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Abstract: The problem of community detection (or clustering) in graphs plays an important
role in analysis of complex large-scale networks and big data structures, arising in natural,
behavioral and engineering sciences. Examples of such networks include, but are not limited to,
World Wide Web (WWW) and Internet, social networks, ecological networks and food webs,
cellular and molecular ensembles. A community (or a module) in a graph is a subset of its nodes,
whose members are “densely” connected to each other yet have relatively few connections with
nodes outside this subset. A number of algorithms to subdivide the nodes of large-scale graphs
into communities have recently been proposed; many of them hunt for the graph’s partitions
of maximal modularity. One of the most efficient graph clustering algorithms of this type is the
Multi-Level Aggregation (or “Louvain”) method. In this paper, a randomized counterpart of
this algorithm is proposed, which provides a comparable “quality” of graph’s clustering, being
however much faster on huge graphs. We demonstrate the efficiency of our algorithm, comparing
its performance on several “benchmark” large-scale graphs with existing methods.
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1. INTRODUCTION

Many complex systems, arising in natural, behavioral and
engineering sciences, are naturally representable by graphs
or networks, where the nodes stand for elementary units
of the system and the arcs describe their relations or ties.
The examples include, but are not limited to, World Wide
Web (WWW) and Internet, collaboration and citation
networks, ecological networks and food webs, cellular and
molecular ensembles, continental power grids and road
networks, see e.g. Albert and Barabási (2002); Newman
and Girvan (2004); Newman (2006) and references therein.

Many real-world networks are known to have community
structure, that is, their nodes “are joined together in
tightly knit groups, between which there are only looser
connections” (Girvan and Newman, 2002). Such groups
of nodes are referred to as communities in the graph;
communities are sometimes called clusters, modules or
compartments (Malliaros and Vazirgiannis, 2013). Recog-
nizing communities in a general graph is computationally
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difficult task, called community detection or graph cluster-
ing. Community detection problems have been extensively
studied; the relevant algorithms, historical milestones and
applications are reported in recent surveys (Porter et al.,
2009; Fortunato, 2010; Malliaros and Vazirgiannis, 2013).

The knowledge of the community structure helps to
contain the propagation of worms and viruses in com-
puter networks and online social media (Lu et al.,
2015), and identify topically related webpages in the
web graphs (Kleinberg and Lawrence, 2001; Flake et al.,
2002). In metabolic (Ravasz et al., 2002) and neural net-
works (Deco and Corbetta, 2011), communities stand for
functional units, responsible for the same group of func-
tions; their analysis allows to reveal the functional orga-
nizations of metabolic pathways and the nervous system.
One of the first works on community detection (Rice, 1927)
was concerned with voting blocs in political bodies.

The huge scale of graphs, arising in such applications as
social media, makes impossible their efficient storage and
mining without special preprocessing, substantially reduc-
ing the volume of information. Community structures in
graphs are intimately related with data compression (Ros-
vall and Bergstrom, 2008; Lim et al., 2014). This is not
surprising since the communities contain a lot of “redun-
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dant” information, their nodes have similar properties and
often may treated as a single object. Dense graphs of the
communities are usually well compressed (Lim et al., 2014)
unlike the sparse adjacency matrix of the original graph.

Most of approaches to graph clustering methods can be
classified into three major groups. Algorithm of the first
kind (Girvan and Newman, 2002; Newman and Girvan,
2004) segregate communities, sequentially removing the
edges among them. Procedures of the second type (Pons
and Latapy, 2006) “build” large communities by merging
smaller “subcommunities”. The third group of methods
hunts for a partition of the graph’s nodes, which is optimal
with respect to some objective function (Blondel et al.,
2008; Lancichinetti and Fortunato, 2009).

