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Abstract: A multi-agent network system of different computing nodes processing tasks of
different priority levels is considered. Agents balance their loads for each priority level by
achieving consensus of their load values. Agents operate by local voting protocol and exchange
information about their states in presence of noise in communication channels in the system
with switching topology. The network usage for task exchange is limited by the constraints on
average cost of utilized links. A way to meet the constraints by randomization of link usage is
considered. Simulation illustrating the considered approach is provided.
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1. INTRODUCTION

Recently the consensus approach has been widely applied
for solving various practical problems such as coopera-
tive control of multivehicle networks Ren et al. (2007);
Granichin et al. (2012), distributed control of robotic
networks Bullo et al. (2009), flocking problem Yu et al.
(2010a); Virágh et al. (2014), optimal control of sensor
networks Kar and Moura (2010) and others. An interesting
application of the consensus approach is adaptation of
airplane’s “feathers” in a turbulence flow Granichin et al.
(2017). A possible way to utilize consensus approach in the
task of load balancing in computer, production, transport,
logistics, and other service networks is to formulate the
problem of load balancing as the consensus achievement
among nodes’ loads across the network Amelina et al.
(2015). In works Ren and Beard (2007); Chebotarev and
Agaev (2009); Li and Zhang (2009); Yu et al. (2010b);
Huang (2012); Proskurnikov (2013); Lewis et al. (2014);
Olfati-Saber andMurray (2004) the authors considered the
conditions for achieving consensus in multi-agent network
systems.

In the networks processing tasks with several priority
levels to equalize agents’ loads different priority levels
should be treated separately. In order to balance the

⋆ This work was supported by Russian Foundation for Basic Re-
search (projects 16-07-00890 and 17-51-53053).

load across the network system via consensus protocol
the consensus should be targeted for each class separately
since the consensus values of agents’ loads could differ
for separate priority levels. This calls for differentiated
consensuses problem setting i.e. achieving the consensus
for each priority level in the network with tasks of different
priorities Amelina et al. (2014a,b).

In practice it might be important to limit communica-
tion between the agents in the network. The limitations
could be caused by necessity to save the battery charge
for autonomous agents. The need to constrain the task
exchange among the nodes could also be caused by the
network traffic prioritization Jiang et al. (2002). In case of
limited resources they are utilized to serve the high priority
tasks first while lower priority tasks wait to be processed.
A way to limit the agent communication by satisfying
the imposed averaged cost constraints on utilized netwotk
topolgy by randomization of communication links usage
was suggested in Amelina et al. (2014b).

In this paper we consider the approach to meet the aver-
aged cost constraints on the utilized network introduced
in Amelina et al. (2014b) in more detail.

The paper is organized as follows. Notation used in the
paper and the problem formulation are given in Section 2.
The control protocol for achieving the consensus is intro-
duced in Section 3. In Section 4 the main assumptions and
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main results are presented. Simulation results are given in
Section 5. Section 6 contains conclusion remarks.

2. PROBLEM STATEMENT

We consider a dynamic network system of n agents,
which exchange information among themselves during
tasks processing. Tasks of m different classes may come
to different agents of the system in different discrete time
instants t = 0, 1, . . .. Agents process incoming tasks in
parallel. Tasks can be redistributed among agents based
on a feedback.

Without loss of generality, agents in the system are num-
bered. Assume N = {1, . . . , n} denotes the set of agents
in the network system, E denotes the set of edges of
topology graph. Let i ∈ N be the number of an agent. The
network topology may switch over time. Let the dynamic
network topology be modeled by a sequence of digraphs
{(N,Et)}t≥0, where Et ⊂ E denotes the set of edges
at time t of topology graph (N,Et). The corresponding

adjacency matrices are denoted as At = [ai,jt ], where

ai,jt > 0 if agent j is connected with agent i and ai,jt = 0
otherwise. Here and below, an upper index of agent i is
used as the corresponding number of an agent (not as an
exponent). Denote GAt

as the corresponding graph.

