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Abstract: Due to significant advancements in embedded systems, sensor devices, and wireless
communication technology, sensor networks have been attracting widespread attention in areas
such as target tracking, monitoring, and surveillance. Technological advancements made it
possible to deploy a large number of inexpensive but technically advanced sensors to cover wide
areas. However, when a tracking system has to track a large number of targets, the computation
and communication loads arise. In this paper, we compare two task assignment methods that
might be used in the multiple target tracking problem. The first one is the brute force method
and the second one is based on linear matrix inequalities. We provide performance and load
testing results for these methods.
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1. INTRODUCTION

Sensor networks are widely used in various fields. Espe-
cially they are suitable for such applications as monitoring,
target localization and tracking, space situational aware-
ness (see Giannakis et al. (2013); Jia et al. (2016); Thite
and Mishra (2016)). Significant advancements in embed-
ded systems, sensor devices, and wireless communication
technology make it possible to use large-scale networks,
which provide more advantages over a single node or a
small network. In particular, each sensor mostly receives
incomplete observations (measurements) because of the
noisiness of an environment and inaccuracy inherent to the
sensor devices. Thanks to the use of multiple sensors one
might obtain a more accurate estimation of the measured
value through the information fusion. In other words,
multi-sensor networks can be used to reduce uncertainties.

The use of the tracking systems, which are comprised of
multiple inexpensive and small sensors, brings new chal-
lenges due to resource limitations of the network. Each sen-
sor has limited sensing coverage and it might be ineffective
for a target to be tracked by all available sensors or by a
fixed subset of sensors through the entire tracking process.
? This work was supported by Russian Science Foundation (project
16-19-00057).

Moreover, sensors deployed in a large area of interest may
not contribute much to the tracking quality since sensors
might be far away from the targets. Nevertheless, they
consume their own and network resources by collecting
the data and communicating with the other nodes. These
issues gave rise to the sensor selection or task assignment
problem, in which the best subset of the available sensors
needs to be chosen according to given performance con-
straints.

In general, the sensor selection problem is expressed as
follows (Chepuri and Leus (2015)):

arg min
q∈{0,1}N

h(Q(q)) s.t. 1T
Nq = K, (1)

where q is a selection vector of length N , h(Q(q)) is a
scalar cost function related to the error covariance matrix
Q. The error covariance matrix is optimized to select the
best subset of K sensors out of N available sensors. The
problem (1) is combinatorial and one needs to do

(
K
N

)
searches to find the solution. In the multi-target case this
problem becomes even worse because we need to find a
selection vector for every target.

There are various algorithms available in the literature to
solve the problem of sensor selection or resource allocation.
In Masazade et al. (2012) the authors propose a target
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tracking algorithm based on extended Kalman filtering,
in which the selection process is performed by designing
a sparse gain matrix. Heuristic Yu and Prasanna (2005),
stochastic heuristic Jin et al. (2012) and meta-heuristic
intelligent optimization algorithms Yang et al. (2014) have
also been considered to solve this problem. Exhaustive
search Kaplan (2006), greedy search Kalandros (2002),
auction algorithm Chen et al. (2006), are some other
algorithms that are applied to resource allocation. Consid-
ered algorithms tend to be computationally expensive. To
address the complexity issues, sparse convex optimization
approaches are used in Joshi and Boyd (2009).

In Botts et al. (2016) the authors consider a stochas-
tic multi-agent and multi-target surveillance problem and
apply to it a cyclic stochastic optimization algorithm.
Recently, researchers have been actively developing ap-
proaches based on randomization (see Tempo et al. (2012);
Granichin et al. (2015)). Event-based tracking technologies
are also widely considered due to throughput constraints
and difficulty in analyzing a large amount of data Batmani
et al. (2017).

The existing works mainly address the problem of choosing
K sensors from a set of available sensors in order to
obtain the best tracking accuracy. However, in large-
scale networks it is important to find a trade-off between
accuracy and resource utilization.

