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1. Introduction

The severity of the identification problem is commonly caused by the insufficient

variability of an input signal. In control systems test control signals can be fed to the

input of a control plant, which alleviates the problem of the reconstruction of unknown

parameters of the plant. For example, under the assumption that noise lacks a harmonic

signal arriving at the input of a linear stable stationary plant is transformed into a har-

monic output signal once the transient is completed. The amplitude of this signal is

proportional to the value of the plant's transfer function at a frequency of the harmonic

signal. On this basis when varying a frequency one can construct the plant transfer func-

tion, that is, in essence, the signal can be identified. In a similar manner, the plant's unit

impulse response can be reconstructed for input impulses (step functions).

With excite signals as control signals the identification of a plant is possible for additive

noise acting on it, too. Noise does not necessarily possess any useful stochastic properties

and does not need to be stochastic at all. The reconstruction of unknown values of

parameters is provided with properties of a test signal, which is mixed with a control

signal. The introduction of a test signal in a control channel can deteriorate the control

performance. However, in an appropriate decision about the intensity of a test signal

the output process will be indistinguishable from an optimal process through time (if

the intensity of a test signal is diminished rapidly with time it is not necessary that the

identification process is complete).

The identification method discussed below is based on the reparametrization of the

mathematical model of a plant ( instead of coefficients of the plant as its initial pa-

rameters, some alternative parameters are convenient to use, which are in an one-to-one

correspondence to the initial parameters). This enables the plant to be written in the

form which is not too different from a `linear observation scheme'. Then justified recur-

rent algorithms such as stochastic approximation algorithms can be applied for estimating

unknown values of the parameters.

The identification investigation techniques with test signals was first used in [1] and

subsequently extended in [2] to closed control systems. In these works an assumption was

made of the a priori stability of a plant, a disturbance was assumed to be a white noise

process, and in addition, a relatively limiting constraint was placed on the noisy control.

As shown in [3], this constraint can be satisfied for feedbacks in the special form only and

when parameters of the plant are known with sufficient certainty; furthermore, because

1The work was partially supported by the Russian Foundation for Fundamental Studies (Grant 98-

01-00581).
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noise in the control channel is a stationary white noise process the suboptimal control

alone was discussed. In the works [4]�[5] the method is so modified that the assumption

of the a priori stability of a plant need not be made, while external noise (acting on a

plant additively) is assumed to be noncorrelated to a test signal (which is `noise' in the

observation channel) and its second moments be bounded. Modifications of the method

for minimizing the number of parameters estimated are suggested in the works [6]�[9]. In

the works [8]�[11] general properties of algorithms of the stochastic approximation type

with input test signals are studied.

This paper sums up investigations on the identification method with test signals.

In particular, for a linear plant acted on by additive bounded noise conditions of the

consistency of estimates of the unknown coefficients obtained by this method are given.

Notice that such noise is not of necessity random and does not necessarily possess useful

statistic properties providing a means for traditional mathematical statistic methods such

as the method of least squares, the likelihood maximum method, etc.. The degree of

convergence of estimates is refined, as well as the asymptotic normality of estimates is

established. The possibilities of the method are exemplified by the adaptive minimax

control problem.

2. Adaptive control with test signals

a) The setting of the adaptive control problem . Let a control plant with scalar

inputs and outputs be described by an equation of the form:

a(r; ��)yt + b(r; ��)ut = vt; (1)

in which r is the shift translation operator (ryt = yt�1);

a(�; ��) = 1 + �a1 + � � �+ �
n
an; b(�; ��) = �

k
bk + �

k+1
bk+1 + � � �+ �

m
bm; (2)

the positive integer k is a signal time delay, 1 � k � m, and

�� = col (a1; a2; : : : ; an; bk; bk+1; : : : ; bm) (3)

is a vector of unknown coefficients of the control (1) (for simplicity all coefficients of (1)

are taken to be unknown). It is assumed that �� 2 T , where T � Rp is a known convex

closed set of possible values of the vector (3), p = n+m� k+1. It is assumed that noise

v = fvt; t 2 Ng is arbitrary except that it satisfies the condition

jvtj � Cv (4)

with Cv as a known level of noise. In particular, noise v does not need to be random.

