of the priority classes in the network.

I. INTRODUCTION

In recent years distributed network systems have been
increasingly used in different applications, such as those
studied in [1]–[6]. A lot of these networks have their nodes
(or agents) which work in parallel and operate collaboratively
to achieve a common goal (e.g., a sensor network that
collects the information about the environment, a computing
network that executes incoming tasks, etc.). Many of such
goals belong to or are closely related to the consensus
problem. In these cases, consensus algorithms have been
widely used (e.g., see [7]–[14]).

Consensus requires that there are control strategies or
protocols in place that can drive the states of all agents in
a system to the same steady-state values. Many computer
and communication systems, such as distributed computing
systems, sensor networks, and wireless mesh networks, also
require distributed controls and may be run under stochastic
environments. To achieve an optimal resource allocation in
these systems, a consensus requirement is often implied. For
example, a fundamental problem in distributed computing
is how to distribute load to different servers. This problem
is essentially a consensus problem; hence consensus control
strategies can represent a solution.

In all the studied consensus problems in the literature,
to the best of our knowledge, each only has one single
consensus objective. Or, in other words, they all only have
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the objective of achieving the same one consensus across
the network. However, in practice, many (network) systems
support more than one class where service differentiation
exists. For such a system, it is more natural to have consensus
for each class across the system, than having the same
consensus requirement for all classes. For example, in a
system, the deadline requirement for a class of urgent tasks
may be different than that for a class of normal tasks. This
calls for differentiated consensuses, which we define as a
consensus problem for systems with multiple classes, where
a consensus is targeted for each class and may be different
among classes.

In [15] the group consensus in multi-agent network is con-
sidered. Unlike group consensus, differentiated consensuses
has to be achieved throughout the whole network, not just
among certain group of agents and thus the consensus value
for every priority class has to be the same for every agent.

In this work, we investigate differentiated consensuses in
a distributed stochastic network with priorities and topology
cost constrains. In this network, tasks are classified with
priorities. At each node or agent, tasks with the same priority
level share a first-come-first-served (FCFS) queue. The node
is work-conserving, and tasks with a higher priority are
served before those with a lower priority. (The randomized
rule of a service for tasks with different priorities is consid-
ered in [16].) The network topology is assumed to possibly
switch over time (e.g. due to the mobility of agents), and
the information about the states of neighbor nodes is to be
obtained with noise and delay. Depending on the priority
level of tasks in a queue we choose a specific network
topology that has to be used at the current time and satisfies
the topology cost constraints. We propose a control protocol
and prove its ability to achieve balanced (equal) load, i.e.
consensus, for every priority class across the network (proofs
for any specific classes are based on the previous result [17])
and at the same time to meet a required topology cost
constraint.

It is important to say, that in many works (e.g. [18])
about achieving consensus with the control protocol authors
consider a model of network connections where to reach
a consensus they often do not use all the available com-
munication links between agents, but only some subset of
them. Basically, an important question is what is the optimal
way to choose communication links in the protocol. One
of the options is the minimization of transients. Certainly,
if one uses all the connections, then ceteris paribus it will
minimize the time. However, it turned out that in many
cases it is sufficient to use a subset of links to remain

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

978-1-4673-6088-3/14/$31.00 ©2014 IEEE 6969



strong connectedness and maximize the Fiedler eigenvalue
of the graph Laplacian matrix (the absolute value of the
second eigenvalue of Laplacian matrix) [13]. Besides, from
a practical point of view it is also important to consider
the question about the cost of interactions. Suppose, that
the values of elements of an adjacency matrix of a network
graph correspond to the cost of using a various links. In
this paper, we propose a solution that, with a strong network
connectivity through the randomization use of links, allows
to meet the cost constraints set in the problem statement. The
results show that with a significant difference in the cost of
communication between different segments of the network
there is a “clustering of nodes”: within the cluster consensus
is achieved faster, but between clusters — with significant
delay, which leads to the phenomenon of “differentiation” of
consensus on clusters.

