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Abstract— Multidimensional optimization holds a central role
in many machine learning problems. When a model quality
functional is measured with an almost arbitrary external noise,
it makes sense to use randomized optimization techniques.
This paper deals with the problem of clustering of a Gaussian
mixture model under unknown but bounded disturbances. We
introduce a stochastic approximation algorithm with randomly
perturbed input (like SPSA) to solve this problem. The proposed
method is appropriate for the online learning with streaming
data, and it has a high speed of convergence. We study the
conditions of the SPSA clustering algorithm applicability and
show illustrative examples.

Index Terms— Clustering, Gaussian mixture model, random-
ized algorithm, SPSA, unknown but bounded disturbances.

I. INTRODUCTION

Many machine learning tools are reduced to multidimen-
sional optimization problems. Such properties as accuracy,
speed of processing and robustness are very important for
these tools. In many applications (e.g. spam filter or stream-
ing services) we get noisy observations in a sequential order
and the decision must be taken in real time (online). Such
systems requires online learning — the recurrent adaptive
data processing algorithm. The stochastic optimization ap-
proach to clustering problem is widely used to achieve the
desired properties.

Stochastic approximation was first introduced by Rob-
binson and Monro [1] and was further developed for opti-
mization problems by Kiefer and Wolfowitz (KW) [2]. KW
procedure was extended to the d-dimensional (multidimen-
sional, d > 1) case in [3]. It is based on finite-difference
approximations of the loss function gradient vector and uses
2d observations at each iteration to construct the sequence
of estimates: two observations for approximations of each
component of the gradient d-vector. Spall [4] introduced a
simultaneous perturbation stochastic approximation (SPSA)
algorithm with only two observations at each iteration which
recursively generates estimates along random directions. It
was turned out that for a large d the probabilistic distribution
of appropriately scaled estimation errors is approximately
normal and the SPSA algorithm has the same order of
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convergence rate as the KW-procedure, even though in the
multidimensional case noticeably fewer (by the factor of d)
observations are used. When observations data are corrupted
with unknown but bounded disturbances, the performance
of classical stochastic gradient based methods is dropping.
But the performance of the SPSA-like algorithms is quite
good [5]–[9].

Lloyd [10] studied the classical k-means algorithm. Its
simplicity and stability lead to the wide popularity of this
method. However it has some drawbacks: it processes all the
data at a time and a large growth of data requires an increas-
ing amount of a computer memory. Furthermore, the worst-
case running time of Lloyd algorithm is exponential [11]. To
improve these drawbacks several approaches were introduced
which are based on online learning ideas. Algorithm [12]
uses mini-batches to reduce the computation time required
to converge to a local solution, while still attempting to
optimize the same objective function. The obtained results
are only slightly worse than the correspondence ones for
the standard algorithm. A variant of streaming k-means is
described in [11]. Another online clustering method was
considered in [13]. It is based on an ensemble of learning
agents. There is also numerically more stable vatiant of k-
means such as Partition around medoids (PAM) [14].

A Gaussian mixture model (GMM) is a probabilistic
model that assumes all the data points are generated from
a mixture of a finite number of Gaussian distributions with
unknown parameters. We will consider a GMM as gener-
alizing of k-means clustering. The well-known expectation-
maximization (EM) algorithm [15] is traditionally used to
find the unknown parameters of a GMM. It is based on
a likelihood maximization, when model depends on latent
variables. Variational Bayesian Gaussian mixture inference
algorithm is an extension of EM that maximizes a lower
bound on model evidence (see [16]). This method includes
regularization by integrating the information from prior dis-
tributions which makes it more stable but slower then EM.
Among online GMM clustering, we mention the streaming
density-based clustering method [17], which is based on the
theorem of estimator updating.