To introduce some properties of the network topology,
the following definitions from the graph theory will be
used. Define the weighted in-degree of node i as the sum
of i-th row of matrix A: deg−i (A) =

∑n
j=1 a

i,j ; D(A) =

diag{deg−1 (A), . . . deg
−
n (A)} is the corresponding diagonal

matrix; deg−max(A) is the maximum in-degree of graph GA.
Let L(A) = D(A) −A denote the Laplacian of graph GA;
·T is a vector or matrix transpose operation; ||A|| is the

Frobenius norm: ‖A‖ =
√

∑

i

∑

j(a
i,j)2; Re(λ2(A)) is the

real part of the second eigenvalue of matrix A ordered
by the absolute magnitude; λmax(A) is the maximum
eigenvalue of matrix A. E is a mathematical expectation
symbol.

It is said that digraph GB is a subgraph of a digraph GA if
bi,j ≤ ai,j for all i, j ∈ N .

Digraph GA is said to contain a spanning tree if there exists
a directed tree Gtr = (N,Etr) as a subgraph of GA which
includes all vertices of GA.

We suppose that tasks (jobs) belong to different classes
k = 1, . . . ,m and every agent has m queues — one for
each task class.

The behavior of agent i ∈ N is described by characteristics
of two types:

• lengths of m queues of tasks of each class k at time

instant t: qi,kt , k = 1, . . . ,m,
• average productivity: piav or average amount of tasks

of all priorities (i.e. piav = E(pit) = E(
∑m

k=1 p
i,k
t ) =

∑m
k=1 p

i,k
av ) processed by agent i during certain time

interval.

Here and further pi,kt stands for number of tasks of priority

k processed by agent i at time instant t and pi,kav = Epi,kt .
Each agent should distribute its own productivity among

all task classes in such a way that, on one hand the
priorities for task classes are provided and on the other
hand the “starvation problem” is taken into account i.e.
tasks of the lower priority classes do not wait for execution
for too long. This is achieved by making use of the
probabilistic priority discipline Jiang et al. (2002). Each
task class is given a productivity fraction Pk, k = 1, . . . ,m
which is the same for a certain class k on every agent in
the system. On each agent the tasks from their queues are
chosen for execution randomly according to the following
formula:

p̃i,kt =







Pk
∑

q
i,l
t >0 Pl

, if qi,kt > 0;

0, otherwise,

where p̃i,kt is the probability of choosing a task of class
k for execution on agent i at a time instant t. Therefore
the bigger fraction Pk corresponds to the higher chance
of that task of class k to be executed. Thus the agent’s
productivity is distributed among all classes of tasks in the

following way: Epi,kt = pi,kav = p̃i,kt piav. Here pi,kt is number
of operations allocated for tasks of class k on agent i at
time instant t if the productivity piav means the whole
number of operations which agent i is able to proceed
during the time from t till t+1. Note that according to the

definition of p̃i,kt if at certain time instant t′ the queue of
tasks of class k′ on the agent i′ is empty, no operations

would be allocated for tasks of class k′. Instead pi
′,k′

t′

operations would be distributed among other task classes
in proportions of their productivity fractions Pk, k 6= k′.

For all i ∈ N, t = 0, 1, . . ., the dynamics of the network
system in a vector form is as follows

qi
t+1 = qi

t − pi
t + zit + ui

t, (1)

where qi
t = [qi,kt ] is a vector whose kth element is defined

by the amount of tasks of kth class; pi
t = [pi,kt ], and

zit = [zi,kt ] is an m-vector whose kth element zi,kt is
the amount of new tasks of class k, which came to the
system and were received by agent i at time instant t;
ui
t ∈ R

m is a vector of control actions (redistributed tasks
of class k to agent i at time instant t), which could (and
should) be chosen based on some information about queue

lengths of neighbors qj
t , j ∈ N i

t , where N i
t is the set

{j ∈ N : ai,jt > 0}.

Tasks have different priorities and, for each priority, the
maximum cost of the network {N i

t , i ∈ N} that could be
used is defined the following way:

C({N i
t , i ∈ N}) = max

i∈N

∑

j∈Ni
t

ai,jt . (2)

Let the tasks of class 1 have the highest priority and
tasks of class m have the lowest priority. The highest
priority tasks should be served faster therefore the network
of higher cost should be available for their redistribution
among agents. Consider subgraphs of network graph GAt

and let Bk
t be the adjacency matrices for network sub-

graphs available for kth class tasks transmission. Since
GBk

av
should have the “richest” topology for k = 1 and GBm

av

should have the most “poor” one, we could say that the
network has the topology decomposition {GBk

av
} : GBm

av
⊆
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GB
m−1

av
⊆ . . . ⊆ GB1

av
, where GBk

av
stands for the graph with

adjacency matrix Bk
av = E(Bk

t ).

