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Abstract: The paper deals with the detection of abrupt changes in dynamical systems in the
presence of external noise. The system is considered as a black box. That is, it is supposed that
nothing is known about a structure and relations within the system, and we can just obtain the
values of some parameters of the system. A new algorithm is proposed in the paper to deal with
such highly uncertainty. At first, we use moving average with adaptive window size, then GLR
(Generalized Likelihood Ratio) is used to detect abrupt changes in the obtained data using an
adaptive threshold. This approach is applied to slowdown detection of a small autonomous car
with only accelerometer on the board.
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1. INTRODUCTION

The problem of change detection is to determine changes
in the characteristics of a dynamical system during time.
Often, such characteristics can be variation in mean value
and variance of the distribution of some parameters of the
system. This study is close in meaning to fault detection.
But in case of fault detection a fault occurs only inside
the system, while in case of change detection there are no
difference what is a source of change.

The problem of abrupt changes detection is highly impor-
tant, because an abrupt change may be a result of some
underlying or external problem. This problem is well stud-
ied, and many approaches are proposed (see Akimov and
Matasov (2015), Basseville and Nikiforov (1998), Blanke
et al. (2006)). Some of them suppose that probability
density function depends upon a scalar parameter, while
others suppose multidimensional probability density func-
tion. In this paper we consider the first one - a case of
scalar parameter.

In this paper it is assumed that the dynamical system
is considered as a black box. That is, we do not know
how the parameters of the system are related to each
other, and we can only measure some of these parameters.
Also it is assumed that measurable data contains Gaussian
noise, which is a practical and reasonable assumption. In
this conditions it is impossible to apply such well known
1 This work was supported by Russian Science Foundation (project
16-19-00057).

approaches as Kalman filter, because the system is just
a black box. Therefore, one of the possible way could be
to use moving average to filter noise firstly. For this pur-
pose we use spatial adaptive estimation of nonparametric
regression (see Goldenshluger and Nemirovski (1997), Lep-
skii (1990)), which proposes how to select adaptive window
size. After we got filtered data, we are interested in the two
following things - a method for detection an abrupt change
and selection of a threshold. There are many ways to detect
an abrupt change on the filtered data (see Basseville and
Nikiforov (1998)). We have selected GLR, because it shows
good properties when the actual value of a parameter after
change is unknown (it is supposed that it is from some
predefined set). Finally, after we detect a change on the
filtered observations, a question about threshold in the
presence of external noise arises. That is, some constant
threshold is used in GLR, but we remember that there
is a noise initially. So we need to choose a new dynamic
threshold, such that it would be no worse than constant
one in the presence of noise.

The idea of reconstruction of a constant threshold to the
dynamic one is not new. Such thresholds can be used to
reduce the delays associated with the constant threshold
method (see Perhinschi et al. (2006), Verdier et al. (2008),
Shu et al. (2008)) and for more accurate estimation in the
presence of noise (see Davis et al. (2006)).

The main contribution of the paper lies in the combining
of Generalized Likelihood Ratio algorithm with an idea
of dynamic threshold obtained by moving average with
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adaptive window size to create more accurate and efficient
method for abrupt changes detection.

We have made an experiment to show how this approach
works in the real world. We consider a small autonomous
car, that detects its own slowdown. The car is based on
STM32F3-Discovery with accelerometer inside. It moves
along a smooth road and at some point faces with a piece
of a foam rubber. It does not stop, but slows down. We
detect this moment of time and stop the motor.

The article is organized as follows. Section 2 presents the
problem statement. In sections 3 and 4 an overview of used
methods is provided. Section 5 presents the main result.
The results of numerical experiments are shown in Section
6, followed by Conclusions and Future work discussion.

2. PROBLEM STATEMENT

Let us consider the dynamical system with the model of
observations. Because we consider the system as a black
box, we can only deal with measurable part. So let us
assume that we have a sequence of independent random
variables Yt, which can be measured at each time instance.

Our goal is to determine a fault in the observable variables
Yt. Each of variables Y i = (y1, y2, ..., ym) have the proba-
bility density function piθ depending upon only one scalar
parameter θ ∈ R. Before the unknown moment of time t0,
the parameter θ is equal to θ0. The problem is to detect a
change of the parameter θ.

We solve this problem in two steps:

(1) Filter a noise out of Yt.
(2) Apply Generalized Likelihood Ratio to the obtained

data.