In this paper, the SPSA is considered in the context of
clustering. The proposed new algorithm is an extension of the
previous one for the k-means case from [18] for the case of a
GMM. It is able to operate in online regime with streaming
data and shows a high speed. The convergence of the cluster
centers to their true values is guaranteed even if quality
functionals are measured with unknown but bounded noises.
We analyze the time complexity of the proposed method too.
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This paper is organized as follows: in Section II, we for-
mulate a problem setting of clustering of a Gaussian mixture
model as a multidimensional optimization problem. Section
III presents the SPSA clustering algorithm, its mathematical
analysis and main properties. In Section IV, we demonstrate
experiments results with and without several types of external
noise and also the real life application of proposed method.
Section V concludes the paper.

II. PROBLEM STATEMENT

Denote 1..k the set of indexes {1,2, . . . ,k}. Assume that k
is a known value, input data set X is a subset of Euclidean
space Rd and it is divided into k unknown subsets: X =
∪i∈1..kX?

i , and there is underlying probability distribution
P(X) of set X which is represented as a mixture of distri-
butions: P(X) = ∑

k
i=1 piP(X?

i ), where pi (pi > 0) and P(X?
i ),

i ∈ 1..k, are subset i probabilities and distributions.
Clustering problem is to find an optimal partition X of in-

put data set X to k non-empty clusters X (X)= {X1, . . . ,Xk}:

X=
k⋃

i=1
Xi and Xi∩X j = /0, i 6= j. The partition X is defined

by label function γX : X→ 1..k which assigns to each point
of X the number of data cluster. So, Xi = {x∈X|γX (x) = i}.
There are many possible partitions of the set X for any k.
The clustering problem is to find the best of them which is
coincide with X ? = {X?

1, . . . ,X
?
k}.

Mathematically, the clustering problem can be described
as follows: elements belonging to the same group (cluster)
are more similar than the elements belonging to different
groups (clusters). To solve this problem we introduce some
distortion (penalty, quality) functions qi determining “close-
ness” data point to the cluster i, i ∈ 1..k. Then the optimal
clustering is a minimizer of mean risk functional:

F(X ) = E f (X ,x)→min
X

, (1)

where E is a symbol of mathematical expectation and

f (X ,x) =
k

∑
i=1

γX (x)qi(X ,x).

If vectors θi, i ∈ 1..k are conveniently interpreted as centers
of clusters or centroids and matrices Γi, i ∈ 1..k — as
covariance matrices then the functional of clustering quality
(1) takes the form

F(X ) =
k

∑
i=1

∫
Xi

qi(θi,Γi,x)P(dx)→min
X

. (2)

For i∈ 1..k and fixed x∈X each function qi(·, ·,x) depends
only on θi and Γi, that is qi(·, ·, ·) :Rd×Rd×d×X→R. Then
we can choose the partition rule

Xi(Θ,Γ) = {x ∈ X : qi(θi,Γi,x)< q j(θ j,Γ j,x), j ∈ 1..i−1;

qi(θi,Γi,x)≤ q j(θ j,Γ j,x), j ∈ i+1..k}, i ∈ 1..k,

which minimizes (1). Here Θ = (θ1,θ2, . . . ,θk) is d × k
matrix, and Γ is a set of k matrices Γ1,Γ2, . . . ,Γk, where
Γi ∈ Rd×d , i ∈ 1..k. Thus we can rewrite (2) as follows:

F(Θ,Γ) =
∫
X
〈j(Θ,Γ,x),q(Θ,Γ,x)〉P(dx)→min

Θ,Γ
(3)

where j(Θ,Γ,x) ∈ Rk is a vector consisting of ones and
zeros, corresponding to values of characteristic functions
1Xi(Θ,Γ)(Θ,Γ,x), i ∈ 1..k, and q(Θ,Γ,x) ∈ Rk is a vector of
values qi(θi,Γi,x), i ∈ 1..k.

The important partial case is corresponded the uniform
distribution P(·) and squares of Mahalanobis distances as
penalty functions

qi(θi,Γi,x) = (x−θi)
T

Γ
−1
i (x−θi). (4)

A. K-means algorithm

Consider one of the most popular clustering techniques:
k-means algorithm [10]. It looks for a partition X that
minimizes the sum of squares of intracluster distances. Each
cluster is characterized by the relevant centroid. All of the
matrix from Γ are assumed unit.