We assume that for every value of the vector � 2 T there exists a feedback of the

form:

�(r; �)ut + �(r; �)yt = 0; (5)
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which not only stabilizes the control plant (1) when �� = � , but it also ensures an

appropriate control performance such as, e.g., the control optimality with respect to

some criterion). Let coefficients of the polynomial

�(�; �) = 1 + ��1(�) + � � ��p�p(�); �(�; �) = �0(�) + ��1(�) + � � ��p�p(�) (6)

be known and continuous functions in the set T . We are reminded that for �� = �

the stabilization of the feedback (the controller) (5) is equivalent to the characteristic

polynomial g(�; �) = a(�; �)�(�; �) � b(�; �)�(�; �) of the closed system (1), (5) being

stable, i.e., ensuring the satisfaction of the inequality

sup
t2N

(jytj+ jutj) <1: (7)

When the vector (3) is unknown, it is natural to use the feedback

�(r; �t)ut + �(r; �t)yt = 0; (8)

where �t is an estimate of the vector �� at the instant t (assuming that �t 2 T ). If the

algorithm for obtaining the estimates �t = �t(y
t
; u

t�1) ensures their consistency, i.e.,

lim
t!1

�t = ��; (9)

then the control formed by the feedback (8) becomes indistinguishible from the control

formed by the feedback (5) as t!1. In other words, if the control performance criterion

does nor depend on transients in a closed control system then the controller (8) ensures

a control performance identical with that of the controller(5) synthesized for a particular

value of the vector � of coefficients. In that event the control formed by the controller

(8) with tuned parameters is said to be adaptive.

b) The stabilizing modified `Strip' algorithm. We now investigate more fully the adap-

tive stabilization problem, in which the control goal is the satisfaction of the inequality

(7). Various algorithms are suggested for solving this sufficiently simple problem, which

make the satisfaction of (7) possible in circumstances where coefficients of (1) are un-

known. We describe the stabilizing modified `Strip' algorithm [12], pointing out that this

algorithm is combined with an arbitrary identifying algorithm intended for forming con-

sistent estimates (see (9)), and further the techniques for combining these methods will

be considered.

The equation (1) can be transformed into the equation

yt + ��t�1�� = vt; (10)

where

�t�1 = col (yt�1; yt�2; � � � ; yt�n; ut�k; ut�k�1; � � � ; ut�m): (11)

By virtue of (4) the inequalities

jyt + ��t�1�̂ j � 2Cv + �j�t�1j; t 2 N; j�j =
p
���; (12)
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are soluble with respect to �̂ for any � � 0 (e.g., the vector �̂ = �� satisfies these inequal-

ities). The `goal' inequalities (12) generate the algorithm

�̂t+1 = PrT

�
�̂t �

�t1(j�tj � 2Cv � �j�t�1j)
j�t�1j2

�t�1

�
; �t = yt + ��t�1�t = ��t�1(�t � ��) + vt;(13)

where 1(�) is the Heaviside function, PrT is a projector into the set T (which correlates

an arbitrary vector �̂ 2 Rp with the vector closest to it from T ).
Given an arbitrary initial condition �̂1 the algorithm (13) converges in the finite num-

ber of steps for any � > 0 (see. [12], Theorem 2.1.8). This implies that there exists a finite

moment t� = t�(�̂1; v; �) of time such that �̂t = �̂t� for t � t�. It is not necessary that the

equality �̂t� = �� be satisfied but from (13) it follows that the following inequalities are

satisfied:

jv0tj � 2Cv + �j�t�1j v
0

t = ��t�1(�̂� � ��) + vt; t � t�: (14)

Then for t � t� the control system (1), (8) can be transformed into the system

a(r; �̂t�)yt + b(r; �̂t�)ut = v
0

t; �(r; �̂t�)ut + �(r; �̂t�)yt = 0: (15)

Because of (14) the system (15) is dissipative for a sufficiently small � > 0, which can

easily be shown by direct Lyapunov's method, and hence for the system (1), (8), (13) the

inequality (7) is satisfied.

c) The integration of the stabilizing algorithm into an identifying algorithm. Let

�t = �t(y
t
; u

t�1
; �

t�1) (16)

be some so called identifying algorithm for forming estimates �t of the unknown vector

of the parameter ��. The proof of the consistency of estimates formed by the identifying

algorithm is generally based on the assumption that with this approach the inequalities

(7) are satisfied. If the modified `Strip' algorithm is integrated into such an identifying

algorithm these inequalities are satisfied immediately.