3. SPATIAL ADAPTIVE ESTIMATION OF
NONPARAMETRIC REGRESSION

Let us consider the following problem. We want to restore a
signal function from noisy observations. Suppose there are
noisy observations y(x) of a signal function f(x) : [0, 1]→
R – along the regular grid Γn = {i/n, i = 0, ..., n}:

y(x) = f(x) + ξ(x), (1)

where {ξ(x)}x∈Γn is a sequence of independent N (0, 1)
random variables defined on the underlying probability
space (Ω, A, P ).

In Goldenshluger and Nemirovski (1997) the estimates by
the least square method of f(x) at a given point u ∈ [0, 1]
are considered. Suppose that the degree of estimate is 1.
So we get the following approximation at a given point x0:

f̂∆(x0) =
1

N∆

∑
x∈M∆

y(x), (2)

where ∆ ∈ [0, 1] is some segment [x0 − δ, x0 + δ] centered
at x0 and containing at least one observation point, M∆

is the set of observation points in ∆, N∆ is the cardinality
of M∆.

The problem is to select “the best“ window when no a
priori information on f is available. Let us introduce the
following estimation:

|f̂(x0)− f(x0)| ≤ ωf (x0, δ) +N
−1/2
∆ |ζ(∆)|, (3)

where ζ(∆) = 1
N∆

∑
x∈M∆

ξ(x), ωf (x, δ) = sup
x∈∆
|f(x) −

f(x0)|. The right hand side is comprised of two terms –

deterministic ωf (x, δ) and stochastic error N
−1/2
∆ |ζ(∆)|.

Since ζ(∆) is N (0, 1), the stochastic error typically is of
order of (nδ)−1/2:

P{N−1/2
∆ |ζ(∆)| > κ(nδ)−1/2} ≤ exp{−cκ2}, (4)

with certain absolute constant c > 0. Now, there are no
more than n essentially different (resulting in different sets
M∆) choices of ∆. Let these choices be

∆1 ⊂ ∆2 ⊂ ... ⊂ ∆N ,

and let 2δ1, 2δ2, ..., 2δN be the length of the windows
∆1,∆2, ...,∆N . We obtain

Ωκ = {ω ∈ Ω | N−1/2
∆i
|ζ(∆i)| ≤ κ(nδi)

−1/2, (5)

where i = 1, ..., N}.

Assuming that ω ∈ Ωk, (3) can be strengthen as

|f̂∆i
(x0)− f(x0)| ≤ ωf (x0, δi) + κ(nδi)

−1/2, (6)

Notice that as i grows, then the first term in the right hand
side increases, and the second term decreases; therefore a
reasonable choice of the window to be used is that one
which balances both the terms, say, the one related to the
largest i with ωf (x0, δi) ≤ κ(nδi)

−1/2.

4. GENERALIZED LIKELIHOOD RATIO

This method is based on the likelihood ratio test (see
Granichin et al. (2015)). The main reason to use it is that
the parameter θ1 is unknown after change. Let us introduce
log-likelihood ratio for the observations from time j up to
time k is

Sjk =

k∑
i=j

ln
pθ1(yi)

pθ0(yi)
(7)

In the present case, θ1 is unknown; therefore, this ratio is
a function of two unknown independent parameters : the
change time and the value of the parameter after change.
The standard statistical approach is to use the maximum
likelihood estimates of these two parameters, and thus the
double maximization:

gk = max1≤j≤k sup
|θ1−θ0|≥ν>0

Sjk(θ1) (8)

and the following stopping rule:

ta = min{k :

N−1∑
i=0

I{gk−i≥h} ≥ η}, (9)

where I is an indicator function, h is a threshold for the
derivative, and η is a threshold for the number of crossings
of h, and ν is a known minimum magnitude.

5. THE ESTIMATE OF A SIGNAL

In this section we will introduce a dynamic threshold
and show how it depends on a constant threshold in the
presence of standard Gaussian noise. To do this we apply
(6) for the estimation f of the input signal (2). And
then we will use this estimation in Generalized Likelihood
Ratio.
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Theorem 1 in Goldenshluger and Nemirovski (1997) says

how to estimate |f̂(x0)− f(x0)|. Now we will reformulate
this theorem in the case when the degree of estimation is
1 (i.e. (2)).

