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Abstract— The paper discusses a novel probabilistic approach
for online parameter estimation of the predictor model used in
an MPC (Model Predictive Control) setting in the presence of
model uncertainties and external disturbances. Model uncer-
tainty makes it hard to compute an optimal control in general
case, because it is needed to take into account all possible
values of model parameters. Therefore, it is a good way for
optimisation to shrink a set of possible model parameters. The
proposed method iteratively estimates model parameters using
randomized control strategy and algorithm based on LSCR
(Leave-out Sign-dominant Correlation Regions) and computes
a new control for the estimated parameters using robust MPC.
The theoretical results are demonstrated via a model simulation
example with two unknown parameters.

I. INTRODUCTION

Model Predictive Control is a control technique that deals
with multi variable systems, constraints, and uncertainty [1],
[2]. At each sampling time, a finite horizon optimal control
problem is solved based on a given model of the system.

Often, in the real world we do not exactly know actual
values of model parameters, for instance in case of presence
of model uncertainties. Moreover, it is often required to use
MPC in the presence of external disturbances. This two cases
of uncertainties will be considered as assumptions below.
One of the possible way to compute a suitable control in
the presence of uncertainties is to use robust MPC [3]–
[6]. Robust MPC solves the same problem as standard
MPC, but guarantees stability and constraints satisfaction
also in the presence of model uncertainties and external
disturbances. But even in this case model uncertainty limits
our possibilities to construct optimal control, because a set of
possible values of model parameters can be relatively large.
It leads us to situation when the set of parameters includes
many redundant values that do not ever (or rarely) will take
place on practice. So one of the possible solutions is to
shrink this set somehow, for instance, using online parameter
estimation. At the same time, it is clear that such shrinking
potentially leads to more “suitable” control.
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But what does “suitable” actually mean in that case? At
each time instance we could analyse system output and de-
cide what the next set of possible parameters should be. The
proposed method uses a stabilized regulator û additionally
disturbed by a random value ∆ (see [7]). And because of this
random disturbance ∆, the control cannot be exactly robust,
but it can be near to the robust one. That is, the value of a
cost function on the disturbed control can be very close to
the value of a cost function on the robust control. This fact
is demonstrated in Theorem 1 below.

The main contribution of the paper is a combination of the
two following approaches – robust MPC (RMPC) [3] (based
on Scenario Approach [8]) and modified LSCR approach
[7] based on [9], [10]. Theoretical results in the present
paper show how these methods work together. Illustrative
example at the end of the paper demonstrates applicability
of the proposed method. In [11] the authors use asymptotic
methods for uncertainty evaluation in model which deals with
iterative robust control. But the proposed approach uses non-
asymptotic methods for uncertainty evaluation and deals with
RMPC.

Briefly the proposed method can be described as follows.
At first, we select a size of predicted horizon for RMPC.
Within that window robust control is constructed using
Scenario Approach (see [8]) - the method which is designed
to minimize a linear objective to a number of convex con-
straints, one for each instance of the uncertainty. Then we use
constructed robust control to estimate parameters of a given
system. To do that we add some random perturbation with
specific known statistical properties to constructed control
and apply this new control to the system. This allows us to
construct a confidential set for parameters of the model using
modified LSCR approach [7].

Applicability of the proposed method is demonstrated via
a simulation example with two unknown parameters. Also
we have simulated the following problem related to fault
tolerant control. Initially, all parameters of a model vary only
within some unknown bounded set. Then, let us suppose
that a fault occurs at some time instant, that is one of
parameters was changed and moved outside of the initial set.
And we recompute the set on the next step with added fault
parameter. Therefore, on the next time instant we construct
a new control on the newly re-constructed set.

The paper is organized as follows. Section II presents the
problem statement. Main result given in Sections III and IV.
Results of numerical experiments are shown in Section V,
followed by Conclusions and Future work discussion.
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II. PROBLEM STATEMENT

Consider the following discrete time model:{
xt+1 = A∗(z−1)xt +B∗(z−1)ut + wt,
wt ∈W,

(1)

where xt are scalar outputs, ut are scalar inputs, wt is an
external disturbance, and t = 1, 2, . . . , T is a time index. In
(1) z−1 is a delay operator: z−1xt = xt−1 and z−1ut =
ut−1. Operators A∗ and B∗ are defined as follows:

A∗(λ) = a0 + a1λ+ ...+ an−1λ
n−1,

B∗(λ) = b0 + b1λ+ ...+ bm−1λ
m−1.