Let DR = fcol (y; u) : jyj2 + ju2j � Rg be a circle of radius R in the plane (y; u). The

rule for forming the control u = fut; t 2 Ng is taken to be

ut = �ut + �wt; �(r; ~�t)�ut + �(r; ~�t)yt = 0: (17)

Here �u is formed by a controller with tuned parameters ~�t,

~�t =

�
�t if col (yt; ut�1) 2 DR & �t 2 T ;
�̂t otherwise,

(18)

and �wt are test signals, which later will be introduced in a special way. For a sufficiently

large R such a control ensures the satisfaction of (7) if an arbitrary identifying algorithm is

implemented. Moreover, if the identifying algorithm ensures the consistency of estimates

�t then the egresses of the variables yt, ut�1 from the circle DR are limited in number.
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We emphasize that in many instances the problem can be solved by application of an

identifying algorithm alone without using a stabilizing algorithm.

d) The introduction of an estimation parameter . When constructing an identifying

algorithm, it is usual to take into account properties of noise v in (1). Therefore for

white noise the LSM (or its recurrent modifications) is widely applied; if noise is finitely

correlated the instrumental variable method is used, and the likelihood maximum method

is frequently used if distribution densities of a time series v are known (see, e.g., [13]). In

the problem considered the methods mentioned are unusable, because noise v does not

necessarily possess useful statistic properties (moreover, it is not of necessity random).

In that event unknown coefficients of (1) can be reconstructed for sufficiently general

assumptions of noise v if random test signals are introduced into the control channel.

One way to do this is through the identifying algorithm based on the reparametrization

of (1), which is as follows.

For an arbitrary fixed l 2 N the equation

F
(l)(�)a(�; �) + �

l+1
G

(l)(�) = 1

in polynomials F (l)(�), G(l)(�) is uniquely soluble if degF (l)(�) � l. Coefficients F
(l)
l0 of

the polynomial F (l)(�) can be determined from a linear system, for which the matrix

of coefficients is lower triangular, and F
l
0 = 1. Letting polynomials F (l)(�) = F

(l)(�; �),
G

(l)(�) = G
(l)(�; �) be known for each � 2 T and acting by the operator F

(l)(r) =

F
(l)(r; ��) on the both sides of (1), we obtain

yt = G
(l)(r; ��)yt�l�1 + F

(l)(r; ��)b(r; ��)ut + F
(l)(r; ��)vt: (19)

We break down the set N of natural numbers into non-intersecting subsets (`discrete

intervals') Ns = fps; ps+1; : : : ; (s+1)p� 1, s 2 Ng, p = n+m� k+1. On the interval

numbered s in view of (19) the equation (1) can be expressed as

yps+l = G
(l)(r; ��)yps�1 + F

(l)(r; ��)b(r; ��)ups+l + F
(l)(r; ��)vps+l;

l = 0; 1; : : : ; p� 1: (20)

Denoting the coefficients multiplied by ups+l of (20) by �
(l) = �

(l)(��), l = 0; 1; : : : ; p� 1,

we obtain

�
(l) = �

(l)(��) =

lX
l0=0

F
(l)
l0 (��)bl�l0+k = F

(l)(r; ��)bl+k(��); l = 0; 1; : : : ; p� 1; (21)

where it is assumed that bl0(��) = 0 for l0 6= k, k+1; : : :, m. These quantities are selected

for parameters instead of the initial parameters (3). Newly obtained parameters possess

the following property, which is almost evident:

Lemma 1 The quantities (21) satisfy the relations:

a(r; ��)�
(l) = bk+l; l = 0; 1; : : : ; p� 1; p = n +m� k + 1;

�
(l) = 0; l < 0; bs = 0; s > m: (22)
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We introduce a vector parameter � of dimension p = m + n� k + 1 by the formula:

� = �(�) = col (�(0)(�); �(1)(�); : : : ; �(p�1)(�)); (23)

where the components �(l)(�) are determined from the linear system (22) when �� = � . The

relation (23) is the mapping of the set T � Rp to some subset of vectors � of dimension p.