II. PROBLEM STATEMENT

Consider a dynamic network system of n agents, which
collaborate with each other, and a set of tasks with different
priorities, which have to be executed in the system. Tasks
came to possibly different agents of the system in different
discrete time instants t = 0,1, . . .. Agents process incoming
tasks in parallel. Tasks can be redistributed among agents
based on a feedback. Note that a task cannot be interrupted
after it is being processed by an agent, i.e. the system is
non-preemptive.

Without loss of generality, agents in the system are num-
bered and let i be the number of an agent, i = 1, . . . ,n.
N = {1, . . . ,n} denotes the set of agents in the network
system. The network topology switches over time (e.g., due
to the mobility of agents). Let the dynamic network topology
be modeled by a sequence of digraphs {(N,Et)}t≥0, where
Et denotes the set of edges at time t. We associate a weight
ai, j

t > 0 at time t with each edge ( j, i) ∈ E, ai, j
t > 0 if agent

j is connected with agent i and ai, j
t = 0 otherwise. ai, j

t > 0 is
the cost of maintaining communication between agent j and
agent i. Here and below, an upper index of agent i is used
as the corresponding number of an agent (while not as an
exponent). Matrix At = [ai, j

t ] is an adjacency matrix of the
graph at time t. Denote GAt as the corresponding graph.

To introduce some properties of the network topology, the
following definitions from the graph theory will be used.
Define the weighted in-degree of node i as the sum of i-th
row of matrix A: di(A) = ∑

n
j=1 ai, j; D(A) = diag{di(A)} is

the corresponding diagonal matrix; dmax(A) is the maximum
in-degree of graph GA; L (A) = D(A)−A is the Laplacian
of graph GA. Let ·T stands for a vector or matrix transpose
operation; ||A|| is the Euclidian norm: ||A||=

√
∑i ∑ j(ai, j)2;

Re(λ2(A)) is the real part of the second eigenvalue of matrix
A ordered by absolute magnitude; λmax(A) is the maximum
eigenvalue of matrix A. Digraph GB is said to be a subgraph
of the digraph GA if bi, j ≤ ai, j for all i, j ∈ N. Digraph GA is
said to contain a spanning tree if there exists a directed tree
Gtr = (N,Etr) as a subgraph of GA.

We suppose that tasks (jobs) are classified with different
priorities k = 1, . . . ,m. A smaller priority number means

higher priority such that k = 1 is the highest priority and
k = m is the lowest priority of task. When two tasks with
different priorities should be served by the agent, the one
with high priority will be served first. The execution time of
a task varies from one agent to another and depends on the
productivity of an agent. We assume, at each time, the same
agent has the same productivity capability for each class.

Particularly, the behavior of an agent i ∈ N is described
by two characteristics:
• the m-vector of queue lengths of tasks qi

t = [qi,k
t ] at time

t whose kth element is defined by the amount of tasks
with priority k = 1, . . . ,m;

• the productivity pi,k.
In addition, for all i ∈ N, t = 0,1, . . . ,T , the dynamics of

the network system is as follows

qi
t+1 = qi

t − pi,k(t,i)ek(t,i)+ zi
t +ui

t (1)

where
k(t, i) = min

k
{k : qi,k

t > 0}1 (2)

and ek are unit basis vectors in Rm (kth element equals 1
and others equal 0); zi

t is a vector whose kth element is
the amount of new system tasks received through agent i at
time instant t with priority k; ui

t ∈ Rm is a vector of control
actions consisting of redistributed tasks ui,k

t (parts of system
tasks previously received through other agents) with priority
k to agent i at time instant t, which could (and should) be
chosen based on some information about queue lengths q j

t
and productivities p j of neighbors j ∈ Ni

t , where Ni
t is a part

of set { j ∈ N : ai, j
t > 0}.

