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Abstract— In this paper application of the stochastic approx-
imation algorithm with randomized differences to the minimum
tracking problem for the non-constrained optimization is con-
sidered. The upper bound of mean-squared estimation error
is derived in the case of once differentiable functional and
almost arbitrary observation noise. Numerical simulation of the
estimates stabilization for the multidimensional optimization
with unknown but bounded deterministic noise is provided.
Stabilization bound has sufficiently small level comparing to
significant level of noise.

I. INTRODUCTION

Stochastic approximation was introduced in a 1951 ar-

ticle in the Annals of Mathematical Statistics by Robbins

and Monro [1] and was further developed for optimization

problems by Kiefer and Wolfowitz [2]. It originally appeared

as a tool for statistical computations, it was further developed

to the separate field of control theory. Now this topic has

wide variety of applications in such areas as adaptive signal

processing, adaptive resource allocation in communication

networks, system identification, adaptive control, etc.

The applications of stochastic approximation algorithms

arise in the field of adaptive systems. SA algorithms have

properties allowing to track typical behavior of a system in

uncertain environment. The algorithm analyzed in this article

is also very computationally efficient and needs very small

amount of memory. It makes the algorithm applicable in

highly dynamic environment.

The properties mentioned above make the SA algorithms

applicable in such a new field as soft computing. They are

used there for ”parameter tuning.” Notable among these are

algorithms for training neural networks and algorithms for

reinforcement learning, a popular learning paradigm for au-

tonomous software agents with applications in e-commerce,

robotics, etc. They are also widely applied in economic

theory, providing a good model for collective phenomena,

when the algorithm models behavior of individual bounded

rational agents.

Non-stationary optimization problems can be described

in discrete or continuous time. In our paper we consider

only discrete time models. Let f(x, n) be a functional we

are optimizing at the moment of time n (n ∈ N). In [3]

the Newton method and gradient method are applied to

problems like that, but they are applicable only in case of

two times differentiable functionals and l < ∇2f(x, n) <
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L. Both methods require the possibility of direct gradient

measurement in arbitrary point.

Algorithms of the SPSA-type with one or two measure-

ments per each iteration appeared in papers of different

researchers in the end of the 1980s [4], [7], [5], [6]. These

algorithms are known for their applicability to problems with

almost arbitrary noise [8], [9]. Moreover, the number of

measurements made on each iteration is only one or two

and is independent from the number of dimensions d of the

state space. This property sufficiently increases the number

of function evaluations needed for the algorithms iteration in

multidimensional case (d >> 1) while the asymptotic rate of

convergence is not changed. Detailed review of development

of such methods is provided in [8], [10].

Stochastic approximation algorithms were initially proven

in case of the stationary functional. The gradient algorithm

for the case of minimum tracking is provided in [3], how-

ever the stochastic setting is not discussed there. Further

development of these ideas could be found in paper [11],

where conditions of drift pace were relaxed. The book [12]

uses the ordinary differential equations (ODE) approach to

describe stochastic approximation. It addresses the issue

of applications of stochastic approximation to tracking and

time-varying systems in a following way: it is proven there

that when the step size goes to zero in the same time as

the number of the algorithm’s iterates over a finite time

interval tends to infinity, then the minimum estimates tend

to true minimum values. This is not the case here, since

we consider the number of iterates per unit of time to be

fixed. In this paper we consider an application of simul-

taneous perturbation stochastic approximation algorithm to

the problem of tracking of the functional minimum. SPSA

algorithm does not rely on direct gradient measurement and

is more robust to non-random noise than gradient-based

methods mentioned earlier. The closest case was studied in

[13], but we do not use the ODE approach and we establish

more wide conditions for the estimates stabilization. In the

following section we will give a problem statement that

is more general than in [3], [11], in the third section we

provide the algorithm, in the fourth section stabilization of

the algorithm’s estimates in the sense of the existence of

the asymptotic upper bound for the mean squared estimation

error is proved, then in the last section a numerical example

illustrating stabilization is presented.



II. PROBLEM STATEMENT

Consider the problem of minimum tracking for an aver-

aged risk functional:

f(x, n) = Ew{F (x, w, n)} → min
x

, (1)

where d, p ∈ N, x ∈ R
d, w ∈ R

p, n ∈ N, w is defined

on the basic probability space {Ω,F , P}, Ew{·} — mean

value conditioned on the minimal σ-algebra in which w is

measurable.