(2)

where a0, . . . , an−1 and b0, . . . , bm−1 are the plant’s param-
eters, some of them are unknown. Let us denote by θ vector
which consists of all the unknown parameters, and assume
θ ∈ Θ ⊂ Rg , where g is a number of unknown parameters.

Let us now rewrite the model (1) using matrices instead
of polynomials A∗, B∗. For this purpose we introduce the

following matrices: A(θ) :=


a0 a1 a2 · · · an−1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . 0 1 0

 ∈
Rn × Rn,

B(θ) :=


b0 b2 · · · bm−1
0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

 ∈ Rm × Rn. One can

easy check that for this matrix system (1) has became equal
to the following uncertain model:{

xt+1 = A(θ)xt +B(θ)ut + wt,
θ ∈ Θ,wt ∈W

(3)

where xt =
[
xt xt−1 · · · xt−n+1

]ᵀ ∈ Rn,
ut =

[
ut ut−1 · · · ut−m+1

]ᵀ ∈ Rm, wt =[
wt 0 · · · 0

]ᵀ ∈ Rn.
The problem is to regulate the system to the predefined

origin taking the following assumptions into account.

A. Assumptions

First of all, it is not required Θ to be convex. This is
important for applying LSCR approach further, because an
output confidence set of LSCR (that will be considered as a
new value of Θ) is non-convex in general.

Now let us briefly describe Assumptions 1-4 defined in
[3]. At first, it is required A(θ), B(θ) to be stabilizable for
any θ ∈ Θ.

Then, because of in the real systems under control there
are some predefined constrains, we are also add them into the
model. And we suppose that this constrains do not depend
on time instant. Let us define two convex sets of constraints,
under X and under U : CX := {x ∈ Rn : fX(x, θ) � 0},
CU := {u ∈ Rm : fU (u, θ) � 0}, where functions fX :
Rn ×Θ→ Rr, fX : Rm ×Θ→ Rs are convex in x and u.

Finally, because of external disturbances the equilibrium is
not attainable. In other words, we can require regulation to a
neighborhood of the origin, described by a terminal set. For
this purpose we will recall Assumption 4 in [3] to define a
terminal set. Define a convex set Cf := {x ∈ Rn : fC(x) �
0}, where fC : Rn → Rq . And let us also suppose that there
is u = Kf , such that A(θ)x + B(θ)Kx + W ∈ Cf for
∀x ∈ Cf ,∀θ ∈ Θ,∀W . Finally, fX(x, θ) � 0, fU (Kx, θ) �
0,∀x ∈ CX ,∀θ ∈ Θ.

In [3] a control is looking like ût = Kxt+vt, where K is
defined above, and vt is an additionally constructed control
required by regularization to a terminal set. In this paper we
construct a new control ut := ût + ∆t = Kxt + vt + ∆t,
where ∆t is a vector constructed from identically distributed
random values.

III. ESTIMATION OF MODEL PARAMETERS

Model Predictive Control optimizes a finite time-horizon
basing on knowledge about past and present. In other words,
we minimize some predefined cost function for N steps
forward to build a control. And then obtained control is
applied for only current time instant. After a new value of
xt was obtained, we repeat this step, and so on.

It is important that parameters of the model can be
changed within the set Θ at some time instant. And because
of that our purpose is not only to estimate parameters of
the model (i.e. shrinking Θ), but also to detect changes of
the parameters. To be more specific, new Θt ⊂ Θ will be
computed for each t = 1, 2, . . . , T .

The proposed algorithm is iterative and consist of the
following steps:

1) Initialize the initial set: Θ0 = Θ. After that repeat the
following Steps 2-3:

2) For each t = 1, 2, . . . , T compute a new control
ût = Kxt +vt like described in III-A on the previous
confidence region Θt/M constructed in Step 3) below.

3) For each t = M, 2M, . . . , kM, . . . compute a new
confidence region Θt using III-B. Let’s note horizon
N is independent of M , and usually N < M .