Now we define the cost of a chosen topology {Ni
t , i ∈ N}

C({Ni
t , i ∈ N}) = max

i∈N
∑
j∈Ni

t

ai, j
t . (3)

We will consider control protocols that satisfy some spe-
cific constraint on the cost of the topology for each task
priority class.

Assume, that pi,k 6= 0, ∀i ∈ N, k ∈ {1, . . . ,m}. It is not
so hard to prove that from all possible options for all tasks
redistribution the minimum operation time of the system is
achieved when the load (defined as the ratio of the queue
length over the productivity) is equalized throughout the
network (see, e.g. [14]).

The goal is to maintain balanced (equal) load across the
network for every priority class, and, at the same time, to
meet the cost constraint requirement.

At this setting we can consider the consensus problem for

states xi
t of agents, where xi,k

t =
qi,k

t
pi,k . We emphasize, that xi

t
is a state vector, consisting of states of m classes.

When there is no consensus between agents’ states, it
is naturally to use a redistribution protocol over time to
ensure balanced load across the network (e.g., in order to
increase the overall throughput of the system and to reduce
the execution time).

1This implicitly specifies the rule of priority.
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We assume, that to form the control strategy ui
t each

agent i ∈ N, if the set Ni
t is not empty, has an information

about its own productivity pi and queue state qi
t , about

neighbors’ productivities p j
t , j ∈ {i} ∪ Ni

t , and noisy and
possibly delayed observations about neighbors’ states

yi, j
t = x j

t−si, j
t
+wi, j

t , j ∈ Ni
t , (4)

where wi, j
t is a noise vector, 0 ≤ si, j

t ≤ s̄ are integer-valued
delays, and s̄ is a maximum of possible delays.

III. TOPOLOGY COST CONSTRAINTS AND RANDOMIZED
TOPOLOGY DECOMPOSITION

Let (Ω,F ,P) be the underlying probability space corre-
sponding to the sample space, the collection of all events, and
the probability measure respectively, E be a mathematical
expectation symbol.

We assume, that graphs GAt , t = 1, . . . are i.i.d. (indepen-
dent identically distributed), i.e. the random events of appear-
ance of edge ( j, i) are independent and identically distributed
for the fixed ( j, i). Let ai, j

av define mean values (mathematical
expectations) of ai, j

t , and Aav is the correspondence adjacency
matrix.

Assume that the following condition is satisfied:
• A1. Graph GAav has a spanning tree.
Tasks has different priorities and, for each priority, the

maximum cost of the network graphs that could be used is
defined. For each time instant t, consider m ways (which may
be different and each corresponds to one class) to select the
topology subgraphs G k

t : G m
t ⊂G m−1

t ⊂ . . .⊂G 1
t of the graph

GAt , which allows to use redistribution protocols for tasks
with priority k, k = 1, . . . ,m. Let Bk

t be the corresponding
adjacency matrices. Note that one of the possible ways of
choosing G k

t is to use GAt for all k.

A. Topology Cost Constraints and Randomized Topology

Let ck, k = 1, . . . ,m, stand for the maximum average cost
of the network links for a task with kth priority. Assume
c1 ≥ c2 ≥ . . .cm > 0.

Definition 1: We will say that network topology decom-
position {G k

t } satisfies average cost constraints {ck} if for
every priority class k

dmax(Bk
av) = Edmax(Bk

t ) = Emax
i∈N

∑
j∈Ni,k

t

bi, j,k
t ≤ ck, (5)

where Ni,k
t is the neighbors set of agent i at time t formed

in accordance with the topology G k
t .

Theorem 1: If Assumption A1 holds then for any av-
erage cost constraints {ck}, ck > 0, there exists network
topology decomposition {G k

t } that satisfies the averaged cost
constraints {ck} and for which all averaged graphs G k

av have
spanning trees.

Proof: We fix average cost constraints {ck}, ck > 0.
Now let us give a constructive proof.