The goal is to estimate θn — minimum point of functional

f(x, n), changing over time: θn = argminxf(x, n).
Let us assume that on the iteration we can measure:

yn = F (xn, wn, n) + vn, (2)

where xn is an arbitrary measurement point chosen by algo-

rithm, wn is a random value, that represents non-controlled

uncertainty and vn is an observation noise.

Time in our model is discrete and implemented in number

of iteration n.

III. ALGORITHM

In this section we introduce a modification of SPSA

algorithm provided by H.-F. Chen et al [14], which takes one

perturbed and one non-perturbed measurement on each step.

In this paper we try to illustrate the possibility of using such

an algorithm for minimum tracking both theoretically by

proving its convergence when certain conditions are satisfied

and practically by providing a numerical example.

Let the perturbation sequence {∆n} be an independent

sequence of Bernoulli random vectors, with component val-

ues ±1/
√

d with probability 1
2 . Let vector θ̂0 ∈ R

d be the

initial estimation. We will estimate a sequence of minimum

points {θn} with sequence {θ̂n} which is generated by the

algorithm with fixed stepsize α ∈ R and parameter β ∈ R

α, β > 0, which is applied to the observations model (2) :










x2n−1 = θ̂2n−2, x2n = θ̂2n−2 + β∆n,

θ̂2n = θ̂2n−2 − α
β ∆n(y2n − y2n−1), θ̂2n−1 = θ̂2n−2.

(3)

IV. STABILIZATION OF ESTIMATES

To analyze the quality of estimates we will apply the

following definition:

Definition A sequence of mean-squared estimation errors

E‖θ̂n − θn‖2 has upper bound L > 0 if

lim
n→∞

(E‖θ̂n − θn‖2)1/2 ≤ L.

This definition is similar to the definition of Lp-stability

in the work of Guo [15] (p = 2).

Further we will assume that the following conditions are

true.

(A) Function f(·, n) is strictly convex for each n and some

µ ∈ R, µ > 0: 〈∇f(x, n), x − θn〉 ≥ µ‖x − θn‖2.
(B) Gradient ∇F (·, w, n) is Lipschitz ∀n, ∀w with param-

eter M ∈ R, M > 0:

‖∇F (x, w, n) −∇F (y, w, n)‖ ≤ M‖x − y‖.

(C) Local Lebesgue property for the function

∇F (x, w, n): ∀x ∈ R
d ∃ neigbourhood Ux such

that ∀x′ ∈ Ux ‖∇F (x, w, n)‖ < Φx,n(w) where

Φx,n(w) : R
p → R is integrable by w:

∫

Rp Φx(w)dw < ∞
(D) Boundedness of the gradient of F (x, w, n) in the

minimum point, with F1, F2 ∈ R, F1 > 0, F2 > 0:

E‖∇F (θn, wn, n)‖ ≤ F1, E‖∇F (θn, wn, n)‖2 ≤ F2;
Let us denote expectation conditioned on random

values θ1 . . . , θn, θ̂1, . . . , θ̂n as En{·}, conditioned on

θ1 . . . , θn, θn+1, θn+2, θ̂1, . . . , θ̂n as Ēn{·}.

Drift satisfies:

(E) In case of random drift,

θn−1 − En−1θn ≤ A0,

En−1‖θn − θn−1‖ ≤ A1,

En−1‖θn − θn−1‖2 ≤ A2,

En−2(θn − θn−1)
T (θn−1 − θn−2) ≤ A3.

If drift is not random, then

θn−1 − En−1θn ≤ A0,

‖θn − θn−1‖ ≤ A1 = A2 = A3.

(F) Constraint on the function values’ change in arbitrary

point x with Cj
i ∈ R for i = 1, 2, j = 0, 1, 2:

En{F (x, wn, n)−F (x, wn−1, n−1)} ≤ C1
1‖x−θn−1‖+C0

1 ,

En(F (x, wn, n) − F (x, wn−1, n − 1))2 ≤

C2
2‖x − θn−1‖2 + C1

2‖x − θn−1‖ + C0
2 .