Algorithm 1 k-means

Input: X, k, the maximum number of iterations
Output: estimate centroids Θ̂, X

1: Initialization : n := 0. Select randomly k initial centroids
Θ̂0 = (θ̂ 0

1 , θ̂
0
2 , . . . , θ̂

0
k ) from the elements of X

2: Classification : i ∈ 1..k
Xn

i = {x ∈ X : ‖θ̂ n
i −x‖2 ≤ ‖θ̂ n

j −x‖2, j ∈ 1..k}
3: Minimization : θ̂

n+1
i = 1

|Xn
i |

∑x j∈Xn
i

x j

4: Iteration : n := n+ 1. Steps 2 and 3 are repeated until
centroids do not change or the maximum number of
iterations is not reached.

B. Gaussian Mixture Model

One of the most widespread input data model is the
Gaussian Mixture Model (GMM) of data fitting:

f (X ,x) = f (Θ,Γ,x) =
k

∑
i=1

piG(x|θi,Γi), (5)

where G(x|θi,Γi) is the Gaussian density with the mean θi
and covariance matrix Γi, i ∈ 1..k.

Likelihood maximization approaches are traditionally used
to solve the correspondence clustering problem. Expectation-
maximization (EM) algorithm [15] or Variational Bayesian
Gaussian mixture inference algorithm [16] are based on the
estimation of latent variables. Gaussian mixture models is a
generalization of k-means clustering which can consider the
information about the covariance structures of the data as
well as the centers of the latent Gaussians.

III. SPSA CLUSTERING

Let x1,x2, . . . ,xn, . . . be a sequence of input data which
generates according the probability distribution (5) with
nominal parameters Θ? and Γ?. Hereandafter the upper index
n is used as iteration index.

In this section we study the SPSA-like clustering algorithm
which minimizes mean risk functional (3) with penalty
function determined by (4) (a squared Mahalanobis distance).

Lemma 1. Under the conditions described above, the
functional (3) reaches a minimum at Θ? and Γ?.
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Proof: If the sequence {xn} is generated by the
GMM with parameters Θ? and Γ?, then with these pa-
rameters a minimum of the minus log-likelihood function
−∑x∈X ln

(
∑

k
i=1 piG(x|θi,Γi)

)
is reached. By definition of

the Gaussian density it can be rewritten as follows

k

∑
i=1

∑
xi∈Xi

(
− ln pi(2π)−

d
2 |Γi|−1 +1/2(x−θi)

T
Γ
−1
i (x−θi)

)
.

(6)
Denote the left-hand side of (6) as L and the right-hand side
of (6) as R. Then argminΘ,Γ L = argminΘ,Γ R = (Θ?,Γ?).

Functional (3) can be rewritten by the conditions through
(2) and (4) as follows

F(Θ,Γ) =
k

∑
i=1
|Xi|−1

∑
x∈Xi

(x−θi)
T

Γ
−1
i (x−θi).

Thus argminΘ,Γ F(Θ,Γ) = argminΘ,Γ R = (Θ?,Γ?).
We make the following assumptions: As1. For all input

point xn and for any chosen pair Θ,Γ we can get noisy
observation of penalty functions

yn
i (Θ,Γ) = qi(θi,Γi,xn)+ vn

i , i ∈ 1..k, (7)

and noise vn
i is bounded: |vn

i | ≤ cv, and if it is random then
it does not depend on our choice of Θ,Γ and E{vn

i } <
∞, E{vn

i
2} ≤ σn2.