Definition 1. We will say that network topology decom-
position {GBk

t
} satisfies average cost constraint {ck} if for

every priority class k

deg−max(B
k
av) = Edeg−max(B

k
t ) = Emax

i∈N

∑

j∈N
i,k

t

bi,j,kt ≤ ck,

(3)

where N i,k
t is the neighbors set of agent i at time t formed

in accordance with the topology GBk
t
. In case the maximal

in-degree violates the cost constraint we randomize usage
of the links between the agents in such a way that average
cost of used topology meets the the cost constraint.

Consider the following example. For the undirected ring of
6 agents network topology graph adjacency matrix is

A =















0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0















.

Suppose cost constraints are c1 = 2, c2 = 1. Since in
the example the cost of each link equals 1, each agent is
allowed to use two links for exchange of priority 1 tasks
and one link per time instant in average for exchange of
tasks of priority 2. Agents don’t have to randomize the
link usage for priority 1 tasks, so the adjacency matrix
of network graph for priority 1 task exchange B1

t (matrix
of redistribution protocol for priority 1) equals A for all
t = 0, 1, . . .. So B1

av = B1
t = A, t = 0, 1, . . .. To meet

cost constraint for priority 2 agents may use the links
with probability 0.5 so that in average the cost of utilized
network is 1. B2

t for certain t may be as follows:

B2
t =















0 1 0 0 0 1
1 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 1 0















.

Note that at each time instant topology graph for priority
2 tasks exchange GB2

t
may not be connected. But if the

graph GB2
av

corresponding to averaged adjacency matrix

B2
av is connected, load would be balanced across the

network operating by protocol (6). Since we aim to meet
the averaged cost constraints requirement the view of
averaged adjacency matrices B1

av, B
2
av is more interesting

than the view of adjacency matrices B1
t , B

2
t at certain time

instant t. For cost constraints c1 = 2, c2 = 1 corresponding
averaged adjacency matrices of utilized network topology
are

B1
av =















0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0















, B2
av =















0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0















.

Cost constraints deg−max(B
1
av) = 2 and deg−max(B

2
av) = 1

are satisfied.

Denote pi,kav = Epi,kt and

xi,k
t =

qi,kt

pi,kav
(4)

the load of agent i ∈ N for priority class k = 1, . . . ,m.
Though on practice piav could be unknown in advance,
we consider the problem setting in which the agents’
average productivities are known. Assume that piav 6=
0, ∀i ∈ N and Pk 6= 0, k = 1, . . . ,m. In Amelina et al.
(2015) it was proven that from all possible options for the
redistribution of all tasks the minimum operation time

of the system is achieved when loads xi,k
t are equalized

throughout the network. Hence, it is important to consider
the achievement of the following goal.

It is required to maintain balanced (equal) loads across the
network for every priority class and, at the same time, to
meet the cost constraint requirement.

At this setting we can consider the consensus problem for

states xi
t = [xi,k

t ] of agents, where xi
t is a state vector of

agent i ∈ N , consisting of loads xi,k
t for m classes. We use

the following definitions.

Definition 2. n agents of a network are said to reach a
consensus at time t if xi

t = xj
t ∀i, j ∈ N, i 6= j.

Definition 3. n agents are said to achieve asymptotic
mean square ε-consensus for ε > 0 when

limt→∞E‖xi
t − xj

t‖
2 ≤ ε.

To ensure balanced loads across the network (e.g., in
order to increase the overall throughput of the system
and to reduce the execution time), it is natural to use a
redistribution protocol over time. We assume that to form
the control (redistribution) strategy each agent i ∈ N has
noisy observations about its neighbors’ states

yi,j
t = xj

t +wi,j
t , j ∈ N i

t , (5)

where wi,j
t is a noise vector.