(G) The observation noise vn satisfies: |v2n−v2n−1| ≤ σ1,
or if it has statistical nature then: E2n−1(v2n − v2n−1)

2 ≤
σ2, E2n−1|v2n − v2n−1| ≤ σ1.

Here we should make several notes:

1). Sequence {vn} could be of non-statistical but unknown

deterministic nature. 2). In the typical case of f(x, n) =
F (x, w, n) both constants F1, F2 from the condition (D)

are equal to 0. 3). Constraint (E) allows both random and

deterministic drift. Similar condition is introduced in [3], it

is slightly relaxed in [11]. In [9] the following drift model

is proposed:

(E′) θn = D1θn−1 + D2 + ξn,

where ξn is random value. If the matrix A1 is known it is

easy to include it directly to the algorithm. For D1 = I
(unit diagonal matrix) condition (E) is more general than

(E’) with A0 = −D2 − Eξn, A1 = ‖D2‖ + E‖ξn‖, A2 =
‖D2‖2 + 2‖D2‖E‖ξn‖ + E‖ξn‖2.

In this paper we will only consider drift constraints in

the form (E). Existence of finite asymptotically effective

bound for the estimates under the condition (E) implies the

applicability of the algorithm proposed to a wide variety of

problems.

(H) We will further assume that random values ∆n are

not dependent on θk, wk , θ̂0 and on vk (if they are assumed



to have random nature) for k = 1, 2, . . . , 2n and random

sequences {θk} and {wk} are independent.

Let us define K2 = M2 + 2
C1

1
M

β +
C2

2

β2 , k = α2K2 −
2αµ

d +1, H2 = βM2 +2MF1+C1
1M +2

M(σ1+C0

1
)+C1F1

β +
2σ1C1

1
+C1

2

β2 , h = α2(H2 + 4A0K2) +α(βM − 8µA0

d )+ 4A0,

L2 = β2 M2

4 +βF1M +F2 +C0
1M +σ1M +2

C0

1
F1+σ1F1

β +
C0

2
+σ2+2σ1C0

1

β2 , l = α2(L2 + 2A1H2 + 2(A2 + A3)K2) +
α(2βA1M − 4(A2 + A3)

µ
d ) + 2(A2 + A3).

Theorem 4.1. Assume that conditions (A)-(H) on func-

tions f , F and ∇F and values θn, θ̂n, vn, wn, yn and ∆n are

satisfied. The constants α, β > 0 are chosen as 0 < k < 1.

Then the sequence of mean-squared estimation errors

provided by the algorithm (3) have upper bound L:

limn→∞ (E‖θ̂n − θn‖2)1/2 ≤ L,

L =
h

2(1 − k)

(

1 +

√

1 +
4l(1 − k)

h2

)

,

and they can be bounded as

E‖θ̂n − θn‖2 ≤ (k + ǫ/2)n‖θ̂0− θ0‖2 +(1− (k + ǫ/2)n)L2,

where ǫ = h2

2l (
√

1 + 4l(1 − k)h−2 − 1). Furthermore, the

following property holds:

P{∀n ∀λ > 0 ‖θ̂n−θn‖2 ≤ L2+(k+ǫ/2)n(‖θ̂0−θ0‖2+λ)} ≥

≥ 1 − E‖θ̂0 − θ0‖2

λ
.

See the proof of Theorem 4.1 in the appendix. Conditions

(A)–(D),(G)–(H) are standard for SPSA algorithms [8].

Conditions (E),(E’), (F) are related to drift. See the proof

of Theorem 4.1 in appendix.

The next result is inspired by the work of L. Guo and

L. Ljung [17] where the performance of linear tracking de-

pending on the step-size parameter is described. Least mean

squares, recursive least squares and Kalman-type algorithms

are chosen for analysis. The authors demonstrate a trade-off

in performance of the algorithms between the sensitivity of

the algorithm estimates to noise and the size of the drift. In

this paper, we consider a nonlinear case.

Theorem 4.2. Assume the conditions of the Theorem 4.1

hold.