We denoted by M a number of time instants between
two successive recomputing of Θt. In other words, we apply
some special control at each time instant within [t; t+M−1]
and after that compute new Θt. Further, N is a horizon
length for MPC, it should be not very large because of
computational complexity. On the other hand, big value of
M is good, it makes estimation to be more accurate.

A. MPC-based Set of Controls for LSCR

Let us define the following cost function to be minimized:

J(xt,Vt,ωt) := max
i=1,...,S

(
N−1∑
k=0

d(x
(i)
k|t, Cf )+

N−1∑
k=0

vT
k|tvk|t

)
,

(4)
where d(x,Cf ) := miny∈Cf

‖x− y‖, N is a se-
lected horizon, S is a number of random selected
scenarios, vk|t is a control applied at time instant
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t + k, Vt :=
[
v0|t v1|t · · · vN−1|t

]ᵀ
, ωt :=[

θ
(1)
t θ

(2)
t · · · θ

(S)
t

]ᵀ
denotes the “multisample” of sce-

narios at time instant t, and x
(i)
k|t is a system state at time t+k

assuming that i-th scenario is selected (see more detailed
description in equations (5) and (6) in [3]). To be more
specific, we have to minimize a cost function over Θ, and we
use Scenario Approach [8] to do this. The main idea behind
this method is to extract a bunch of random “scenarios”, and
solve this modified problem only for the selected scenarios
to get approximate solution of the initial problem.

Now our purpose is to select a control to minimize J under
assumptions stated above. Since we want to minimize J , we
can consider an equivalent problem of minimizing zt under
condition J(xt,Vt,ωt) � zt to apply Scenario Approach
[8]. This transformation was made in the problem (7) in [3]:

P (xt,ωt) : min
Vt,zt

zt (5)

subject to
J(xt,Vt,ωt) � zt
fX(x

(i)
k|t,θ) � 0,∀i = 1, . . . , S, ∀k = 0, . . . , N − 1

fU (u
(i)
k|t,θ) � 0,∀i = 1, . . . , S, ∀k = 0, . . . , N − 1

fC(x
(i)
k|t) � 0,∀i = 1, . . . , S, ∀k = 0, . . . , N − 1,

(6)
where u

(i)
k|t = Kx

(i)
k|t + vk|t.

Let V∗t :=
[
v∗0|t v∗1|t · · · v∗N−1|t

]ᵀ
denote a mini-

mum point of J , and in this case vt = v∗0|t. Finally, we
compute a new control like ût = Kxt + vt (see equation
(2) in [3]).

B. LSCR-based estimation of parameters of uncertainty

The method, proposed in [7], [12], [13], is used to
estimate parameters of a dynamic plant, described by an
autoregressive moving average model with additive external
noise. It computes data-based confidence region for unknown
parameters of the plant with predefined probability.

This method computes a confidence region for the parame-
ters by applying N random controls and analysing difference
between real and expected outputs as described in Section
6 in [7]. It supposes that each of this controls looks like
ut = ut + ∆t, where ut is an adjustable feedback, while ∆t

is random identically distributed sequence (see Section 3 in
[7]).

Now let us recall that in III-A we obtained the control
in the form ût = Kxt + vt. If we use this control as an
adjustable feedback u, then we can define a new control as

ut = Kxt + vt + ∆t, (7)

where ∆t :=
[
∆t ∆t−1 · · · ∆t−N+1

]ᵀ
and

∆i =

{
1
R , with probability 1

2

− 1
R , with probability 1

2 ,
(8)

where R ∈ R, R > 0.

It is clear that this disturbed control does not minimizes
(4). In the next section we will talking about how much
disturbed cost function J differs from the origin one.

IV. SELECTION OF ADDITIONAL CONTROL

Let us consider the control (7). As was stated in the
previous section, it is a disturbed version of ût = Kxt+vt. It
leads us to the following question. Once we computed vt and
disturbed it by ∆t, i.e. obtained a new control vt +∆t, how
large is a difference |J(xt,V

∗
t ,ωt)− J(xt,V

∗
t + Tt,ωt)|?

Here Tt :=
[
∆0|t ∆1|t · · · ∆N−1|t

]ᵀ
, where ∆i|t is

a perturbation of corresponding v∗i|t. The answer to this
question is presented in the current section.