The inverse transformation can be defined as follows. Letting � = col (�(0); �(1); : : : ; �(p�1))

be an arbitrary vector from R
p, p = n +m � k + 1, a collection of n + 1 vectors �[l] can

be defined thus:

�
[l] = col (�(l); �(l�1); : : : ; �(l�n)) (�(l) = 0; l < 0); l = m� k;m� k + 1; : : : ; m� k + n:(24)

Let the vector �a = col (�a1; �a2; : : : ; �an) be found from the condition

�a =argmin
a2Rn

���k �[m+n�k�1]
�
[m+n�k�2] � � � �

[m�k] k �a+ �
[m+n�k]

���; (25)

where argminaf(a) is an arbitrary vector a ensuring the least value of the function f(�).
We define the vector �b = col (�bk; �vk�1; : : : ;�bm) using the relations

�bk+l = �a(r)�(l); l = 0; 1; : : : ; m; (26)

where �a(�) = 1 + ��a1 + �
2�a2 + � � � + �

n�an. Then �� = �� (�) = col (�a;�b), and the function

��(�) is given on the whole Rp. If the vector � = �(��) is defined by the relations (22),

then the equality ��(�(��)) = �� need no be satisfied. However, if the vectors �
[l], l =

m� k;m� k + 1; : : : ; m� k + n� 1, (see (24)) are linearly independent then the unique

pair of vectors, (�a;�b), is determined by the formulae (25), (26); this pair coincides with

the pair (a; b), which implies ��� = ��. The following assertion establishes a link between

the vectors � and �.

Lemma 2 ([7], Lemma 5.5.1). Letting the polynomials a(�; ��), b(�; ��) be mutually non-

concellable, we arrive at linearly independent p-vectors �
[l]
, l = m�k;m�k+1; : : : ; m�

k + n� 1, (see (24), (22))

e) A test signal . Let us assume that a test signal �w specially introduced into the

control channel (see (17)) has the form

�w = f �wt; t 2 Ng; �wt = 0; t 6= ps;

�wps =

1X
s0=0

ws0Æs;s0; ws =
esp

1 + lnfsg ; s 2 N: (27)

Here e = fes; s 2 Ng is a scalar time series consisting of random quantities which are

independent and possess the following properties:

Ees = Ee
3
s = 0; Ee

2
s = �

2
; Ee

4
s = ��2

; jesj � Ce; (28)
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where �2, ��2, Ce are positive constants. If noise v and (or) initial data in (1) are random

then the time series e is assumed to be independent of them (we recall that in (1) the

quantities yt, t � 0, and ut, t < 0 serve as initial data, while in a controller initial data

are zero).

f) An identification algorithm. Considering (27), we rewrite the relations (20) on the

`interval' of time, Ns = fps; ps+ 1; : : : ; (s+ 1)p� 1, s 2 Ng, p = m+ n� k, in the form:

Ys = �(��)ws + fs(�(��)) + �s; (29)

where w = fws; s 2 Ng is a test signal (see (27)),

Ys = col (yps+1; yps+2; : : : ; yps+p); fs(��) = col (f (0)
s (��); f

(1)
s (��); : : : ; f

(p�1)
s (��));

f
(l)
s (��) = F

(l)(r)b(r)�ups+l +G
(l)(r; ��)yps�1 =

l+kX
l0=k

��
(l0�k)�ups+l�l0 +G

(l)(r; ��)yps�1;

�s = col (�(0)
s ; �

(1)
s ; : : : ; �

(p�1)
s ); �

(l)
s = F

(l)(r; ��)vps+l; l = 0; 1; : : : ; p� 1;(30)

and �� = �(��) is a vector of the parameters (23). The relation (29) looks like a `linear

observation scheme' with respect to the vector parameter �(��), in which random vectors

ws, fs are stochastically `almost non-correlated'. This suggests the form of the algorithm

for estimating the unknown vector �(��). To this end the estimation (identification)

algorithm can be taken as

�s+1 = �s + 
1 + lnfsg

s

�
Ys � �sws � fs(�s)

�
ws; s 2 N; (31)

where  is a positive number and ws is test signals (see (27)).

f) The consistency of estimates. We formulate the following assertion of the consis-

tency of estimates obtained by the algorithm (31).

Theorem 1 It is assumed that the following conditions are satisfied:

� for the unknown parameter �� 2 T the polynomials a(�; ��), b(�; ��) are mutually

non-concellable;

� the test signal �w = f �wt; t = 0; 1; : : :g is given by the formulae (27), (28);

� noise v = fvt; t 2 Ng satisfies the condition (4). Should this noise be random it is

then stochastically independent of the test signal �w = f �wt; t 2 Ng, as well as the

initial data in (1) provided they are random;

� the control u is determined by (17);

� the inequality 2�2 � 1 is satisfied.
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Then for an arbitrary initial condition �0 2 Rp
the algorithm (31) combined with the algo-

rithm (13) ensures the estimates �s = col (�
(0)
s ; �

(1)
s ; : : : ; �

(p�1)
s ) such that for an arbitrary

Æ > 0 the following limit relations are valid with probability 1 and in the mean square

sense:

lim
s!1

s
1�Æj�s � �(��)j2 = 0; lim

t!1
t
1�Æj�t � ��j2 = 0: (32)

Here �t = �� (�s), ps � t < ps+ p, where the function ��(�) is determined by (24), (26).