Then following asymptotic expansion holds:

L =
2A0

µα
+ 2(

βM

4µ
− 2A0) −

A0K2

µ2
+

1

4A0
+

A2 + A3

4A0µ
+

+α
(

(32A2
0µ)−1βM(µ2 + A2 + A3 − 1)+

+(16µ2A0)
−1(4µ3+4µ2(1−A2−A3)+K2µ−K2(A2+A3))−

−K2(βM + 2A0)

2µ2
+

H2 + 4A0K2

µ

)

+ o(α) (α → 0),

where H2 = 2MF1 + C1M + βM
2 + 2M(σ1+D1)+C1F1

β +
2σ1C1+C2

2

β2 and K2 = M2 + 2C1M
β +

C1

2

β2 .

The result of the Theorem 2 shows that to make an effect

of drift smaller, α should be made bigger (see the first term).
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Fig. 1. Case of 2-dimensional drift for 0.5‖x− θn‖2 + vn, x, θn ∈ R
2.

There were 100 runs of the algoritms performed, each with 100 iterations

starting from the point θ̂0 = (10.0, 10.0)T . The solid lines are minimal,

average and maximal squared estimation error ‖θ̂n − θn‖2.. Line marked
with circles is the theoretical bound according to the first statement of the
Theorem 4.1, line with triangles is the probabilistic 50%-boundary and line
marked with stars is 95-% boundary, according to the second statement of
the Theorem 4.1.

Also, noise level is a constituent of H2 which is multiplied by

α, making effect of noise arbitrarily small with small α. So,

there is a tradeoff between minimizing the effects of noise

and sustaining the drift. This tradeoff was demonstrated also

in case of the linear system [9] for slightly different drift

model.

The formula presented in the Theorem 4.2 can be used for

optimal choice of step size (sometimes called gain) α when

α is supposed to be small.

Earlier the proof of the Theorem similar to 4.1 was

given in [16] with more strict conditions. Here the bound

is improved so that Theorem 4.2 holds.

V. EXAMPLES

Simple practical application of the algorithm (3) is the

estimation of the multidimensional moving point coordinates

when only information about distance from arbitrary point to

the moving point is available with additive noise. As a result

of Theorem 4.1, the algorithm (3) provides the point estimate

in case of limited drift of the point and limited observation

noise. In [16] the drift with formula θn = θn−1 + ζ was

considered, where ζ is uniformly distributed on the sphere:

‖ζ‖ = 1. Here we also provide this example and show

how theoretical results about the behavior of the algorithm

optimizing this function correspond to the practical evidence.

Firstly we consider the case when the dimension of argument

d = 2.

The function f(x, n) = F (x, w, n) = 1
2‖x − θn‖2 was

measured with additional non-random unknown but bounded

noise sequence ‖vn‖ ≤ 1. This sequence was generated

using formulas v2n = 1 − (n mod 3) and v2n−1 = 1 −
(n mod 7)/3.

In this case we have µ = M = 1, F1 = F2 = 0,
A0 = 0, A1 = A2 = A3 = 1, C1

1 = C2
2 = 1,C0

1 = −0.5,
C1

2 = −1, C0
2 = 0.25. σ1 = 2, σ2 = 4. The estimates have

shown convergence to the theoretically proven interval. This

example is illustrated at Figure 1.
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Fig. 2. Case of 100-dimensional drift for 0.5‖x − θn‖2 + vn, x, θn ∈
R

100. There were 100 runs of the algoritms performed, each with 1000

iterations starting from the point θ̂0 = (17.0, 17.0, ...,17.0)T . The solid

lines are minimal, average and maximal squared estimation error ‖θ̂n −
θn‖2. Dashed line is the theoretical bound L2.

The next example is with the same function and noise

as before, but the dimension of argument is equal to 100.

This example is aimed to demonstrate good behavior of

the algorithm’s estimates in highly dimensional spaces, see

Figure 2. The theoretical boundary is far from precise.

VI. CONCLUSION

In our work we apply the SPSA-type algorithm to the

problem of extreme point tracking with almost arbitrary

noise. Drift is assumed to be limited, which includes random

and directed drift. It was proven that the estimation error of

this algorithm is limited with constant value. The modeling

was performed on a multidimensional case.