1.1 Contribution

In this work we compare two task assignment methods that
might be used in the multiple target tracking problem. The
first one is the brute force method and the second one is
based on linear matrix inequalities (LMI). We described
the idea behind the second method in Erofeeva et al.
(2018), where the selection problem was formulated as the
design of a sparse resource allocation matrix Gt to choose
the most informative sensors. The entries of Gt were
designed to be as sparse as possible such that the tracking
error and the amount of used sensors were minimized.

Mathematically, it means one should minimize the sum of
non-zero entries of the vector g defined by the l0-(quasi)

norm: ‖g‖0 =
∑N
j=1 |sign gj |. Since the l0-(quasi) norm

optimization is NP-hard and nonconvex, one should use
the convex surrogate, i.e. the l1-norm heuristic, that gives
the best approximation of the sparse solution (Barabanov
and Granichin (1984); Polyak et al. (2014)):

‖g‖1 =

N∑
j=1

|gj |.

In essence, we sought a sparse matrix Gt consisting of
vectors g (i.e., vector with many zeros and a few non-zero
entries) that minimizes the quality functional presented in
the next section.

1.2 Outline and Notations

The remainder of the paper is organized as follows. In
Section 2, we introduce the problem of multiple target
tracking by a sensor network, consisting of identical de-
vices. Section 3 provides the techniques of finding an
intersection of the ellipsoids corresponding to the sensors

measurements. In Section 4, we describe task assignment
methods. In Section 5, we provide comparison results of
the methods considered in the previous section. Finally,
Section 6 concludes the paper.

The notation used in this paper can be described as
follows. Upper and lower bold face letters are used for
matrices and column vectors, respectively. E{·} is the
expectation operation. Ik is a k × k identity matrix with
ones on the main diagonal and zeros elsewhere. 4 is
a non-strict inequality for symmetric matrices that is
understood in the sense of inequalities for quadratic forms.
(·)T denotes transposition. |U| denotes the cardinality of
the set U . ‖ · ‖ is the Euclidean norm. tr{·} is the matrix
trace operator. det{·} is the matrix determinant.

2. PROBLEM STATEMENT

Consider a distributed network of n sensors, randomly
located in an area of interest. Let N = {1, 2, . . . , n} be

the set of sensors and sjt ∈ Rk be the state of the sensor j.
In the line of sight of the sensors are movingm targets. Our
goal is to assign sensors to the targets in such a way that
we could accurately predict the movement trajectories of
the targets and use as less sensors as possible.

Let M = {1, 2, . . . ,m} be the set of targets, {rit}t=0,1,2,...,
rit ∈ Rl, i ∈M be the movement trajectory of the target i,
whose state changes according to the following equation:

rit+1 = f i(rit) + wi
t, (2)

where f i(·) is a state-transition function, {wi
t} is the white

Gaussian noise with zero mathematical expectation and
covariance matrix Ri

w: Ewi
t = 0, Ewi

t(w
i
t)

T = Ri
w 4 σ2

wIl.

The sensors estimate the state rit of the object i based on
measurements received in accordance with the following
observation model

zi,jt = ϕ(sjt , r
i
t) + εi,jt , (3)

where zi,jt ∈ Rq is a measurement of the state of the
object i available to the sensor j at time instant t, ϕ(·, ·) :
Rk × Rl → Rq is an observation function, which depends
on the current state of the object i and sensor j, {εi,jt } is

the additive external noise with zero mean Eεi,jt = 0 and

the error covariance matrix Eεi,jt (εi,jt )T = Σi,jt .

We assume that for any i ∈ M , j ∈ N and independent
centered εi,jt with the error covariance matrix Σi,jt there

exists an inverse function ϕ−1(sjt , ·) : Rq → Rl:

ϕ−1(sjt , ϕ(sjt , r
i
t) + εi,jt ) = rit + ξi,jt , (4)

where ξi,jt is an independent component with zero mean

Eξi,jt = 0, the error covariance matrix Eξi,jt (ξi,jt )T = Ξi,jt
and the bounded fourth central moment E‖ξi,jt ‖4 ≤M4.