From a practical point of view, the question could be stated
in the following way. Given some ε ≥ 0, how to select R to
guarantee |J(V∗t )− J(V∗t + Tt)| ≤ ε? Here we do not use
xt and ωt to be shorter.

Let us note that theoretically one can select R as big as
possible, but practically we cannot disturb a control with an
arbitrary small value. On the other hand, we want to be close
to the minimum of the cost function as much as possible.

Let us consider the cost function J at a given scenario i∗

on which J is minimal:

J(V∗t ) =

N−1∑
k=0

d(xk|t, Cf ) +

N−1∑
k=0

v∗Tk|tv
∗
k|t, (9)

here and further xk|t := x
(i∗)
k|t .

Similarly, we obtain the following equation for the dis-
turbed control V∗t + ∆t:

J(V∗t + Tt) =
N−1∑
k=0

d(xk|t, Cf ) +

N−1∑
k=0

(v∗k|t + ∆k|t)
T (v∗k|t + ∆k|t), (10)

where xk|t is a system state corresponding to the control
v∗k|t + ∆k|t.

Now let us estimate |xk|t − xk|t| to sum up them af-
terwards to obtain an estimation of |

∑N−1
k=0 d(xk, Cf ) −∑N−1

k=0 d(xk, Cf )|.



x1|t − x1|t = (Ax0|t +B(u0|t + ∆0|t) + wt)−
(Ax0|t +Bu0|t + wt) = B∆0|t,

x2|t − x2|t = (Ax1|t +B(u1|t + ∆1|t) + wt+1)−
(Ax1|t +Bu1|t + wt+1) = AB∆0|t +B∆1|t,

. . .

xN−1|t − xN−1|t =
∑N−2

i=0 AiB∆N−i|t.
(11)

Now it is clear that xi|t − xi|t =
∑i−1

j=0A
jB∆i−j|t,

∀i ∈ 1, 2, . . . , N−1. Using this fact, we derive the following
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estimation:

d(xi|t,xi|t) =
∥∥xi|t − xi|t

∥∥ =

∥∥∥∥∥∥
i−1∑
j=0

AjB∆i−j|t

∥∥∥∥∥∥
≤

i−1∑
j=0

∥∥AjB∆i−j|t
∥∥

≤
i−1∑
j=0

∥∥Aj
∥∥
op

∥∥B∆i−j|t
∥∥

≤
i−1∑
j=0

‖A‖jop
∥∥B∆i−j|t

∥∥
≤
‖A‖Nop − 1

‖A‖op − 1
‖B‖op ∆max|t,

where ∆max|t = maxi=0,...,N−1
∥∥∆i|t

∥∥; ‖A‖op :=
inf{c ≥ 0 : ‖Ax‖ ≤ c ‖x‖ ,∀x ∈ X} is an operator norm
induced by the vector norm used in (4). We also used the
inequality ‖RS‖op ≤ ‖R‖op ‖S‖op here, which is true for
an operator norm and quadratic matrix R, S.

Then, using triangle inequality we derive:∣∣∣∣∣
N−1∑
i=0

d(xi|t, Cf )−
N−1∑
i=0

d(xi|t, Cf )

∣∣∣∣∣
≤

N−1∑
i=0

d(xi|t,xi|t)

≤
N−1∑
i=0

‖A‖Nop − 1

‖A‖op − 1
‖B‖op ∆max|t

≤ N
‖A‖Nop − 1

‖A‖op − 1
‖B‖op ∆max|t.

(12)

Now we will estimate the difference of the rest. We have:∥∥∥∥∥
N−1∑
k=0

v∗Tk|tv
∗
k|t −

N−1∑
k=0

(v∗k|t + ∆k|t)
T (v∗k|t + ∆k|t)

∥∥∥∥∥
≤

N−1∑
k=0

∥∥∥(v∗Tk|tv
∗
k|t − (v∗k|t + ∆k|t)

T (v∗k|t + ∆k|t))
∥∥∥

≤
N−1∑
k=0

(
∥∥∥v∗k|t∥∥∥+

∥∥∆k|t
∥∥)2

≤ N(v∗max|t + ∆max|t)
2,

(13)

where v∗max|t := maxi=0,...,N−1

∥∥∥v∗i|t∥∥∥.
Finally, using (12) and (13) we can formulate the following

theorem.
Theorem 1: Let {xi|t}N−1i=0 , {v∗i|t}

N−1
i=0 be the solution of

(5) obtained at time t. Let also A,B,N,Tt,∆max|t,v
∗
max|t

be defined as above. Then:
|J(V∗t )− J(V∗t + Tt)|

≤ N

(
‖A‖Nop − 1

‖A‖op − 1
‖B‖op∆max|t + (v∗max|t + ∆max|t)

2

)
.