For all i ∈ N we have

di(Aav) = E ∑
j∈Ni

t

ai, j
t > 0,

since graph GAav has a spanning tree.
Consider the following method of subgraph G k

t construc-
tion.

1. Let k = 0. Choose G 0
t = GAt and r0 = maxi∈N di(Aav).

2. Take k := k+1.
3. If ck ≥ rk−1 then we choose all edges ( j, i) from G k

t
to form a topology graph G k

t . Else we choose edges ( j, i)
from G k

t with probability ck
rk−1

to form a topology graph G k
t .

Compute
rk = Emax

i∈N
∑

j∈Ni,k
t

bi, j,k
t .

4. If k < m repeat Steps 2–4.
By virtue the construction method for subgraphs G k

t = GBk
t

we have
Emax

i∈N
∑

j∈Ni,k
t

bi, j,k
t ≤ ck.

Hence constraints (5) satisfy.
For any k ∈ {1, . . . ,m} and for all i, j ∈ N if ai, j

av > 0
then bi, j,k

av > 0 by virtue the construction method. Hence the
averaged graph G k

av has spanning tree when graph GAav has
a spanning tree. This completes the proof.

Essentially, the considered in the proof approach for
generating the network topology decomposition could be
called randomized topology since random links arise by our
will.

In practice, a possibly more useful way for network topol-
ogy decomposition is to cluster agents (nodes) into groups
with “cheap” internal communications and to randomize
interaction rules between groups.

B. Example
Consider an example of network of 5 agents which are

divided into two clusters: {1, 2} {3, 4, 5} (Fig. 1). Assume,
that the cost of maintaining communication between agents
equals 9 for communications 2-4 and 4-2, and equals 1
for other communications. We suppose that tasks have two
priorities, i.e. k = 2.

Fig. 1. The network topology.

The adjacency matrix of the network is as follows

At =


0 1 0 0 0
1 0 0 9 0
0 0 0 0 1
0 9 1 0 0
0 0 0 1 0

 . (6)

In this case C({Ni
t , i ∈ N}) = 10. We set {ck}k=1,2 =

{10,1.5}. For tasks with the higher priority we can use the
original topology B1

av = Aav = At
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For tasks with the priority 2 we can use the following
randomization of interaction rules between agents: links 2-4
and 4-2 appear with probability 1

18 . Thus, the corresponding
adjacency matrix is

B2
av =


0 1 0 0 0
1 0 0 1

2 0
0 0 0 0 1
0 1

2 1 0 0
0 0 0 1 0

 , (7)

where the sum of elements in rows is no more than c2 = 1.5.

IV. CONTROL PROTOCOL

In [14], [17] properties of the control algorithm, called
local voting protocol, for load balancing problem of a
stochastic network were studied. The control value of the
local voting protocol for each agent was determined by the
weighted sum of differences between the information about
the state of the agent and the information about its neighbors’
states.

Let’s consider a similar family of protocols as follows. For
each k = 1, . . . ,m with a network topology decomposition
{G k

t } for cost constraints {ck}, ck > 0:

ui,k
t = γ pi,k

∑
j∈Ni,k

t

bi, j,k
t (yi, j,k

t − xi,k
t ), (8)

where γ > 0 is a step-size of the control protocol, Ni,k
t ⊂ Ni

t
is the neighbor set of agent i at time t formed in accordance
with the topology G k

t . The system works in such a way that
within each priority tasks are distributed evenly.

The dynamics of the closed loop system with protocol (8)
is as follows

xi
t+1 = xi

t − ek(t,i)+ z̃i
t + γ ∑

j∈Ni
t

(yi, j
t −xi

t)
Tbi, j

t , i ∈ N, (9)

where z̃i
t and bi, j

t are vectors of z̃i,k
t = zi,k

t /pi,k and bi, j,k
t ,

k = 1, . . . ,m.
Let xi

t ≡ 0, i ∈ N for −s̄≤ t < 0. If s̄ > 0 we “artificially”
add ns̄ new agents to the current network topology. At each
time instant t the new “fictitious” agents have states which
are equal to the corresponding states of the “real” agents at
previous time instants: t−1, t−2, . . . , t− s̄.