A convenient cost function, measuring the “quality” of
the graph clustering, was proposed by Newman and Gir-
van (Newman and Girvan, 2004) and is referred to as
modularity. The idea of modularity maximization lies in
the heart of many efficient algorithms for community de-
tection (Newman, 2004b; Clauset et al., 2004; Duch and
Arenas, 2005; Schuetz and Caflisch, 2008; Blondel et al.,
2008; Ovelgönne et al., 2010). Among them is a method,
proposed by a group of researchers from the Catholic
University of Louvain (UCL) and known as the Louvain
method (Blondel et al., 2008). This algorithm proves to be
faster on huge graphs with millions and billions of edges
than many other algorithms (Clauset et al., 2004; Pons
and Latapy, 2006; Wakita and Tsurumi, 2007); on typical
“sparse” graphs it runs in nearly linear time.

In spite of the efficiency of the Louvain method, processing
of a graph with 100 millions of nodes still takes several
hours (Blondel et al., 2008). At the same time, it is known
that dramatic acceleration of many data processing algo-
rithms can be achieved by using randomization (Granichin
et al., 2015). For instance, the randomized version of the
clustering algorithm from Clauset et al. (2004), offered
by Ovelgönne et al. (2010), proves to be much faster than
its deterministic counterpart. In this paper, we describe
an improved randomized version of the Louvain method,
show its efficiency in comparison with the original method,
and present test results for different input data.

The paper is organized as follows: Section 2 gives the
required information about graphs, communities, modu-
larity and the Louvain method. In Section 3 we present our
randomized algorithm. Section 4 contains test results and
comparison between the proposed algorithm and existing
methods. The conclusion and plans for future work are in
Section 5.

2. COMMUNITIES IN GRAPH

Consider a graph G = (V,E) where V 6= ∅ is a set of
vertices and E 6= ∅ is a set of edges. Let n and m be
the number of elements of V and E respectively. A is an
adjacency matrix where Aij indicates the weight of the
edge between nodes i and j, or 0 if there is no edge between
them.

Communities (groups or clusters) are the sets of nodes

C = {C1, . . . , Ck} such that
⋃k

i=1 Ci = V and ∀i, j ∈
1, . . . , k, i 6= j Ci ∩ Cj = ∅, and where C is called a

clustering of G. Communities Ci and Cj are adjacent to
each other if ∃i ∈ Ci, j ∈ Cj such that Aij 6= 0.

A graph G has a community structure if the vertices can
be easily divided into groups such that there is a higher
density of edges within groups than between them.

Modularity

Modularity is a scalar value between −1 and 1 that
measures the quality of clustering in the sense that there
are many edges within communities and only few between
them (Newman and Girvan, 2004). It is defined as

Q(G,C) =
∑

i∈1,...,k

(
eii − a2i

)
, (1)

where e is a k×k symmetric matrix whose elements eij are
the fractions of all edges in the network that link vertices
in Ci to vertices in Cj , and ai =

∑
j∈1,...,k eij .

For a weighted graph it can be calculated by

Q =
1

2m

∑
i,j∈1,...,n

(
Aij −

didj
2m

)
δ(Ci, Cj) , (2)

where di =
∑

j∈1,...,nAij is the sum of the weights of all
edges attached to the node i, Ci is the community to which
node i is assigned, δ-function δ(u, v) is 1 if u = v and 0
otherwise, and m = 1

2

∑
i,j∈1,...,nAij (Newman, 2004a).

The Louvain Method

In 2008 Blondel et al. proposed one of the best known
efficient algorithms of modularity maximization which is
able to process a large sparse set of data in near linear
time (Blondel et al., 2008; Martelot and Hankin, 2013),
so-called Louvain Method.

The method’s main idea is described by two phases:

(1) Local maximization of modularity by moving each
node to neighbours’ communities.

(2) Aggregate all of the nodes of the same community and
build a new graph whose nodes are the communities
from the previous phase.