Note that the measurements received by a single sensor
might not be enough to reconstruct the state of an ob-
ject. In this case a sequence of measurements collected
by the sensor itself or through other sensors is usually
utilized. Nevertheless, due to availability of technologically
advanced equipment it is possible to satisfy the assumption
(4). If there is no such single-valued inverse function, but

there exists a subspace corresponding to zi,jt −Ui,j
t rit = 0,
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where Ui,j
t is a matrix mapping the state into the mea-

surement, then we are able to estimate the true state on
this subspace.

2.1 Confidence Region

Let a confidence region be represented as an ellipsoid
around the point ηi,jt = ϕ−1(sjt , z

i,j
t ). The confidence

region with the user-defined significance level p would
include the point representing the “true” value rit with
the probability 1− p. We define this ellipsoid as follows:

E i,jt = {rit : (rit − η
i,j
t )T(Ξi,jt )−1(rit − η

i,j
t ) ≤ χ2

p,d}, (5)

where χ2
p,d is the p-value matching to the χ2 distribution

for d degrees of freedom.

Example 1. Let one specify an ellipsoid around the point
ηi,jt ∈ R2, i.e. d = 2. Let this ellipsoid include the value rit
with the 95% probability. In accordance with the table of
χ2 values vs p-values, one should set the p-value to 0.05.

For each target i we have a set of points ηit =

{ηi,1t , . . . ,ηi,nt } and corresponding to them ellipsoids E it =

{E i,1t , . . . , E i,nt }. We assume that the “true” value rit be-
longs to the intersection of the ellipsoids contained in E it
and we would like to find this intersection region.

2.2 Quality Function

We denote by θt = col(r1t , . . . , r
m
t ) the joint vector of all

target states. Let r̂it be an estimate of the state of target i

at time instant t and θ̂t = col(r̂1t , . . . , r̂
m
t ) be the joint

vector of all estimates. Let U it be the intersection region of

the ellipsoids contained in E it and Ût = {U1
t , . . . ,Umt } be a

set of the intersection regions.

In general, the main goal of the tracking process can be
achieved by minimizing the following quality function:

F̄t(θ̂t) =
1

2

∑
i∈M
‖rit − r̂it‖2 → min

θ̂t

. (6)

Equivalently, the problem (6) may be represented as
follows:

Φt(Ût) =
∑
i∈M

vol(U it )→ min
Ût

. (7)

However, it might be hard to find the volume of the
intersection region itself if the value n is large enough.
In this case the intersection region becomes too complex.
Alternatively, we may approximate this region by an
ellipsoid (Matviychuk (2018)). Let Êt = {Ê1t , . . . , Êmt } be
the set of ellipsoids that approximate the intersections of
ellipsoids contained in {E it}i∈M . The problem (7) becomes
as follows:

Φt(Êt) =
∑
i∈M

vol(Ê it )→ min
Êt
, (8)

where vol(·) is the volume.

In order to reduce the processing and communications
loads, we are also going to minimize the number of selected
sensors. We denote by Gt the resource allocation matrix
that needs to be as sparse as possible. The entities gi,jt of
this matrix indicate whether the sensor j is assigned to

the target i or not. Lastly, our quality function takes the
following form:

Φ̄t(Gt) = Φt(Êt) + α
∑
i∈M
‖G(i,·)

t ‖1 → min
Gt

, (9)

where α is the regularization coefficient, G
(i,·)
t is the i-th

row of the matrix Gt.

3. AN INTERSECTION REGION OF ELLIPSOIDS

In this section we describe two methods of finding the
volume of the intersection region. Monte Carlo method
is used to find the volume of U it , i ∈M . The linear matrix
inequalities is adopted to approximate the region by an
ellipsoid and then to calculate its volume.

3.1 Monte Carlo

Researchers started to widely use randomized approaches
since the appearance of the Monte Carlo method of statis-
tical simulation. This method was proposed by Metropolis
and Ulam (see Metropolis and Ulam (1949)) during their
work on the Manhattan Project at Los Alamos with von
Neumann and Teller. The Monte Carlo method offers a
simple scheme to estimate the mean value (expectation) of
a function based on samples of its values for some random
arguments (randomization).

More precisely, if the following formula is difficult to
integrate analytically

F =

∫
. . .