As2. All matrices Γi, i∈ 1..k are symmetric positive semidef-
inite and their eigenvalues are bounded λ

j
i ≤Cλ ,

i ∈ 1..k, j ∈ 1..d.
As3. The clusters Xi(Θ

?,Γ?), i ∈ 1..k, are divided among
themselves significantly in the sense that: if for some i∈ 1..k,
x ∈ Xi(Θ

?,Γ?), and θi, Γi the inequality

|qi(θi,Γi,x)| ≤ dmax = max
i∈1..k

max
x∈Xi(Θ?,Γ?)

|qi(θ
?
i ,Γ

?
i ,x)|

holds, then ∀ j 6= i, j∈ 1..k, the following inequity is satisfied:

|q j(θ j,Γ j,x′)|> dmax +2cv ∀x′ ∈ X j(Θ
?,Γ?). (8)

Denote k-vectors of values yn
i (Θ,Γ) and vn

i as yn(Θ,Γ) and
vn respectively; jn(Θ,Γ) is k-vector of characteristic func-
tions (j(Θ,Γ,x)), found with noisy measurements yn(Θ,Γ),
n = 1,2, . . .; Θ̂n, Γ̂n are estimates of centers and covariance
matrices of the clusters on the n-th step of the algorithm (i.e.
for xn) respectively; ln = argmax jn(Θ,Γ) is an index of the
cluster to which the data point xn is assigned.

Let ∆n ∈Rd , n = 1,2, . . . be vectors consisting of indepen-
dent random variables with Bernoulli distribution, called the
test randomized perturbation, k is the number of clusters,
Θ̂0 ∈ Rd×k is the matrix of centroids initial values, Γ̂0 is
the set of initial covariance matrices, {αn} and {β n} are
sequences of positive numbers.

For estimating a covariance matrix of the cluster we
will use scatter matrix from maximum likelihood estimation
[19] and parameterized cumulative moving of covariance
matrices. Let λ is a natural number and ωn is also a
sequences of positive numbers. Then the SPSA clustering
algorithm builds the following estimates


yn
± = yn(Θ̂n−1±β n∆njnT, Γ̂n−1),

Θ̂n = Θ̂n−1− jnT
αn yn

+−yn
−

2β n ∆njnT.

(9)

Ξln =


ωn (θ̂ n−1

ln −xn)(θ̂ n−1
ln) −xn)T−Γ̂

n−1
ln

n , n > λ ,

Id , otherwise.

Γ̂
n
ln = Γ̂

n−1
ln +Ξln , (10)

where Id is identity d×d matrix.
Theorem 1: Let assumptions As1–3 and following

conditions hold
(1) The learning sequence x1,x2, . . . ,xn, . . . consists of
identically distributed independent random vectors that take
values in each of k classes in the attribute space X with a
nonzero probability;
(2) ∀n ≥ 1 the random vectors v1,v2, . . . ,vn and
x1,x2, . . . ,xn−1 do not depend on xn and ∆n, and the
random vector xn does not depend on ∆n;
(3) ∑n αn = ∞ and αn→ 0, β n→ 0, αnβ n−2→ 0 as n→∞,
ωn→ 1 as n→ ∞, λ <C.

If estimate sequences {Θ̂n} and {Γ̂n} generated by algo-
rithm (9) and (10) satisfy the relation

lim
n→∞

〈
jn(Θ̂n−1, Γ̂n−1),q(Θ̂n−1, Γ̂n−1,xn)

〉
≤ dmax + cv, (11)

then {Θ̂n} converges in the mean-square sense:
limn→∞ E{‖Θ̂n − Θ?‖2} = 0 and {Γ̂n} converges in
probability: Γ̂n p→ Γ?.

Furthermore, if ∑n αnβ n2 +αn2
β n−2 < ∞,

then Θ̂n→Θ? as n→ ∞ with probability 1.
The proof of the theorem is given in the Appendix.
Note that the advantages properties of the SPSA clustering

described above are:
• The algorithm is iterative, i.e. implementing the idea of
online learning:
• adaptability, processing of a new data on the fly;
• memory savings, it is not necessary to store the entire

data set in memory.
• High speed of the algorithm;
• The algorithm remains in operation during the growth
of the dimension of the estimated parameters (unlike for
example k-means);
• Resistance to an almost arbitrary external noise in the
measurement of penalty function at the points of the input
data.