The first phase stops when a local maximum is reached.
The gain of modularity ∆Q derived from moving an
isolated node i into a community Cj is

∆Q =

∑Cj ,Cj
+
∑

i,Cj

2m
−

(∑
Cj

+
∑

i

2m

)2


−

∑Cj ,Cj

2m
−

(∑
Cj

2m

)2

−
(∑

i

2m

)2


=

∑
i,Cj

2m
−
∑

Cj

∑
i

2m2
, (3)

where
∑

Cj ,Cj
is the sum of the weights of the edges inside

Cj ,
∑

Cj
is the sum of the weights of the edges incident

to nodes in Cj ,
∑

i is the sum of the weights of the edges
incident to node i,

∑
i,Cj

is the sum of the weights of the

edges from node i to nodes in Cj , and m is the sum of the
weights of all the edges in the network.
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Initially each node in the network is assigned to its
own community. Then, (1) for each node i we take the
neighbouring communities Cj and compute the change in
modularity ∆Qi,Cj that would take place after moving the
node i to the community Cj . If maxCj ∆Qi,Cj > 0 then we
place the node i to the community on which the maximum
is achieved. It repeats until a local maximum of modularity
is attained. After that, (2) we build a new graph whose
nodes are the communities Cj ∀j and go to the first phase.
These phases are repeated sequentially until no further
improvement can be done.

For greater clarity, the steps of this algorithm are shown
in Figure 1.

3. MAIN RESULT

The described algorithm works quite efficiently on a large
amount of data but it takes a pretty long time on a graphs
with billions of edges (Blondel et al., 2008).

In this paper we propose an improved version of Louvain
Method based on the approach, applied in Randomized
Greedy algorithm (Ovelgönne et al., 2010): at each itera-
tion we take into account only random set of neighbours,
what helps us to reduce computation time. Thus, the
algorithm is (see Algorithm 1):

Algorithm 1 The proposed method

Input: G = (V,E);
Output: clustering of G;
1: k = 0, G0 = G;
2: loop
3: make a simple clustering Ck of Gk such that Ck

i =
{i};

4: repeat . Phase 1
5: for node i ∈ Gk do
6: remove the node i from its community Ck

i ;
7: CN = random set of neighbour communities

of node i;
8: Ck

j = argmaxCk
j′
∈CN

∆Q(i, Ck
j′);

9: if ∆Q(Ck
j , i) > 0 then

10: add the node i to the community Ck
j ;

11: else
12: leave the node i in the community Ck

i ;
13: end if
14: end for
15: until no further improvement can be achieved
16: build a new graph Gk+1 whose nodes are the

communities of Ck; . Phase 2
17: if Gk+1 = Gk then
18: make a clustering Cfinal of G;
19: return Cfinal;
20: end if
21: k = k + 1;
22: end loop

This approach reduces the computation time, especially
on large networks, and still provides a high coefficient of
modularity.

In the next section we compare the original algorithm
and the proposed randomized version. Also, we describe

the dependence of the computation time and the resulting
modularity from the number of considered neighbours.

4. COMPARISON OF ALGORITHMS

In this section we compare the Louvain method, Ran-
domized Greedy (Ovelgönne et al., 2010) algorithm (with
k = 9) and our improved method. For our algorithm, we
consider the following cases which depend on the maxi-
mum number of considered neighbours k:

• k = 75% – the number of considered neighbours
on each iteration is 75% of the total number of
neighbours (denoted as ourk=75%);

• k = 50% – the number of considered neighbours
on each iteration is 50% of the total number of
neighbours (denoted as ourk=50%);

• k = 25% – the number of considered neighbours
on each iteration is 25% of the total number of
neighbours (denoted as ourk=25%).