3. CONTROL PROTOCOL

In Amelina et al. (2015), properties of a control algorithm,
called local voting protocol, were studied for stochastic
networks in the context of load balancing problem. For
each agent the control (amount of redistributed tasks) was
determined by the weighted sum of differences between
the information about the state of the agent and the
information about its neighbors’ states. The local voting
was used in Amelina et al. (2015) to achieve consensus
for single class. In this paper, we consider a multi-class
network and we aim to achieve consensus across the
network for every class (i.e. we want xi,1

t , i = 1 . . . n to

reach consensus,... xi,k
t , i = 1 . . . n to reach consensus,...

xi,m
t , i = 1 . . . n to reach consensus, which may be different

for different k, k = 1 . . .m). Let us consider a protocol as
follows. We define

ui,k
t = γkpi,kav

∑

j∈N̄i
t

bi,j,kt (yi,j,kt − xi,k
t ), (6)

where γk > 0 is a step-size of the control protocol and
N̄ i

t ⊂ N i
t is the neighbor set of agent i (note, that we could

use not all the available connections, but some subset of

them), bi,j,kt are protocol coefficients.
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Let Bk
t = [bi,j,kt ], k = 1, . . . ,m be the matrices of task

redistribution protocol for every time instant t. (We set

bi,j,kt = 0 when ai,jt = 0 or j /∈ N̄ i
t .) The corresponding

graph GBk
t
may have the same topology as graph GAt

of

matrix At or more poor.

The dynamics of the closed loop system with protocol (6)
is as follows: for k = 1, . . .m, i ∈ N

xi,k
t+1 = xi,k

t − r̃i,kt + z̃i,kt + γk
∑

j∈N̄i
t

bi,j,kt (yi,j,kt − xi,k
t ) =

xi,k
t −r̃i,kt +z̃i,kt +γk

∑

j∈N̄i
t

bi,j,kt xj,k
t −γkdeg−i (B

k
t )x

i,k
t +γkw̃i,k

t ,

(7)

where w̃i,k
t =

∑n
j=1 b

i,j,k
t wi,j,k

t and r̃i,kt = pi,kt /pi,kav , z̃
i,k
t =

zi,kt /pi,kav .

Let us rewrite Eq. (7) in a more compact form. Define the

R
n-valued vectors Xk

t = [xi,k], Rk
t = [r̃i,kt ], Zk

t = [z̃i,kt ] and

Wk
t = [w̃i,k

t ]. The dynamics of the closed loop system with
protocol (6) may be represented as

Xk
t+1 = Xk

t + γk(Bk
t −D(Bk

t ))X
k
t −Rk

t + Zk
t + γkWk

t .

Due to the view of Laplacian matrices L(Bk
t ) we can

rewrite the dynamics of the system in the following vector-
matrix form:

Xk
t+1 = Xk

t − γkL(Bk
t )X

k
t −Rk

t + Zk
t + γkWk

t . (8)

4. MAIN RESULTS

4.1 Assumptions

Let (Ω,F , P ) be the underlying probability space corre-
sponding to the sample space, the collection of all events,
and the probability measure respectively.

Assume that the following conditions are satisfied:

A1 a) For all i ∈ N, j ∈ N̄ i
t , k = 1, . . . ,m, observation

noises wi,j,k
t are zero-mean, independent identically

distributed (i.i.d.) random variables with bounded

variances: E(wi,j,k
t )2 ≤ σ2

w,k.

b) Graphs GBk
t
, k = 1, . . . ,m, t = 0, . . . are

i.i.d. (independent identically distributed), i.e. the
random events of appearance of “time-varying” edge
(j, i) in graph GBk

t
are independent and identically

distributed for the fixed pair (j, i), i ∈ N, j ∈ N i
max =

∪tN̄
i
t . For all i ∈ N, j ∈ N i

t weights bi,j,kt in the con-
trol protocol are independent random variables with

mean values (mathematical expectations): Ebi,j,kt =

bi,j,kav , and bounded variances: E(bi,j,kt −bi,j,kav )2 ≤ σ2
b,k.

c) For all k = 1, . . . ,m, i ∈ N, t = 0, 1, . . . ran-

dom values zi,kt are independent with expectations:

Ezi,kt = z̄k which do not depend on i, and bounded

variances: E(zi,kt − z̄k)2 ≤ σ2
z,k.

d) For all i ∈ N, k = 1, . . . ,m, t = 0, 1, . . . ran-
dom vectors pi

t are i.i.d. and consist of independent

components. Random values r̃i,kt , k = 1, . . . ,m, have

expectations: Er̃i,kt = r̄k and bounded variations:

E(r̃i,kt − r̄k)2 ≤ σ2
r,k which do not depend on i.