(14)

Remark 1: Let us note that (14) does not guarantee that
xk|t,uk|t satisfies all the constraints in (5). But on practice,
we can initially estimate the constraints in such a way to
satisfy them all.

Remark 2: An operator norm ‖A‖op depends on a vector
norm, and there are at least two common cases when it can
be simply defined:

1) If ‖x‖ :=
∑n

i=1 |xi| then the operator norm is
‖A‖op := max1≤j≤n

∑n
i=1 |aij |.

2) In case of usual Euclid norm of a vector, the operator
norm is ‖A‖op :=

√∑n
i,j=1 a

2
ij .

Remark 3: If we would know the upper bound of con-
vergence time we can estimate convergence probability (es-
timation is slightly rough). Let us define T̂ - the upper
bound of convergence, p̂ - the probability in LSCR method.
The convergence probability is calculated by the following
scheme:

1) Divide T̂ by M to obtain the number of times LSCR
method was applied.

2) Multiply T̂
M by p̂ to obtain probability of finding

suitable sets for unknown parameters.
3) Multiply T̂

M p̂ by value of convergence probability in
[3].

V. EXPERIMENTS

As we previously mentioned, there are several things of
interest from a practical point of view. The first one is how
the proposed approach works with a real model. And the
second one is how the estimation of model parameters reacts
to their changes.

We have implemented the proposed method in Python.
Let’s consider the following model:

xt+1 + a1(θ)xt = b1(θ)ut + wt

θ ∈ Θt, wt ∈W,

−100 < u ≤ 100,
0 < x ≤ 1000

(15)

where Θt = [−1, 1], a1(θ) and b1(θ) are unknown parame-
ters (initially a1 = 1.1 and b1 = 0.7), x0 = 30 is an initial
state, and wt ∼ N (1, 0.8) is a noise sequence. Also here
we stated two constraints on u and x: −100 < u ≤ 100,
0 < x ≤ 1000.

Further, let us satisfy Assumptions stated in II. Suppose
K = 0.6 and terminal set Cf is [−2; 2]. Also let horizon N
be equal to 3, S = 10, M = 60 and ∆ ∼ Bern

(
1
2

)
.

Under this assumptions (4) is:

J(xt,Vt,θ) := max
i=1,...,10

(
2∑

k=0

d(x
(i)
k|t, Cf ) +

2∑
k=0

vT
k|tvk|t

)
.

And (5) is:
P (xt,ωt) : min

Vt,zt
zt (16)

subject to

J(xt,Vt,ωt) � zt.
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Fig. 1: The values of J on the disturbed and origin controls
are denoted by green and blue lines respectively.

Fig. 2: Dark blue and green lines denote the terminal set.
Red and blue lines denote controls ût = Kxt + vt and
ut = Kxt + vt + ∆t.

In order to check (14), we need some assumptions about
matrices A, B and control v. Suppose that ‖A‖op =√
a20 + a21 =

√
12 + 1.12, ‖B‖op = b1(θ) ≤ 1, ∆max = 1,

and vmax ≤ 0.6. This is empirically obtained constraints. If
this conditions hold, then we have:

|J(V∗t )− J(V∗t + Tt)|

≤ 3

(
(
√

12 + 1.12)3 − 1

0.5− 1
1 ∗ 1 + (0.6 + 1)2

)
≈ 21.4.

This result is shown on Fig.1. One can see that at each time
instant the difference between green and blue lines is not
greater that 21.4.

Another important point is system state convergence. It is
demonstrated via Fig.2).

Now we will demonstrate how the approach works when
parameters a1, b1 are changing. This task is related to Fault
Detection and Isolation problem. In terms of the paper it
means that a fault occurs when one of the model parameters
moves out of Θt. “To catch” this fault and compute a new

Fig. 3: Approximation of model parameters a1 = 1.1, b1 =
0.7.