Remark . From (27) it follows that limt!1 �wt = 0 with probability 1, implying that

a test signal vanishes with time. That is why adaptive systems can be synthesized with

the identification algorithm described in such a way that with time their output becomes

indistinguishable from the output of an optimal system synthesized for a known parameter

of a control plant.

3. The asymptotic normality of estimates

With `external' noise v from (1) taken as a quasi-stationary signal, more fine

properties of estimates obtained by identifying algorithm can be revealed. More precisely,

letting a be some nonzero real vector of p dimensionality, the time series V = fVt; t 2
Ng, Vt 2 Rp, will be said to be a-quasi-stationary provided that there exists the limit

R = R(a) = limt!1Eja�Vtj2 which differs from zero. To be sure, if the process V is

deterministic then Eja�Vtj2 = ja�Vtj2. Being quasi-stationary for an arbitrary nonzero

vector a 2 R
p, a time series V is said to be quasi-stationary . For such a series the

quantity R(a) is a quadratic form of the vector a 2 Rp. A non-negative (p � p) matrix

of R(a) is called by the covariance of a quasi-stationary time series V = fVt; t 2 Ng
and denoted by R(a) = a

�
RV a = limt!1EVtV

�

t . If the time series V is stationary, which

means that EVtV
�

t = RV , then it is a-quasi-stationary for a�RV a 6= 0. If the matrix RV is

non-degenerate then the series V is quasi-stationary in the sense of the above definition.

In that event Theorem 1 may be strengthened as follows.

Theorem 2 Let us assume that under the conditions of Theorem 1 the time series V =

fVt; t 2 Ng, Vt = col (vt; vt�1; : : : ; vt�p+1) is a-quasi-stationary and that a step parameter

 of the algorithm satisfies the inequalities 1 < 2�2 � 2.

Then for an arbitrary initial condidtion �0 2 Rp
the algorithm (31) combined with the

algorithm (13) ensures the estimates �s, for which the randon quantities

��s+1 =

r
s

lnfsg(�� � �s+1)
�
F
�1
a; (33)

have asymptotically (when s!1) the normal distribution,

��s+1 � N(0;

2
�
2

2�2 � 1
a
�
RV a): (34)
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Here F is a (p � p) matrix defined through coefficients of the polynomials F
(l)(�) by the

formula

F =



1 0 0 : : : 0

F
(1)
1 1 0 : : : 0

F
(2)
2 F

(2)
1 1 : : : 0

...
...

...
. . .

...

F
(p)
p F

(p)
p�1 F

(p)
p�2 : : : 1


: (35)

Corollary . Let �t = ��(�s), ps � t < ps+p, where in view of (26), (25) �� (�) = col (�a;�b).

Then by Lemmas 1, 2 and the conditions of Theorem 2 for sufficiently large t the following

relation is valid:

�t � �� = r�� (��)(�s � ��) + o

�
1

t

�
; ps � t < ps+ p;

where r��(��) is a (p�p) matrix which is the Freshe derivative of the function ��(�) at the
point ��. Hence by virtue of (35) and for a non-degenerate matrix RV it is stated thats

t

lnftg(�� � �t) � N(0;r��(��)F
�
RV Fr�� (��)

�):

4. Appendix

a) The proof of Theorem 1. By virtue of 31 the quantities �
(Æ)
s = s

1�Æ

2 (�� � �s) are

related by the following formula:

�
(Æ)
s+1 � (1� 2e2s � 1 + Æ

2s
)�(Æ)s +



p
lnfsg

s
1+Æ

2

�s; �s = (fs(�� � �s) + �s)es: (36)

>From this point on, the sign � is taken to mean that the equality is satisfied up to

values of the highest order of smallness when s!1 and can be disregarded. Under the

conditions of Theorem 1 the following inequality is valid:

E(j�(Æ)s+1j2jyps; ups�1) � (1� 2�2 � 1 + Æ

s
)j�(Æ)s j2 + 

22lnfsg
s1+Æ

E(j�sj2jyps; ups�1): (37)

Since
1X
s=1

lnfsg
s1+Æ

<1;

1X
s=1

2�2 � 1 + Æ

s
=1

then by the familiar Doob theorem on the convergence of semi-martingals the limit equal-

ities (32) are valid. �

b) The proof of Theorem 2. When Æ = 1, the relations (36) can be rewritten asr
s

lnfsg(�� � �s+1)
�
a �

r
s

lnfsg
sY

k0=1

(1� e
2
k0

k0
)(�� � �1)

�
a+

sX
k=2

�sk;

�sk = �
r

s

lnfsg
sY

k0=k

(1� e
2
k0

k0
)

p
lnfkg
k

�
�

k�1aek�1: (38)
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Owing to the independence of random values e2s we have E
Qs

k0=1(1�
e2

k
0

k0
)2 =

Qs
k0=1(1�

�2

k0
)2 � ( s

k
)�2�

2

; therefore the first summand in the right hand side of (38) vanishes in

the mean square sense as s!1, and can be disregarded for large s. The rest summand

represents the sum of centred `small' independent random quantities, resulting in

E�
2
sk = 

2
�
2 s

lnfsg
lnfkg
k2

sY
k0=k

(1� �
2

k0
)2E(��k�1a)

2 � 
2
�
2 s
�2�2+1

lnfsg k
2�2�2lnfkga�RV a:

Hence it follows that under the conditions of Theorem 2 the following limit equality is

satisfied:

lim
s!1

E�
2
sk = 0; (39)

where the limit is uniform in k 2 N. Since

Ej�3skj �
(lnfkg)3=2

k3

sY
k0=k

�
1� �

2

k0

�3

� C
s
�3�2+3=2

(lnfsg)3=2 k
3�2�3(lnfkg)3=2

where C = C(a) is a constant, then the following Lyapunov condition is satisfied:

lim
s!1

sX
k=2

Ej�3skj = 0: (40)

The conditions (39), (40) imply that the conditions of the central limit theorem are

fulfilled, according to which the random quantities ��
(b)
s+1 =

Ps
k=2 �sk have asymptotically

the normal distribution (as s ! 1). By virtue of (38) we obtain the desired expression

(33) by straightforward calculation. �



Bibliography

[1] Saridis G.M., G.Stein. A new algorithm for linear system identification. IEEE

Trans. Automat. Control , AC-13(4):592�584, 1968.

[2] Saridis G.M., R.N. Lobbia. Parameter identification and control of linear discrete

time system. IEEE Trans. Automat. Control , AC-17(1):52�60, 1972.

[3] Saridis G.M., R.N. Lobbia. Comment on `Parameter identification and control of

linear discrete time system'. IEEE Trans. Automat. Control , AC-20(3), 1975.

[4] Agafonov S. A stochastic approximation algorithm with noise at an input in the

problem of adaptive control of a linear plant. VINITI, No 5682-81, Leningrad, 1981.

[5] Agafonov S., V. Fomin. Identification of control plants with test signals VINITI ,

No 4226-82, Leningrad, 1982.

[6] Granitchin O., V. Fomin. Adaptive control with test signals. Automat Remote,

(2):100�112, 1986

[7] V. Fomin.Methods of control of linear discrete plants. Leningrad State Univ. Publ.,

Leningrad, 1985.

[8] Granitchin O. A stochastic approximation procedure with test signals. Automat

Remote, (2): 97�104, 1992.

[9] Granitchin O. Stochastic approximation procedure with perturbation on an input

and dependent observation disturbances. Vestnik Leningrad Univ., 1(4), No 22:27�

31. 1989.

[10] Granitchin O. Stochastic approximation under dependent noises. In Approximation,

Probability and Related Fields, Plenum, USA, pages 247�271, 1994.

[11] Granitchin O., A. Portnov. Asymptotic optimality stochastic approximation algo-

rithms with perturbation on an input. In Proceedings of 2-nd Workshop on Simu-

lation, pages 322�327, St.�Petersburg, 1996.

[12] Fomin V., V. Fradkov, and V. Yakubovich. Adaptive Control of Dynamic Systems.

Nauka, Moscow, 1981.

12



13

[13] Fomin V. Recurrent Estimation and Adaptive Filtration. Nauka, Moscow, 1984.