The testing was performed on a computer running Ubuntu
15.10 with Intel Core i5-5200U CPU (2.20GHz) and
16GB of RAM. To assess the quality and the com-
putation time of these algorithms we use test graphs
from 10th DIMACS Implementation Challenge - Graph
Partitioning and Graph Clustering which are located
on the http://www.cc.gatech.edu/dimacs10/archive/
clustering.shtml:

• karate.graph – Zachary’s karate club: social network
of friendships between 34 members of a karate club
at a US university in the 1970s (n=34, m=78);

• as-22july06.graph – Internet: a symmetrized snapshot
of the structure of the Internet at the level of au-
tonomous systems, reconstructed from BGP tables
posted by the University of Oregon Route Views
Project (n=22963, m=48436);

• cnr-2000.graph – A very small crawl of the Italian
CNR domain (n=325557, m=2738969);

• eu-2005.graph – A small crawl of the .eu domain
(n=862664, m=16138468);

• in-2004.graph – A small crawl of the .in domain
performed for the Nagaoka University of Technology
(n=1382908, m=13591473);

• road central.graph – A graph of roads (n=14081816,
m=16933413);

• uk-2002.graph – This graph has been obtained from
a 2002 crawl of the .uk domain performed by Ubi-
Crawler. (n=18520486, m=261787258);

• road usa.graph – A graph of roads (n=23947347,
m=28854312);

• uk-2007-05.graph – This graph is a time-aware graph
generated by combining twelve monthly snapshot of
the .uk domain collected for the DELIS project.
(n=105896555, m=3301876564).

Table 1 shows the approximate time work for different
algorithms on test graphs, where OOM means Out of
memory.

In Table 2 the average modularity for different algorithms
on different graphs are presented.

According to the tables, our algorithm is much faster that
the Louvain method and Randomized Greedy algorithm,
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Fig. 1. Visialization of the steps of Louvain Method. Each pass consist of 2 phases. First phase: improve modularity by
moving the nodes between communities. Second phase: aggregate the found communities in order to build a new
network. Figure is reproduced from (Blondel et al., 2008).

Table 1. The running time of Louvain method, Randomized Greedy (RG) and our randomized
algorithm, seconds

Louvain RGk=9 ourk=75% ourk=50% ourk=25%

karate 0.000 0.000 0.000 0.000 0.000
as-22july06 0.036 0.072 0.028 0.036 0.044
cnr-2000 4.594 4.040 0.792 0.768 0.932
eu-2005 14.106 24.676 3.844 4.448 4.748
in-2004 26.646 21.396 3.156 3.516 4.368
road central 123.028 114.824 36.612 36.016 44.392
uk-2002 433.468 OOM 70.976 71.256 70.880
road usa 183.516 196.072 53.036 48.552 49.852
uk-2007-05 OOM OOM OOM OOM OOM

Table 2. Average modularity for Louvain method, Randomized Greedy (RG) and our random-
ized algorithm

Louvain RGk=9 ourk=75% ourk=50% ourk=25%

karate 0.41452 0.39423 0.35528 0.36037 -0.04980
as-22july06 0.66230 0.64839 0.61879 0.59751 0.48388
cnr-2000 0.91276 0.91051 0.91073 0.90602 0.88533
eu-2005 0.93822 0.92746 0.92280 0.89709 0.85685
in-2004 0.98020 0.96735 0.97707 0.97012 0.93383
road central 0.99738 0.99723 0.99509 0.99205 0.98569
uk-2002 0.98973 OOM 0.94453 0.93721 0.94389
road usa 0.99804 0.99791 0.99623 0.99370 0.99382
uk-2007-05 OOM OOM OOM OOM OOM
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and it produces the partition with similar modularity.
Thus, due to a slight deterioration of the quality of
clustering, the described method can process large amount
of data in a short time.

5. CONCLUSION AND FUTURE WORK

In this paper, we examine the Louvain Method for graph
clustering and propose its randomized version (Algo-
rithm 1). The suggested algorithm is capable to handle
large-scale graphs much faster than the deterministic Lou-
vain method without deterioration of the resulting cluster-
ing, measured by the modularity function.

The algorithm proposed in this paper can be further op-
timized by using the approach applied in Shiokawa et al.
(2013). We are also working on the distributed version
of the proposed algorithm and its comparison with other
distributed methods for graph clustering, e.g. Wickra-
maarachchi et al. (2014).
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