Compare the time complexity of the simple basic version
of k-means algorithm, described in (??) (as a special case of
EM), and the SPSA clustering. In general k-means is NP-
Hard to optimize. Let t be the number of iterations of the
algorithm (the maximum setting, or necessary for conver-
gence). For one iteration of k-means (classification, mini-
mization) it is necessary kd operations. The time complexity
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is O(tNkd) since the algorithm involves all N observations
at each iteration.

For comparison with k-means we will assume that all
matrices Γi, i ∈ 1..k, in (4) are unit. It is necessary kd
operations to calculate jnT. It is also need kd operations for
calculations of each yn

− and yn
+. Thus, the time complexity

of the each iteration of the SPSA clustering is O(3kd). The
number of iterations is equal to N. Then estimate the time
complexity is O(3Nkd).

From these estimates of time complexities, we can con-
clude that the SPSA clustering algorithm is faster than k-
means under considered conditions for t > 3. Note that t is
significantly greater than 3 often in real practical applica-
tions. Method of Γ estimation (10) adds O((N− λ )d2) to
the complexity of main algorithm.

IV. EXPERIMENTS

We carry out a series of experiments for a comparison of
the proposed algorithm with the classical approaches. We
consider a synthetic data set of small dimension and the
case of a real data of high dimensionality. We use adjusted
Rand index (ARI) [20] as clustering performance metric in
experiments.

At first, we take Gaussian mixture with the following

parameters: amount of data N = 5000, Θ =

(
0 2 −3
0 2 6

)
,

Γ1 =

(
1 −0.7
−0.7 1

)
, Γ2 =

(
1 0
0 1

)
, Γ3 =

(
1 0.8

0.8 1

)
,

mixture probabilities are p = col(0.4,0.4,0.2).
We chose the following parameters for the SPSA cluster-

ing: γ = 1/6, αn = 0.25/nγ , β n = 15/n
γ

4 and ωn = tanh( n
λ
),

based on the results concerning fastest rate of convergence
of stochastic algorithm from [21].

Fig. 1: L2-norm of the convergence of centroids estimates
obtained by the SPSA clustering in the k-means experiment.

Fig. 1–2 represents results of using the SPSA clustering for
the case identity matrices Γi, i ∈ 1..k (k-means case). Fig. 1
shows L2-norm of the distance between the true centroid and
its estimate obtained at each step of the algorithm. Fig. 2
displays traces of centroids estimates by algorithm steps.

We use mini-batch k-means from [12] with size of batch
1 (so it can be called online k-means) for the performance
comparison. Table I shows the average values of adjusted

Fig. 2: Traces of centroids estimates from the SPSA cluster-
ing (blue dots) and true values of cluster centers (red square)
in the k-means experiment.

TABLE I: ARI of the k-means experiment

Algorithm Mean ARI
k-means 0.858

Online k-means 0.819
PAM 0.84

SPSA clustering 0.857

Rand index for each algorithm after 100 runs. It illustrates
that the performance of our method is similar to the perfor-
mances of k-means, online k-means and PAM algorithms.

Fig. 3: L2-norm of the convergence of centroids estimates
obtained by the SPSA clustering in the GMM experiment.

Fig. 3 shows L2-norm of the distance between the true
cluster centers and its estimate obtained from the SPSA
clustering and Fig. 4 displays traces of centroids estimates
for the GMM case with λ = 1000.

We compare the SPSA clustering with expectation-
maximization (EM) algorithm and Variational Bayesian
Gaussian mixture inference algorithm. Table II represents the
average values of adjusted Rand index for each algorithm
after 100 runs. One can see from these results that our
method is close to two classical approaches of fitting GMM,
but we note again that it has a significantly lower time
complexity.

We considered the external noise vn
i in (7) as zero in previ-
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Fig. 4: Traces of centroids estimates from the SPSA cluster-
ing (blue dots) and true values of cluster centers (red square)
in the GMM experiment.