At first, let us define the ideal window ∆∗k(x0) = [x0 −
δ∗k, x0 + δ∗k] for the new conditions - p = l = 1, θm = 1:

δ∗κ = max
{
δ ≤ δ0 :

κ√
2nδ
≥ 4

∫ x0+δ

x0−δ
|f(x)|dx

}
. (10)

One can check that coefficients α∆(x, u) (see 3.1 Construc-
tion in Goldenshluger and Nemirovski (1997)) will be equal
to 1

N∆
. That means that the index of the window ∆ defined

as follows

r∆,u =
( ∑
x∈M∆

α2
∆(x, u)

)1/2

=
1√
N∆

. (11)

So Ξ will be defined as follows:

Ξ =
{
ω ∈ Ω :

1√
N
|
∑
x∈M∆

ξ(x)| ≤ κ
}
. (12)

In this case we get the following estimation using Theorem
1 in Goldenshluger and Nemirovski (1997) with conditions
(10), (11), (12):

|f̂(x0)− f(x0)| ≤ 6κ√
2nδ∗κ(x0)

, when ω ∈ Ξ. (13)

Now we want to set up an adaptive threshold to apply it in
Filtered Derivative Algorithm described above. Assuming

that f̂ has Gaussian distribution N (µ, σ), we can write
out new expression for gk:

gk = max
1≤j≤k

sup
|µ1−µ0|≥ν>0

k∑
i=j

ln
pθ1(yi)

pθ0(yi)

= max
1≤j≤k

sup
|µ1−µ0|≥ν>0

k∑
i=j

ln

1
σ
√

2π
exp

(yi−µ1)2

2σ2

1
σ
√

2π
exp

(yi−µ0)2

2σ2

= max
1≤j≤k

sup
|µ1−µ0|≥ν>0

k∑
i=j

yi(µ0 − µ1)

σ2
+ k

µ2
1 − µ2

0

2σ2
.

where µ0 and µ1 are the mean values of the distribution
corresponding to probability density functions pθ0 and pθ1 .

Let us denote S :=
µ∗

0−µ
∗
1

σ2 , where µ∗0 and µ∗1 (and also
j∗) are the values on which the maximum was obtained.

Suppose that f(xk) is the actual value of yk, and f̂(xk) is
the estimated value as in (13). Using (13) we get

|gk − ĝk| ≤ S
k∑

i=j∗

6κ√
2nδ∗κ(xi)

.

Now we can formulate the following theorem.

Theorem 1. Let yk be the set of observations of the signal

f(x), and gk, f̂ , κ, n, δκ be defined as above. Then we have:

|gk − ĝk| ≤ S
k∑

i=j∗

6κ√
2nδ∗κ(xi)

. (14)

The main objective of this theorem is to show how an
adaptive threshold in the presence of Gaussian noise can

be obtained using constant threshold. For instance, in
the case of slowdown detection described below, if we
empirically selected some threshold on the smooth road,
then the Theorem 1 provides an estimation of the adaptive
threshold on “the real world road with arbitrary potholes
and bumps“.

6. TESTING

6.1 Description of the Test Track

We have designed a small autonomous vehicle model
Fig.1, based on STM32F3-Discovery board containing
the accelerometer and the gyroscope. The board was
connected to a simple motor through the motor driver
L293B. So we were able to control the direction of the
vehicle movement. The power supply was provided by 4
1.2 V batteries or the USB connector.

We have implemented several software libraries in C:
namely, the motor control, LED control, sensor, filter and
fault detection algorithm libraries. Also we have imple-
mented a simple program using this libraries to control the
vehicle. Then we used OS Embox (high-modular operating
system for resource-constrained devices) to program the
board.

We set the accelerometer to 1344 HZ and read the values
of the acceleration along x-axis in the polling mode.
During the movement we stored obtained values in the
flash memory. Then we restored this values from the flash
memory on PC to see how the car behaves itself. Note that
the vehicle is fully autonomous, and we use the stored data
only to see the real values of accelerometer only for testing
our method in Python. But we have the same C program
inside the vehicle.

Fig. 1. Test track for the small car. It begins with a
smooth road. The tiny piece of a foam rubber is a
random disturbance. The big piece of a foam rubber
is a serious obstacle.

When the car faces with a foam rubber it began to move
slowly. And we want to recognize this change. Also you
can see the tiny strip of a foam rubber. It is a random
noise that is out of interest.

Our goal is to detect a foam rubber in real time, then stop
the motor and turn the red LED on (Fig.2).
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Fig. 2. The car detected a fault - motor has been stopped,
red LED has been turned on.