For each k = 1, . . . ,m denote x̄k
t ∈ Rñ, ñ = n(s̄ + 1), as

an extended state vector for t = 0,1, . . . which consists of
x1,k

t , . . . ,xn,k
t ,x1,k

t−1, . . . ,x
n,k
t−1, . . . , . . . ,x

n,k
t−s̄, i.e. it includes all the

components with all kinds of delays not exceeding s̄. Intro-
duce the extended ñ× n̄ matrix B̄k

t of the control protocol (8)

which consists of zeros at all places except entries b̄i, j+nsi, j
t ,k

t ,
i ∈ N, j ∈ Ni,k

t in n first lines which are equal to bi, j,k
t and

b̄i,i−n,k
t = 1/γ in next ns̄ lines, i= n+1, . . . , ñ. Due to the view

of the Laplacian matrix L (B̄k
t ) we can rewrite the dynamics

of the system in the following vector-matrix form:

x̄k
t+1 = x̄k

t − γL (B̄k
t )x̄

k
t + γ

(
wk

t
0

)
+

(
fk
t
0

)
, (10)

where m-vectors wk
t and fk

t consist of elements of cor-
responding vectors ∑ j∈N1

t
(w1, j

t )Tb1, j
t , . . . ,∑ j∈Nn

t
(wn, j

t )Tbn, j
t ,

and −ek(t,1)+ z̃1
t , . . . ,−ek(t,n)+ z̃n

t .

V. APPROXIMATE CONSENSUS

A. Assumptions

Assume that the following additional conditions are satis-
fied:
• A2. a) For all i ∈ N, j ∈ Ni

t , observation noise vec-
tors wi, j

t are zero-mean, independent identically dis-
tributed (i.i.d.) random vectors with bounded variances:
E(wi, j

t )2 ≤ σ2
w.

b) For all i ∈ N, j ∈ Ni
max = ∪tNi

t ,k = 1, . . . ,m the
appearance of “variables” edges ( j, i) in graph G k

t is
independent random event (i.e. matrices Bk

t are i.i.d.
random matrices). For all i ∈ N, j ∈ Ni

t ,k = 1, . . . ,m
weights bi, j,k

t in the control protocol are independent
random variables with expectations: Ebi, j,k

t = bi, j,k, and
bounded variances: E(bi, j,k

t −bi, j,k)2 ≤ σ2
b,k.

c) For all i ∈ N, j ∈ Ni there exists a finite value s̄ ∈N:
si, j

t ≤ s̄ with probability 1, and integer-valued delays si, j
t

are i.i.d. random variables taking value l = 0, . . . , s̄ with
probability pi, j

l .
d) For all k = 1, . . . ,m, i∈N, t = 0,1, . . . vectors fk

t from
(10) are i.i.d. random vectors with expectations: E f i,k

t =
f̄ k, and variances: E( f i,k

t − f̄ k)2 = σ2
f ,k.

Additionally, all these random variables and vectors are
mutually independent.
In general, if Assumptions A2.b and A2.c hold, the
averaged matrixes B̄k

av = EB̄k
t , k = 1, . . . ,m, consist of

elements

b̄i, j,k
av =

 pi, j mod s̄
j÷s̄ bi, j mod s̄,k, if i ∈ N, j = 1, . . . , ñ,

1/γ, if i = n+1, . . . , ñ, j = i−n,
0, otherwise.

(11)
Here, the operation mod is a remainder of division,
and ÷ is a division without remainder.
Note, that if s̄ = 0, then B̄k

av = Bk
av.