∫
D
f(v)dv,D ⊂ Rd,

then the Monte Carlo method is easier to use (Granichin
et al. (2015)).

Let the set D be a parallelepiped with the volume vol(D),
and function f is bounded: 0 ≤ f(v) ≤ fmax. The
geometric sense of the integral is a volume below the graph
of function f .

The Monte Carlo method for this problem is as follows:

(1) Fix a positive integer T .
(2) Choose uniformly T independent identically dis-

tributed samples z1, z2, . . . zT from the parallelepiped
D × [0, fmax] ⊂ Rd+1 T .

(3) Among the samples z1, z2, . . . zT count the number S
of those zi, i ∈ 1..T , whose last component does not
exceed the value of the function f in the correspond-
ing point defined by the first d coordinates.

(4) Compute the estimate

F̂ =
S

T
vol(D)fmax

In the implementation of the method the square was a
boundary area. The length of the side of the square was
taken equal to the length of the smallest semi-major axis
among all the ellipsoids participating in the intersection.
The number of shots was taken equal to 25 for 1 × 1
conventional units (in terms of our system it is 1 km2).

3.2 Linear Matrix Inequalities

Let the fusion center receive a set of points ηit =

{ηi,1t , . . . ,ηi,nt } of the i-th target at time instant t. In Boyd
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et al. (1994) there are several methods that approximate
the intersection region of ellipsoids. We are going to use
outer approximation to find an ellipsoid Ê it such that

Ê it ⊇
n⋂
j=1

E i,jt . (10)

For this purpose we apply the S-procedure, which could
be used to obtain a linear matrix inequality (LMI) that is
sufficient for (10) to hold. Before the S-procedure applica-
tion, we should convert the ellipsoid (5) into the following
form:

E i,jt = {x | Hi,j(x) ≤ 0},
Hi,j(x) = xTAi,j

t x + 2xTbi,jt + ci,jt , (11)

where Ai,j
t = (Ξi,jt )−1, bi,jt = −(Ξi,jt )−1ηi,jt , ci,jt =

(ηi,jt )T(Ξi,jt )−1ηi,jt − 1. We can form the required repre-

sentation of E i,jt by scaling Ai,j
t ,b

i,j
t , and ci,jt by positive

factors depending on χ2
p,d value.

Each of these forms of representing an ellipsoid can be
afterwards converted into each other. In this paper we
are considering a special case of an ellipsoid, which is
referred to as an ellipse, i.e. when a 2-D plane is considered.
Nevertheless, the approach we are going to use is suitable
for ellipsoids in higher dimensions as well.

From the S-procedure the following condition could be
obtained: there exist positive scalars τ i,1, . . . , τ i,n such
that[

Âi b̂i

(b̂i)T (b̂i)T(Âi)−1b̂i − 1

]
−

n∑
j=1

τ i,j
[

Ai,j bi,j

(bi,j)T ci,j

]
4 0,

(12)

which can be written as the LMI (in variables Âi, b̂i,

ĉi = (b̂i)T(Âi)−1b̂i − 1, and τ i,1, . . . , τ i,n). Finally, we

will be able to find the ellipsoid Ê it , which has the smallest
volume, by solving the following convex problem:

minimize log det(Âi)−1

s. t. Âi > 0, τ i,1 ≥ 0, . . . , τ i,n ≥ 0, (13) Âi b̂i 0

(b̂i)T −1 (b̂i)T

0 b̂i −Âi

− n∑
j=1

τ i,j

 Ai,j bi,j 0
(bi,j)T ci,j 0

0 0 0

 4 0.

The equation (13) was obtained from (12) using Schur
complements (see Boyd et al. (1994)).

4. TASK ASSIGNMENT METHODS

In this section we consider brute force method and LMI
based approach to solve the problem (9). Note that in
the case of brute force method the first summand in (9)
represented by (7).

4.1 Brute Force

The brute force algorithm belongs to the class of methods
for finding solutions by searching through all possible
options. All options of target distributions between sen-
sors are looked over to analyze the effectiveness of such
distributions. From a practical standpoint, the algorithm
consumes a lot of time and resources, but provides the

optimal solution. Subsequently it is used to compare the
results with the method based on the LMI.