Fig. 3. Red rectangle denotes the moment when the
fault occurred. Green rectangles denotes the moments
when the car gone through the tiny piece of a foam
rubber - it is out of interest.

6.2 The Experiment

On the Fig.3 we denoted with a red color the part that
we want to recognize. One can see two green rectangles.
The first one occurred when the front-wheel of the car gone
through the tiny piece of a foam rubber. Similarly, another
one was happened for the back-wheel of the car.

At first, we should to filter noise out of the acceleration
values. Suppose we want to estimate the input signal at
a given point x0. We will use spatial adaptive estimation
described above. Let κ = 800, and we calculate the ideal
window ∆∗k for every moment of time. To do this we use
section “The idea“ from Goldenshluger and Nemirovski
(1997). Define the risk as follows

ρi = κ(nδi)
−1/2.

And let us consider the following segments

Di = [f̂i(x0)− 2ρi, f̂i(x0) + 2ρi].

Since the “dynamic“ term ωf (x0, δi) dominated by the
“stochastic“ term ρi, it follows that Di, i ≤ i∗ (i∗ is an
index of ideal window), have a point in common f(x0). So
all that we need is to construct Di iteratively while they
intersect each other.

On the Fig.5 you can see how the window size (δi) changes
during the time.

Now we want to detect a change in the mean value. But if
you take a look at the graphic, you can see that the mean

Fig. 4. Spatial adaptive estimation of the accelerometer
data.

Fig. 5. Adaptive window size.

Fig. 6. Red line is the mean value of the accelerometer
data (window size = 200).

value is about 0 anywhere. And it means that Generalized
Likelihood Ratio is not appropriate in this case.

But if we take absolute values of the signal, then we get
the following thing (Fig.7). One can see the abrupt change
of the the mean value around time = 1500.

After we got the appropriate data (with a change in the
mean value), we can apply Generalized Likelihood Ratio.
We apply this to detect the change in mean value.

Then we select the threshold h for the signal without noise.
Looking at the accelerometer values, we supposed that
h = 2000. The calculated dynamic threshold is presented
below. We need to note that we have use ε-set of the
possible parameters of the θ. That is we have considered
the set of the following type Θ := {θm = θ0 + mε : |θm −
θ0| ≥ ν}. So we have

gk = max
1≤j≤k

sup
Θ

k∑
i=j

yi(µ0 − µ1)

σ2
+ k

µ2
1 − µ2

0

2σ2
,
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Fig. 7. Red line is a mean value of accelerometer data
absolute values (window size = 200).

κ percent of fails

400 60%

600 40%

700 30%

800 10%

900 10%

1000 10%

1500 20%

1600 30%

2000 60%

Table 1. Count of fails for different values of κ.

which can be easy calculated.

Fig. 8. Blue line is gk, other lines denotes different dynamic
thresholds. The region where a fault occurred is
depicted by red color.

One can see a moment when the fault occurred - inter-
section of the green and blue lines. Also notice that if we
would use constant h = 2000, then intersection would be
occurred in the wrong place.

Also we provide the results of the experiments with dif-
ferent values of κ using 10 tracks of the accelerometer
data for each value of κ. The best result was shown by
κ = 800, 900, 1000. But it is difficult to calculate exactly
which value of κ select in the concrete situation, because
we don’t know the signal-to-noise ratio. So it is selected
empirically. In the Table 1 result are presented.

7. CONCLUSION AND FEATURE WORKS

The problem of abrupt change detection in autonomous
systems is considered. The new method of the adaptive
threshold estimation is offered. The experiment of the

determining of the autonomous small car slowdown was
made. The proposed dynamic threshold shows better ca-
pabilities than a constant threshold.

For the further investigations the estimation of the pa-
rameter κ in the conditions when the signal-to-noise ratio
is unknown seems to be perspective. Also more complex
description of a surface type could be useful. It could
be done by hypothesis testing, where each hypothesis
describes specific type of a surface.

7.1 Further Application

We want to consider the possible applications of this
method for the medical diagnosis of biological processes
in the human body. For instance, such diseases when the
formation of a blood clot (thrombus) are accumulated
inside a blood vessel.

It could be reasonable to accumulate some parameters of
vessels like results of Ultrasound, and in case if there are
many such results, one can to search them for a fault.
Let us imagine that this results can be represented as a
sequence of integers, so in this case we have to detect a
changes in the mean value of this values. And if we will
recognize a fault, it will help us to recognize a disease.
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