• A3. For the step-size of the control protocol γ > 0 the
following conditions are satisfied:

γ ≤ min
1≤k≤m

1
dmax(B̄k

av)
(12)

and for any k = 1, . . . ,m

δk = Re(λ2(B̄k
av))− γλmax(Qk)> 0 (13)

where Qk = E(L (B̄k
av)−L (B̄k

t ))
T(L (B̄k

av)−L (B̄k
t )).

B. Averaged Model

Let x?0 be the weighted average vector of the initial states
x?0 = 1

n ∑
n
i=1 xi

0 and {x?t } is the trajectory of the averaged
system

x?t+1 = x?t + f̄, (14)

where f̄ is the vector of mean values from the Assump-
tion A2.d.
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C. Differentiated Consensuses

Theorem 2: Let average cost constraints {ck}, ck > 0, be
satisfied for some topology subgraphs G k

t : G m
t ⊂ G m−1

t ⊂
. . .⊂ G 1

t of graphs GAt , with corresponding adjacency matri-
ces Bk

t .
If E||xi

0||2 < ∞, i ∈ N, Assumption A1 holds for graphs
G k

av, Assumption A2 holds for above-described vectors and
matrixes, and Assumption A3 holds for step-size γ of control
protocol (8) then for trajectories of closed-loop systems (9)
and (14) the following inequality asymptotically holds in
mean square sense:

lim
t→∞

E||xi
t −x?t ||2 ≤

m

∑
k=1

1
γ

nσ2
f ,k

δk
+ γ

2σ2
w(n

2σ2
b,k + ||B̄k

av||2)
δk

,

(15)
i.e. states of all agents approximately synchronize with
trajectory x?t .

Basically, an approximate synchronization of agents’ states
means an approximate load balancing. Note, if the system
does not receive new tasks of priority k, then fk

t = 0, σ2
f ,k = 0,

and we can get a semi-consensus for the distribution of tasks
of priority k when γ is chosen sufficiently small.

Proof: Note, that due to the definition and Assump-
tion A2b,c we have: L (B̄k

av) = EL (B̄t). Moreover, if As-
sumption A1 is satisfied then 0 < Re(λ2(Bk

av)) and bound
Re(λ2(Bk

av)) < 1 follows by the conditions (12) (see, e.g.
[13]). All conditions of Theorem 1 from [17] satisfy under
conditions of the Theorem 2. Hence for any k = 1, . . . ,m,
when we consider the sub-statespace including only tasks
with priority k, we have

lim
t→∞

E(xi,k
t − x?,kt )2 ≤ ∆k

γδk
, (16)

where ∆k = nσ2
f ,k +2σ2

wγ2(n2σ2
b,k + ||B̄k

av||2). Summing (16)
for all k = 1, . . . ,m we derive the inequality (15) which is
the mail result of Theorem 2.

At this point, we highlight that, the proof of Theorem 2
shows that queues with different priorities achieve m different
consensus levels separately. This behavior is termed as
differentiated consensus.

VI. SIMULATIONS

We return to the example in Section III.

Fig. 2. Evaluation of queue lengths in the example for zik
t = 0, t > 1, i =

1, . . . ,5,k = 1,2

Fig. 3. Evaluation of queue lengths in the example for zik
t = 0, t > 0, i >

1,k = 1,2 and z11
t = 0, z12

t are random values from set {0, 1, 2, 3}

Let’s assume that s̄ = 1 and each nonzero link with weight
equals 1 appears in At with probability 2

3 without delay, and
with probability 1

3 with delay.
In this case, we have

B̄1
av =



0 2
3 0 0 0 0 1

3 0 0 0
2
3 0 0 9 0 1

3 0 0 0 0
0 0 0 0 1 0 0 0 0 1

3
0 9 2

3 0 0 0 0 1
3 0 0

0 0 0 2
3 0 0 0 0 1

3 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0


.