The values for all possible subsets of the sensor set are
sequentially computed for each target to this brute force
algorithm implementation. After that, the values of the
sum of volumes and the value of the functional defined
by formula (9) are calculated for all permutations of the
obtained values in the previous stage.

4.2 LMI Based Approach

In order to solve problem (9) we need to modify (13) in
such a way that the method takes into account the resource
allocation matrix Gt. We made a slight change in the
problem (13), adding the new conditions as follows:

minimize δ

s. t. ∀i Â > 0, gi,1 ≥ 0, . . . , gi,n ≥ 0, (14) Âi b̂i 0

(b̂i)T −1 (b̂i)T

0 b̂i −Âi

− n∑
j=1

gi,j

 Ai,j bi,j 0
(bi,j)T ci,j 0

0 0 0

 4 0.

m∑
i=1

log det(Âi)−1 + α
m∑
i=1

‖G(i,·)
t ‖1 ≤ δ.

The problem (14) means that we would like to find an
ellipsoid with the volume as small as possible while using
as few sensors as possible. In that case, we agree to get an
estimation with some quality loss, but instead we reduce
computational and communication loads.

In real applications there may be some restrictions regard-
ing the maximum number of targets that can be tracked by
each sensor, i.e. |Gjt | ≤ gjmax. The solution of (14) does not
guarantee that this restriction will hold. It only minimizes
the value of |Gjt |. To deal with this issue one may use
the tracking algorithm that holds this restriction, like the
parameter estimation method presented in Granichin and
Erofeeva (2018).

5. COMPARISON RESULTS

5.1 Observation Model

We consider a 2D-plane, in which the state of the station-
ary sensor j is sjt = [sj,1t sj,2t ]T. The state consists of po-
sition components at time instant t. The tracking system
estimates the position of the target i, i.e. rit = [ri,1t ri,2t ]T.
Suppose the sensors are able to determine the angle and
distance to the objects, then:

ϕ(sjt , r
i
t) =

[
ψ(sjt , r

i
t)

ρ(sjt , r
i
t)

]
∈ R2, (15)

where

ψ(sjt , r
i
t) = arctg

[
ri,1t − s

j,1
t

ri,2t − s
j,2
t

]
(16)

is the angle to the object i,

ρ(sjt , r
i
t) =

√(
ri,1t − s

j,1
t

)2
+
(
ri,2t − s

j,2
t

)2
(17)

is the distance to the object i.

In this case, the inverse function ϕ−1(sjt , ·) is as follows
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ϕ−1(sjt , z
i,j
t ) = sjt +

[
zi,j,2t sin zi,j,1t

zi,j,2t cos zi,j,1t

]
, (18)

where zi,j,1t and zi,j,2t are the first and second coordinates

of the vector zi,jt , respectively. If the covariance matrices

εi,jt are equal to Σi,jt =

[
σ2
ψ 0

0 (zi,j,2t σρ)
2

]
, then the covari-

ance of ξi,jt is

Ξi,jt = R(zi,j,1t )

[
(zi,j,2t σψ)2 0

0 (zi,j,2t σρ)
2

]
R(zi,j,1t )T, (19)

where R(ψ) =

[
sinψ − cosψ
cosψ sinψ

]
is the rotation matrix

through the angle ψ.

5.2 Experiment

Next, we consider one possible experiment. Four targets
move uniformly and rectilinearly in a square area of
interest with identical and constant velocities. The area is
of size 300×300 km2 and velocities are equal to 2500 km/h.

In the area of interest we randomly locate five sensors. The
noise in the measurements obtained by each sensor is set
to the following values:

Σi,jt =

[
σ2
ψ 0

0 (zi,j,2t σρ)
2

]
=

0.32 0

0

(
zi,j,2t

100

)2


The targets begin their movement starting at the initial
positions, which are defined as r10 = [70, 210]; r20 =
[100, 190]; r30 = [120, 180]; r40 = [250, 180]. We assume that
the sensor network is homogeneous, i.e. the characteristics
of each sensor are the same. By characteristics we mean,
for example, the field of view, which is assumed to be
360 degrees. The field of view also covers the whole
considered area of interest. The duration of experiments
is 200 iterations.