TABLE II: ARI of the GMM experiment

Algorithm Mean ARI
EM 0.903

Variational Bayesian Gaussian mixture 0.915
SPSA clustering 0.909

ous experiments. We examine also various types of noise for
all i∈ 1..k, n = 1,2, . . .: vn

i ∼N (0,1); vn
i ∼N (0,

√
2); vn

i ∼
N (1,1); vn

i ∼N (1,
√

2); random: vn
i = 10 · (rand() ·4−2);

irregular: vn
i = 0.1 · sin(n) + 19 · sign(50−n mod 100);

constant: vn
i = 20.

We compare four algorithms under this conditions: k-
means (as more stable than online version), our method
with identity covariance matrices (denote as SPSA identity),
EM algorithm and our method with estimation of covariance
matrices with λ = 3000 (denote as SPSA cov). The average
values of adjusted Rand index for each algorithm after 10
runs are presented in Table III.

As can see from this results the SPSA clustering algorithm
greatly outperform k-means almost in all noise cases. Version
of our method with estimation of covariance matrices also
almost in all cases outperform both EM algorithm and the
version with identity matrices.

To illustrate the work of the SPSA clustering in the
case of a high dimensional real life data we apply our
algorithm to the subset of well-known base of handwritten
digits MNIST [22]. This subset contains 10000 gray-scale

TABLE III: Mean ARI of noise experiments

Noise k-means SPSA identity EM SPSA cov
N (0,1) 0.608 0.768 0.654 0.815

N (0,
√

2) 0.246 0.546 0.463 0.738
N (1,1) 0.612 0.829 0.657 0.774

N (1,
√

2) 0.246 0.601 0.371 0.612
Random 0 0.418 0.318 0.434
Irregular 0.758 0.854 0.863 0.856
Constant 0.812 0.861 0.807 0.860

normalized images of size 28× 28. Resulting centroids are
presented on Fig. 5.

Fig. 5: MNIST centroids obtained by the SPSA clustering.

Our algorithm demonstrates adequate results but centroids
of 3 and 9 stuck with each other that can be explained by
the fact that the images of these digits are similar.

V. CONCLUSION

We present the SPSA-based clustering algorithm for the
Gaussian mixture model and its theoretical justification. We
demonstrate robustness of this method in a case when data
are measured with an almost arbitrary external noise. In
addition to this property, the proposed algorithm implements
the idea of online learning and has a high speed. Series
of experiments demonstrate advantages of our method over
classical approaches. We investigate the application of the
proposed algorithm in the task of processing medical data
using convolutional neural network.

VI. APPENDIX

Proof: (1) At first, we fix Γ and prove the convergence
of {Θ̂n}. Choose some r from 1,2, . . . ,k and select a subse-
quence {Θ̂n j}, when constructing which have been adjusted
only estimates of r-th class center.

We need to prove that ∃ Nr such that xn j ∈
Xr(Θ

?,Γ?) ∀ j ≥ Nr. Suppose this is not true. Hence,
∃ an infinite increasing subsequence {n jt} for which
xn jt ∈ Xr(Θ

?,Γ?) and xn jt+1 /∈ Xr(Θ
?,Γ?). Let the function

Fi(θi,Γi) =
∫

Xi
qi(θi,Γi,x)P(dx), i ∈ 1..k is strongly convex,

then due to the algorithm (9), the mean value theorem
and a compactness of the set, we have ‖θ̂ (n jt−1)

r −
−θ̂

n jt
r ‖ ≤ αn jt m(2Cv + maxs∈[−1;1] |∇θ q(xn jt , θ̂

n jt−1
r +

+sαn jt ∆
n jt ,Γr)|) ≤ αn jt C, with some constant C.

Consequently, for sufficiently large t the difference
|q(xn jt+1 , θ̂

n jt
r ,Γr) − q(xn jt+1 , θ̂

(n jt−1)
r ,Γr)| < Cv/3. Since

xn jt+1 /∈ Xr(Θ
?,Γ?), then by (8) |q(xn jt+1 , θ̂

(n jt−1)
r ,Γr)|>

> dmax + 2Cv. From these relations for sufficiently large t,
we have |q(xn jt+1 , θ̂

n jt
r ,Γr)| ≥ |q(xn jt+1 , θ̂

(n jt−1)
r ,Γr)|−

−|q(xn jt+1 , θ̂
n jt
r ,Γr)− q(xn jt+1 , θ̂

(n jt−1)
r ,Γr)| > dmax + 5/3Cv.