B̄2
av =



0 2
3 0 0 0 0 1

3 0 0 0
2
3 0 0 1

2 0 1
3 0 0 0 0

0 0 0 0 1 0 0 0 0 1
3

0 1
2

2
3 0 0 0 0 1

3 0 0
0 0 0 2

3 0 0 0 0 1
3 0

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0


,

and we can compute

Re(λ2(B̄1
av)) = 0.2258, λmax(Q1) = 1.2222,

Re(λ2(B̄2
av)) = 0.4031, λmax(Q2) = 2.3341.

For γ = 0.1 conditions (12), (13) are satisfied.
We suppose, that pi,k = 1 for all i ∈ N, k = 1,2, and new

tasks are feeded into the system only at the beginning so that

z1
1 =

(
120
190

)
, z2

1 =

(
0

110

)
, z3

1 =

(
180
20

)
,

z4
1 =

(
0

130

)
, z5

1 =

(
0

70

)
.

Note, that measurements yi, j,k
t , i, j ∈ N, k = 1,2, were made

with Gaussian zero-mean noise with variance 1.
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The typical result of behaviors of queue lengths of tasks
with different priorities is shown in Fig. 2. At the beginning
when t ≤ 60 all agents proceed only tasks with higher
priorities (in the example with priority k = 1). Tasks with
second priority redistribute into two separate clusters since
communication links 2− 4 and 4− 2 is “expensive” and
turn on rarely (one times per 18 iterations in average).
However, the queue lengths of tasks with second priority do
not decrease while t < 60. After t > 60, when tasks with first
priority are already done, tasks with second priority begin
processing.

Fig. 3 illustrates the case, when new tasks with priority k =
2 come into the system over time. Specifically, we assume
that zi2

t takes value 0 with probability 1/2 and, if zi2
t 6= 0, then

zi2
t equals 1, 2 or 3 with equal probability.

VII. DISCUSSION

To this point, it is worth highlighting that the above-
described and analyzed consensus problem, i.e. differentiated
consensuses, arises naturally in many practical applications.
One application area is wireless sensor networks.

Consider a wireless sensor network. The overall goal of
the network is to collect information about the environment
and send it to the sink. In this sensor network, sensors are
clustered. In each cluster, there is one cluster head sensor
whose main responsibility is to forward the information
collected by other sensors in the cluster to the sink. In
this way, we can divide sensors in the network into two
groups. The first group is formed by cluster heads. These
head sensors may not collect information directly, but they
are typically “connected with” (or are one communication
hop away from) the sink and forward information from
other sensors in the cluster to the sink. Head sensors may
communicate with each other. One cluster head may use
other head sensors as relays to communication with the
sink, if the communication cost using other head sensors is
“cheaper” then direct communication with the sink. The sec-
ond group of sensors are those remaining sensors that collect
information about the environment. A sensor in the second
group can communicate only with the corresponding cluster
head sensor. In other words, sensor in the second group send
the collected information to the first group sensors, and then
the first group sensors forward the information to the sink.

In this network, there are two types of communication
tasks. One is for a second group sensor to send the collected
information to the corresponding head sensor. Another is for
the head sensor to forward the received information to the
sink. In this scenario, depending on the chosen policy, the
first type may be given a lower priority, while the second type
is given a higher priority. In addition, if different types of
information are collected by sensors, for the corresponding
transmission / communication task of each information type,
a different priority level may be given.

VIII. CONCLUSION

In this paper we introduced a new consensus problem,
called differentiated consensuses. Specifically, we considered

a distributed stochastic network with priorities and topology
cost constraints. For this network, we presented the condi-
tions of achieving m (possibly different) consensus levels
separately under switched topology and noise and delay in
measurement. There were two simultaneous goals in the
network: to maintain the balanced load across the network for
every priority class and to meet the topology cost constraint.
A control protocol was proposed and it was proved with
the ability in achieving differentiated consensuses under
topology cost constraints.
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