5.3 Performance Testing

An experiment was performed for n = 5 and m = 4. The
areas of real intersections by the Monte Carlo method were
calculated for the compared algorithms. The results of this
experiment are shown in the table below.

Table 1. Experiment results

Brute force LMI

Total volume 163.6 217.7

Total volume / Confidence 249.4 152.6

Tracking group

Target 1 1, 2, 3, 4, 5 1, 2

Target 2 1, 3, 5 2, 5

Target 3 1, 2, 3, 4, 5 2, 5

Target 4 1, 2, 4, 5 2, 5

Comparison of the results from the table shows that the
brute force method certainly gives the best answer. The
sum of the intersection volumes in this case is equal to
163.6. Meanwhile, the LMI based method gives the worse
result because the volume is equal to 217.7. It is important

to note that the sets of tracking groups differ greatly
in power. These sets consist of a maximum or almost
maximum number of sensors for brute force, but two
sensors are used for the LMI based method.

Considering this, the groups formed by LMI based method
are more attractive in terms of communication load. The
probability that the true value belongs to the intersection
decreases when the ellipsoids intersect than in the original
confidence ellipsoids. It seems that the volume of the area
becomes smaller if a large number of ellipsoids are used.
However, in fact, the area becomes less significant if we
use confidence ellipsoids, that is, the level of confidence
becomes lower. Therefore, it is advisable to compare the
volume normalized to the probability that the true value
belongs to the intersection. This value is significantly lower
for the method based on LMI, which gives a significant win
for this indicator.

5.4 Load Testing

We performed a series of experiments for the algorithms
considered in the previous section. For each experiment,
the mathematical expectation was calculated. To calculate
the values, we used the formula:

E =
1

h
∗

h∑
i=1

Xi,

where Xi is the time obtained through experiments, h is
the number of experiments. The tests were conducted on
the system:

Windows 10 Home
CPU: Intel Core i7-7700HQ 2.8 GHz
RAM: 8 GB
OS type: 64-bit

Below is a table that contains the test results.

Table 2. Load testing results

Series
Number
of sensors

Number
of targets

Math. expectation, sec
Brute force LMI

1 3 2 0.7062 0.4418
2 5 4 7.4825 1.1645
3 8 8 119.704 3.0956
4 16 16 >1200 18.2321
5 39 39 — 439.398
6 40 40 — —

The results of the comparison showed incommensurable
values for the brute force and LMI based method with
increasing number of sensors and targets. Brute force
ceases to work in a reasonable time at values n = 16 and
m = 16. Meantime, the LMI based method shows good
result at values n = 39 and m = 39. However, the method
based on LMI for n = 40 and m = 40 does not provide
a final result. This happens due to the implementation of
the algorithm and the use of auxiliary packages.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The purpose of the paper is to compare the brute force
method with the algorithm based on linear matrix inequal-
ities. The first method gives an optimal solution in the
sensor selection problem but requires a lot of computa-
tional resources if a large-scale network is considered. The
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second method provides us with a suboptimal result, which
we are able to compute in a much lesser time interval even
for more complex networks.

At the moment, we minimize the number of sensors as-
signed to each target along with the uncertainty regarding
the “true” state of the targets. In this case, the results
presented in Table 1 show that some sensors track all
targets and might be overloaded. In the follow-up works,
we are going to add the third summand in (9) in order to
minimize the number of targets assigned to each sensor.
The preliminary results of this work were published in
Erofeeva (2018).

The algorithm based on linear matrix inequalities was
implemented with the use of the library named CVX (see
Grant and Boyd (2014)). As stated on the official website,
the free version is not suitable for the development of large-
scale methods. Because of that, we were not able to obtain
the results for the cases, when there are more than 40
sensors and targets. Due to this problem, we are going to
develop a new method to approximate an intersection of
ellipsoids based on randomized algorithms of stochastic
approximation (see Granichin (2002); Granichin et al.
(2015)).
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