Additionally, all mentioned in Assumption A1 in-
dependent random variables and vectors are mutually
independent.

A2 Graphs GBk
av

have a spanning tree (for the consen-
suses to be achievable throughout the system Cheb-
otarev and Agaev (2009)).

A3 For step-sizes γk, k = 1 . . .m of control protocols (6)
the following conditions are satisfied:

0 < γk <
1

deg−max(Bk
av)

, |δ(γk)| < 1, (9)

where δ(γk) = 1− 2γkλ2(L(B
k
av)) +

(γk)2λmax

(

E(L(Bk
t )

TL(Bk
t ))

)

.

4.2 Consensus achievement

Theorem 1. If Assumption A2 holds then for any av-
erage cost constraints {ck}, ck > 0, there exists network
topology decomposition {Gk

av} that satisfies the averaged
cost constrains {ck} and for which all graphs GBk

av
have

spanning trees.

Proof 1. The proof is given in Amelina et al. (2014b).

Theorem 2. If Assumptions A1–A3 hold then for aver-

aged squared difference νkt = Xk
t − X⋆,k

t of trajectory of

closed-loop system (8) and X⋆,k
t = 1n ⊗ 1

n

∑n
i=1 X

i,k
t the

following inequality is satisfied:

E‖νkt ‖
2 ≤

Jk(γ
k)2 +Kk

Skγk − Vk(γk)2
+

+

(

νk0 −
Jk(γ

k)2 +Kk

Skγk − Vk(γk)2

)

(1− Skγ
k + Vk(γ

k)2)t, (10)

i.e. if additionally νk0 < ∞, then the asymptotic
mean square εk-consensus in (7) is achieved with εk =
Jk(γ

k)2+Kk

Skγk−Vk(γk)2
. Here 1n ∈ R

n, consisting of 1 at all

places and ⊗ is Kronecker product, Jk = σ2
w,k‖B

k
av‖

2,

Kk = (n − 1)(σ2
z,k + σ2

r,k), Sk = 2λ2(L(B
k
av)), Vk =

λmax

(

E(L(Bk
t )

TL(Bk
t ))

)

.

Proof 2. The proof is similar to the proof of Theorem 1 in
Amelina et al. (2014a).

Theorem 2 shows that queues with different priorities
achieve m different consensus levels separately. This be-
havior is termed as differentiated consensuses.

Remark 1. To achieve the system convergence certain
assumptions have to be met A1–A3. Assumptions A1
bound mathematical expectations and variances of the
random variables in order to make the resulting divergence
εk between agents’ states bounded. If assumption A2 is
not met consensus would not be achieved among all agents
in the network. (But only within connected components
of network topology graph.) Theorem 2 gives a conser-
vative estimate of the divergence among agents’ states.
For the system to converge step-size value γk has to be
bounded (A3). For the proposed estimate to converge the
|δ(γk)| has to be bounded (A3). δ(γk) = (1 − Skγ

k +
Vk(γ

k)2) in (10) and if A3 is met (δ(γk))t −−−→
t→∞

0.

Theorem 3. If Assumptions A1–A3 hold then optimal
step-size γ⋆,k of control protocol (6) can be calculated by
formula:
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50000
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150000

200000

γ k

|| νk
t
||

2

Fig. 1. Dependence of ‖νkt ‖
2 = ‖Xk

t −X⋆,k
t ‖2 on γk in the

system with cost constraints c1 = 2, c2 = 2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50000

100000

150000

200000

γ k

|| νk
t
||

2

Fig. 2. Dependence of ‖νkt ‖
2 = ‖Xk

t −X⋆,k
t ‖2 on γk in the

system cost constraints c1 = 2, c2 = 1.

γ⋆,k = −
KkVk

JkSk

+

√

(KkVk)2

(JkSk)2
+

Kk

Jk
(11)

Proof 3. Formula (11) can be obtained by taking the

derivative of εk = Jk(γ
k)2+Kk

Skγk−Vk(γk)2 with respect to γk.