On the other hand, by the condition (11) for sufficiently large
t |q(xn jt , θ̂

(n jt−1)
r ,Γr)|< dmax +

4
3Cv. This is a contradiction.

Next we enumerate for the convenience of the sequence
{θ̂ n j

r } with j = Nk to {θ̂ i
r}. By (9) we have ‖θ̂ i

r−θ ?
r ‖2 ≤

≤ ‖θ̂ (i−1)
r −θ ?

r − α i

2β i

(
yi
+− yi

−
)

∆i‖2 .

Denote F n−1
r - σ -algebra of events, generated by the

random variables {θ̂ (n−1)
r }, constructed by (9). Then we get

EF n−1
r
‖θ̂ i

r−θ
?
r ‖2 ≤ ‖θ̂ i−1

r −θ
?
r ‖2−α

i〈
θ̂
(i−1)
r −θ

?
r , (12)
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β i−1EF n−1
r

∆i
(
yi

r,+− yi
r,−
)
〉+ α i2

4β i2
EF n−1

r
‖∆i‖2

(
yi

r,+− yi
r,−
)2
.

Let us estimate last term on the right-hand
side (12). Let the function q(xi, ·,Γi) satisfies the
Lipschitz condition, ‖∆i‖2 = m, using the mean value
theorem and the Cauchy-Schwarz inequality we derive
EF n−1

r
‖∆i‖2

(
yi

r,+− yi
r,−
)2

= 2m(EF n−1
r

(
vi

r,+− vi
r,−
)2
+

+EF n−1
r

(
q(xi, θ̂

(i−1)
r + β i∆i,Γr) − q(xi, θ̂

(i−1)
r −

−β i∆i,Γr)
)2
) ≤ 2mEF n−1

r
(vi

r)
2 + 2mEF n−1

r
(|q(xi, θ̂

(i−1)
r +

+β i∆i,Γr)− q(xi,θ ?
r ,Γ

?
r )| + |q(xi, θ̂

(i−1)
r − β i∆i,Γr) −

−q(xi,θ ?
r ,Γ

?
r )|)2 ≤ 2mEF n−1

r
((M+0.5)

(
‖θ̂ (i−1)

r +∆iβ i‖2 +

+‖θ̂ (i−1)
r −∆iβ i‖2

)
+ ‖∇θ q(xi,θ ?

r ,Γ
?
r )‖2)2 + 2mEF n−1

r
(vi

r)
2.

In view of the uniform boundedness ∇θ q(·,θ ?
r ,Γ

?
r ), we get

EF n−1
r
‖∆i‖2

(
yi

r,+− yi
r,−
)2 ≤C1EF n−1

r
(vi

r)
2 +C2β i2‖θ̂ (i−1)

r −
θ ?

r ‖2 + o(β i2), where Ci, i = 1,2 . . . is some positive
constants. Let us turn to the second term of the right-hand
side (12)

β
i−1

EF n−1
r

∆
i (yi

r,+− yi
r,−
)
= β

i−1
EF n−1

r
∆

ivi
r+β

i−1
EF n−1

r
∆

i×

×
(
q(xi, θ̂

(i−1)
r +β

i
∆

i,Γr)−q(xi, θ̂
(i−1)
r −β

i
∆

i,Γr)
)
. (13)

The first term on the right-hand side of (13) is equal to zero
by the properties of ∆i and independence of ∆i and vi

r,±.
Using the mean value theorem, uniform boundedness of the
function ∇θ q(·,θ ,Γ) and definition of Fr(Θ,Γ), convert the
second term on the right of the (13) to the form
β i−1EF n−1

r
(∆i
(
yi

r,+− yi
r,−
)
= 2∇Fr(θ̂

(i−1)
r )+

+EF n−1
r

(∆i
〈
∆i,∇θ q(xi,θ

(i−1)
r

+
,Γr)−∇θ q(xi, θ̂

(i−1)
r ,Γr)