The authors want next to prove more precise boundaries

of the estimation error. The stabilization of estimates for

arbitrary p rather than for p = 2 (as in this paper) could

be considered. It could be also interesting to modify the

algorithm to work with unknown polynomial drift, using the

technique of polynomial fitting demonstrated in [19].
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VIII. APPENDIX

Lemma 1. If v2
n ≤ kv2

n−1 + hvn−1 + l n ∈
N, k ∈ (0, 1). Then v2

n ≤ (k + ǫ/2)nv2
0 + ( h

2(1−k) (1 +
√

1 + 4l(1 − k)h−2))2, or limn→∞vn ≤ h
2(1−k) (1 +

√

1 + 4l(1 − k)h−2), where ǫ = h2

2l (
√

1 + 4l(1 − k)h−2 −
1).

Proof. kv2
n−1+hvn−1+l ≤ (k+ǫ/2)v2

n−1+ h2

2ǫ +l, where

ǫ > 0. For sufficiently small ǫ, k + ǫ/2 < 1, so

vn ≤ (k + ǫ/2)nv0 +
(h2

2ǫ + l)(1 − (k + ǫ/2)n)

1 − k − ǫ/2
,

vn ≤ (k + ǫ/2)nv0 +
h2

2ǫ + l

1 − k − ǫ/2
. (4)

Minimizing the last term by ǫ, we get ǫmin =
−h2+

√
h4+4(1−k)lh−2

2l . Obviously, ǫmin > 0 because
√

h2 + 4l(1 − k)h−2 > h. Also, ǫmin/2 < 1 − k. Sub-

stituting ǫmin into the inequality, we get
h2

2ǫmin
+l

1−k−ǫmin/2 =

( h
2(1−k) (1 +

√

1 + 4l(1 − k)h−2))2.
�

Proof of Theorem 4.1. According to (3) and the property

‖∆n‖ = 1 we have:

‖θ̂2n − θ2n‖2 = ‖θ̂2n−2 − θ2n‖2 − 2〈θ̂2n−2 − θ2n,
α

β
(y2n − y2n−1)∆n〉 + ‖α

β
(y2n − y2n−1)‖2. (5)

Consider the second term in (5). We can say that

Ē2n−2{∆n(y2n − y2n−1)} =

= Ē2n−2{∆nF (θ̂2n−2 + β∆n, w2n, 2n)} ≤

≤ Ē2n−2{∆nF (θ̂2n−2, w2n, 2n)}+

+Ē2n−2{∆n〈∇F (θ̂2n−2, w2n, 2n), β∆n〉} +
M

2
β2. (6)

The first term because of the property (H) is equal to 0, and

the second term Ē2n−2{∆n〈∇F (θ̂2n−2, w2n, 2n), β∆n〉} =
β 1

d∇f(θ̂2n, 2n).

−Ē2n−2{〈θ̂2n−2 − θ2n,
α

β
∆n(y2n − y2n−1)} ≤

≤ −αµ

d
‖θ̂2n−2 − θ2n‖2 + αβ

M

2
‖θ̂2n−2 − θ2n−2‖.

Next, we analyze the third term in (5). We use

the representation y2n − y2n−1 = F (θ̂2n−2 +
β∆n, w2n, 2n)−F (θ̂2n−2, w2n, 2n) + F (θ̂2n−2, w2n, 2n)−
F (θ̂2n−2, w2n−1, 2n − 1). Let us note that:

Ē2n−2{F (θ̂2n−2 + β∆n, w2n, 2n) − F (θ̂2n−2, w2n,

2n)} ≤ βM‖θ̂2n−2 − θ2n‖ + βF1 + β2 M

2
;

Ē2n−2{(F (θ̂2n−2 + β∆n, w2n, 2n) − F (θ̂2n−2, w2n,

2n))2} ≤ β2M2‖θ̂2n−2 − θ2n‖2 + 2βM

(βF1 + β2 M

2
)‖θ̂2n−2 − θ2n‖ + β2F2 + β3MF1 + β4 M2

4
.