Remark 2. In formula (11) all elements have Kk which
depends on noise variance σ2

w,k in numerator and Jk
in denominator which depends on variance of amount
of incoming tasks σ2

z,k. Therefore higher noise variance
calls for smaller step-size value to achieve the system
convergence. On the other hand a larger step-size value is
needed to redistribute incoming tasks among the agents
and keep the system balanced if variance of amount
of incoming tasks is high. Optimality in Theorem 3 is
understood in the sense of choosing such value of step-
size that consensus in the system is reached with minimal
mean-squared error under given conditions.

5. SIMULATION RESULTS

Let us consider a network of n = 16 agents connected as a
undirected circle. The number of tasks coming to the sys-
tem at time instant t is a Poisson random variable and dis-
tributed with parameter σz = 200, k = 1, . . . ,m, m = 2.

0 50 100 150 200
400

600

800

1000

1200

1400

1600

t

x
i, l
t

Fig. 3. Consensus achievement in the system cost con-
straints c1 = 2, c2 = 2.

0 50 100 150 200
400

600

800

1000

1200

1400

1600

t

x
i, l
t

Fig. 4. Consensus achievement in the system cost con-
straints c1 = 2, c2 = 1.

Time between tasks arrival to the system is exponentially
distributed random variable with parameter 50. The tasks
are supposed to be atomic and unitary i.e. complexity
of all tasks equals 1 computation unit. Agent average
productivities piav, i = 1 · · ·n are constant and have values
distributed uniformly in interval [0.5, 1.5]. Productivity
fractions are 1/2 and 1/2 for tasks of the first and the
second priorities. Noise occurring during information ex-

change between agents wi,j,k
t is a random variable with

uniform distribution on interval [−0.1, 0.1]. At time instant
t0 all agents have queue lengths distributed evenly in
interval [500, 700] for priority 1 tasks and [200, 400] for
tasks of priority 2. Step-size γk was chosen equal 0.2 for
both priorities. Fig. 1, 2, 3, 4 show the results of simulation
of two scenarios with different imposed cost constraints,
c1 = 2, c2 = 2 (Fig. 1, 3) and c1 = 2, c2 = 1 (Fig. 2,
4). Since the network topology graph is undirected ring,
each node has two incident edges and deg−maxA = 2. Conse-
quently, in the first simulation scenario the cost constraints
equal the maximum cost of the network and the agents
are not restricted in usage of the network links. In the
second scenario agents are restricted in exchange of tasks
of priority 2. If the links are used with probability 1/2 the
cost constraint is met.
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Fig. 1, 2 illustrate the dependence of consensus achieve-
ment precision on step-size value for different priorities.
The graphs show the value of squared difference ‖Xk

t −

X⋆,k
t ‖2 in the system operating by protocol (6) after 20 it-

erations. When the system is under the cost constraints the
agents’ loads converge to the consensus value with lower
precision. That corresponds to higher position of the green
graph on Fig. 4. Also feasible step-size interval slightly
broadens. (In case of changing or unknown parameters
of system a search stochastic approximation algorithms
with input randomization could be used to choose the
value of step-size Granichin and Amelina (2015); Amelina
et al. (2016)). Fig. 3, 4 show the consensus achievement in
the system. Agents’ loads converge to average value. New
tasks coming to one of the agents disrupt the balance until
agents’ loads reach the new consensus value. In second case
the rate of consensus achievement among agents’ loads is
smaller since some of the available links are not used in
order to meet the cost constraint.

6. CONCLUSION

The problem of load balancing in the network processing
tasks of different priorities could be addressed by achieving
a consensus among agents’ loads in the system for each
task priority. Optimal convergence to to the consensus
value could be achieved by choosing the corresponding
step-size value. In our previous works we proposed an
estimate of divergence of agents’ loads values in the system
operating by local voting protocol. We also proposed a
way to minimize the divergence estimate by choosing the
optimal step-size value of the protocol in the system with
given parameters. If the imposed averaged cost constraints
on the network are satisfied by randomizing the links
usage (with the probability corresponding to the cost
constraint), the previously obtained results remain correct.
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Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., So-
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