Fig. 4: Approximation of model parameters a1 and b1 after
they were changed to a1 = 0.6, b1 = 1.5.

control one need to recompute Θt. We simulated a fault by
changing parameters a1, b1 at time tfault. Initially, a1 = 1.1
and b1 = 0.7 (see Fig.3). On Fig.4 one can see that Θt was
successfully recomputed and contains new values of a1 =
0.6, b1 = 1.5.

After that we used Monte Carlo simulation to obtain
more representable numerical results. So, let’s recall which
parameters of interest can vary - set of uncertainties, noise
distribution, system constraints.

xt+1 + a1(θ)xt = b1(θ)ut + wt

θ ∈ Θt, wt ∈W,

−a < u ≤ a,
0 < x ≤ b

(17)

That is, we can choose different sets Θt, W , and values of
parameters a and b.

In the first test we would like to figure out how the
method behaves for different values of a1, b1. We chose 10
different diameters for Θ0 to do this. Then 20 random sets
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diameter percent of fails
0.2 17%
0.5 17%
0.8 18%
1 21%
2 21%
3 21%

3.5 21%
4 22%

4.5 22%

TABLE 1: Number of fails for different diameters of Θ0.

a, b ∈ percent of fails
[0, 0.5] x [1,10] 26%

[0.5, 1] x [10, 15] 24%
[1, 1.5] x [15, 20] 22%
[1.5, 2] x [20, 25] 22%
[2, 2.5] x [25, 30] 22%
[2.5, 3] x [30, 35] 20%
[3, 3.5] x [35, 40] 20%
[3.5, 4] x [45, 50] 18%
[4, 4.5] x [50, 55] 17%

TABLE 2: Number of fails for different values of a and b.

from R2 of the specified diameter were generated. After that
100 different pairs of a1 and b1 were chosen from each set
and used as input parameters of the algorithm. For instance,
the first row in the Table 1 was obtained by generating 20
random sets of diameter 0.2, then we chose a1, b1 from the
obtained set. All results are presented in the Table 1 . As one
can see the actual percent of fails is about 20%. The lowest
value (17%) is for the smallest diameter, but this fact is not
theoretically confirmed.

In the second test we tried different values of the system
constraints to understand how they impact on the algorithm’s
behaviour. For this purpose we chose 10 sets represented in
the first column of the Table 2 and chose 100 random pairs
a, b from each set to use them as input parameters of the
algorithm.

The third test shows how fast LSCR make the set of
uncertainty smaller. To demonstrate this we chose four
different diameters of the sets a1 and b1 belongs to, and
looking while diameter of the set on the current time instant
does not become low or equal to this diameter. For instance,
if we look at the cell (20, 0.8) we see 9%. It means a1 and
b1 will be inside some set with diameter 0.8 between 15 and
20 time instants with probability 0.09. Similarly, for the cell
(30, 0.2), a1 and b1 will be inside some set with diameter
0.2 between 30 and 35 time instants with probability 0.23.

VI. CONCLUSION

The problem of online parameter estimation of MPC
model uncertainties is considered. A new method based on
robust MPC and LSCR approach is suggested. It is shown
that the estimation is suitable on practice and estimation
of model parameters is accurate enough. Also this method
was applied to fault detection problem, when some of model
parameters were changed.

t / diameter 1 0.8 0.5 0.2
5 1% 1% 0% 0%

10 4% 4% 4% 2%
15 6% 7% 7% 3%
20 9% 9% 9% 6%
25 17% 15% 12% 14%
30 22% 18% 18% 19%
35 16% 20% 21% 23%
40 10% 11% 13% 12%
45 7% 8% 8% 8%
40 5% 5% 6% 6%

TABLE 3: The table represents “convergence speed” of the
algorithm. The first column states for diameter of the set
algorithm converges to. The first row represents time instants
between which algorithm converged.

In future works we plan extend theoretical part of the
paper. For this purpose we investigate asymptotic properties
of the system (3) in the case of different changes for precise
values of the parameters at some time instant. Such research
will allow us to detect faults in system and further we will
approbate our method to solve collision avoidance problem
for autonomous mobile robots.

We also want to consider possible applications of this
method for the medical diagnosis of biological processes in
human body, including analysis of medical ultrasound data.
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