Using the property (F) we get

Ē2n−2{(
α

β
∆n(y2n − y2n−1))

2} ≤ ‖θ̂2n−2 − θ2n‖2 α2

β2
·

·(β2M2+C2
2 +2βMC1

1)+‖θ̂2n−2−θ2n−1‖
α2

β2

(

2βM(βF1+

+β2 M

2
) + C1

2 + 2C1
1 (βF1 + β2 M

2
) + 2βMC0

1 + 2σ1C
1
1+

+2σ1βM
)

+
α2

β2
(β2F2 + β3F1M + β4 M2

4
+ C0

2 + σ2+

+2(βF1 + β2 M

2
)C0

1 + 2σ1(βF1 + β2 M

2
) + 2σ1C

0
1 ). (7)



We conclude that Ē2n−2{‖θ̂2n − θ2n‖2} ≤ k1‖θ̂2n−2 −
θ2n‖2 + h1‖θ̂2n−2 − θ2n‖ + l1, where k1 = 1 − 2αµ

d +

α2(M2 + 2
C1

1
M

β +
C2

2

β2 ), h1 = α2(βM2 + 2MF1 + C1
1M +

2
M(σ1+C0

1
)+C0

1
F1

β +
2σ1C1

1
+C1

2

β2 ) + αβM , l1 = α2(β2 M2

4 +

βF1M +F2 +C0
1M +σ1M +2

C0

1
F1+σ1F1

β +
C0

2
+σ2+2σ1C0

1

β2 ).
We need to consider two steps back, moving from

θ2n to θ2n−2 in the left side of inequality. We observe

that E2n−2{‖θ̂2n−2 − θ2n‖} ≤ ‖θ̂2n−2 − θ2n−2‖ + 2A1;

E2n−2{‖θ̂2n−2−θ2n‖2} ≤ ‖θ̂2n−2−θ2n−2‖2+4A0‖θ̂2n−2−
θ2n−2‖ + 2A2 + 2A3. To do those steps, we take the

expectation E2n−2{·} from the both sides of the inequality

obtained.

E2n−2{‖θ̂2n − θ2n‖2} ≤ k‖θ̂2n−2 − θ2n−2‖2+

+h‖θ̂2n−2 − θ2n−2‖ + l, (8)

where k = k1; h = h1 + 4A0k1; l = l1 + 2A1h1 + 2(A2 +
A3)k1. By the conditions of the Theorem 4.1, k ∈ (0, 1).
Applying the Lemma 1 to the sequence of unconditional

expectations E{‖θ̂2n − θ2n‖2} we finish the proof of the

first statement.

The second statement is proved adapting the

methodology of the Lemma 4 from [20]. Let us

define Zn = ‖θ̂2n−θ2n‖2−(k+ǫ/2)nE‖θ̂0−θ0‖
2−L2

(k+ǫ/2)n .

Zn is a super-martingale. Then according to [21]

P{max0≤n≤n0
Zn ≥ λ} ≤ λ−1(EZ0 + EZ−

n0) ≤
−L2+L2+(k+ǫ/2)nE{‖θ̂0−θ0‖

2}
λ(k+ǫ/2)n →n0→∞ E{‖θ̂0 − θ0‖2}λ−1,

according to the first statement, where Z−
n0 =

−min{Zn0, 0}. The result follows from P{∀n Zn ≤
λ} ≥ 1 − E{‖θ̂0−θ0‖

2}
λ . �

Proof of Theorem 4.2 Let us get an expansion for h
1−k

while α → 0. Analyzing formula for k, we see that h
1−k =

1
α

aα2+bα+c
d+eα for k = 1 − dα − eα2, h = aα2 + bα + c.

We derive then h
1−k ≡ c

dα + bd−ce
d2 + α(2(ad−be)−ce

2d2 ) +

o(α). That is, h
1−k ≡ 2A0

µα + βM
2µ − 4A0 − A0K2

µ2 +
2µH2+(8A0µ−βM−2A0)K2

4µ2 α + o(α).

Next,
l(1−k)

h2 ≡ αaα3+bα2+cα+d
(fα2+gα+p)2 ≡ d

p2 α + cp−2g
p3 α2 +

o(α2). Using the formula
√

1 + α(x) ≡ 1+ 1
2α(x)+o(α(x))

for α(x) → 0 (x → 0) we derive 1 +
√

1 + l(1 − k)h−2 ≡
2 + µ+A2+A3

16A2

0

α + 2A0K2+8A0µ−βM
64A3

0

α2 + o(α2).

Finding the multiplication of both formulas derived before,

we get the result expansion of the Theorem 4.2. �
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