〉
+

+EF n−1
r

(∆i
〈
∆i,∇θ q(xi,θ

(i−1)
r

−
,Γr) − ∇θ q(xi, θ̂

(i−1)
r ,Γr)

〉
,

here θ
(i−1)
r

±
∈
[
θ
(i−1)
r ,θ

(i−1)
r ±β i∆i

]
. The function q(x, ·,Γ)

satisfies the Lipschitz condition and the function Fr(·,Γ) is
strongly convex, then using valid for any ε > 0 inequality
‖θ̂ (i−1)

r −θ ?
r ‖ ≤ (ε−1β i + εβ i−1‖θ̂ (i−1)

r −θ ?
r ‖2)/2, derive

−α i
〈

θ̂
(i−1)
r −θ ?

r ,β
i−1EF n−1

r
∆i
(
yi

r,+− yi
r,−
)〉

=

=−2α i
〈

θ̂
(i−1)
r −θ ?

r ,∇Fr(θ̂
(i−1)
r ,Γr)

〉
−

−α i
〈
θ̂
(i−1)
r −θ ?

r ,EF n−1
r

∆i
〈
∆i,∇θ q(xi,θ

(i−1)
r

+
,Γr)−

−∇θ q(xi, θ̂
(i−1)
r ,Γr)

〉〉
−α i

〈
θ̂
(i−1)
r −θ ?

r ,EF n−1
r

∆i
〈
∆i,

∇θ q(xi,θ
(i−1)
r

−
,Γr)−∇θ q(xi, θ̂

(i−1)
r ,Γr)

〉〉
≤−2µα i‖θ̂ (i−1)

r

−θ ?
r ‖2 +Mm3/2α iβ i

(
ε−1β i + εβ i−1‖θ̂ (i−1)

r −θ ?
r ‖2
)
.

Hence, we have EF n−1
r
‖θ̂ i

r − θ ?
r ‖2 ≤ ‖θ̂ (i−1)

r −
−θ ?

r ‖2
(

1−2µα i +Mm3/2α iε +C2α i2/4
)
+

+Mm3/2α iβ i2ε−1 + α i2/(4β i2)
(

C1EF n−1
r

vi
r
2
+o(β i2)

)
.

Let ε small enough to Mm3/2ε < 2µ and i is
sufficiently large. By the conditions of Theorem 1 we
get EF n−1

r
‖θ̂ i

r − θ ?
r ‖2 ≤ ‖θ̂ (i−1)

r − θ ?
r ‖2
(
1−C3α i

)
+

+C4

(
α iβ i2 +α i2β i−2

(1+EF n−1
r

vi
r
2
)
. Then by Robbins-

Sigmund lemma [23] θ̂ i
r → θ ?

r at i → ∞ with probability
one. E

{
‖θ̂ i

r−θ ?
r ‖2
}
≤ E

{
‖θ̂ (i−1)

r −θ ?
r ‖2
}
(1 − C5αn) +

+C6(α
nβ n2 +αn2

β n−2(1+σn2)). The convergence in the

mean-square sense to a point θ ?
r of sequence of estimates

{θ̂ i
r} follows from [23].
(2) Let Θ is fixed. Consider estimates {Γ̂n

l = {ĝn
i j}},

l ∈ 1..k. Denote ŝn
i j = {(θ̂l − xn)(θ̂l − xn)T}i j — i, j-th ele-

ment of l-th scatter matrix, then ĝn
i j =(λ +∑

n
r=λ+1 ωr ŝr

i j)n
−1.

By the Theorem 1 conditions: λn−1→ 0, ωr→ 1, ŝr
i jn
−1→

Γl at n→ ∞. Thus, Γ̂n p→ Γ? as an estimate obtained be the
likelihood maximization.

(3) By assumptions about q(Θ,Γ,x) and (1) and (2) we
obtain the result of Theorem 1.
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