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Abstract: In the paper a multi-agent network system of different computing nodes is considered.
A problem of load balancing in the network is addressed. The problem is formulated as consensus
achievement problem and solved via local voting protocol. Agents exchange information about their
states in presence of noise in communication channels. At certain moment network system topology
changes and new step size of control protocol is chosen to meet new conditions. Step size adjustment
is done by stochastic approximation type algorithm. Analytically obtained optimal step size values are
given. Simulation example demonstrating step size adjustment is provided.
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1. INTRODUCTION

Important practical problem in network systems is problem
of load balancing. It may arise in such network systems as
computer, production, transport, logistics, and other service
networks. In computational networks load balancing is needed
to improve system efficiency. A multi-agent approach is used
to address this problem in network systems. A possible goal
for control in such systems is to improve the network speed of
operation using communication among agents in the system.
In Amelina et al. (2015a) it was shown that the problem
of almost optimal task distribution among agents could be
reformulated as a problem of the consensus achievement in the
network.

The consensus approach was widely applied for solving various
practical problems such as cooperative control of multivehicle
networks Ren et al. (2007); Granichin et al. (2012), distributed
control of robotic networks Bullo et al. (2009), flocking prob-
lem Yu et al. (2010a); Virágh et al. (2014), optimal control of
sensor networks Kar and Moura (2010) and others. Works Ren
and Beard (2007); Chebotarev and Agaev (2009); Li and Zhang
(2009); Yu et al. (2010b); Huang (2012); Proskurnikov (2013);
Lewis et al. (2014) consider formulating the conditions for
achieving consensus in such systems.
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In Amelina et al. (2015b) a choice of an optimal step-size of
consensus-type protocol for task redistribution among agents in
a stochastic network with randomized priorities is considered.
It is shown that a trade-off is made between noise sensitivity
and the rate of convergence of control protocol while choosing
its step-size. The paper proposes a way of choosing step-size to
maximize convergence precision.

An optimal step-size of control protocol could be chosen for
the network system under certain conditions such as parame-
ters of noise during information exchange, delays occurring in
communication channels, system topology etc. But the value
of optimal step-size corresponding to different conditions of
system operation might be different. In Granichin and Amelina
(2015) a problem of tracking under influence of disturbances
via simultaneous perturbation stochastic approximation is con-
sidered. The paper addresses the problem in general formula-
tion with little assumption about disturbances.

Simultaneous perturbation stochastic approximation (SPSA)
was proposed by Spall Spall (1992) and can be used for solving
optimization problems in case when it is difficult or impossible
to obtain a gradient of the objective function with respect to the
parameters being optimized.

In this paper we propose a way to adjust step-size parameter of
control strategy in changing conditions. We use a stochastic ap-
proximation type procedure to update values of step-size during
multi-agent system operation. Obtained analytically optimal
step-sizes for the proposed control protocol are provided.
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The paper is organized as follows. Notation used in the paper
and the problem formulation are given in Section II. The control
protocol for achieving the consensus is introduced in Section
III. In Section IV the main assumptions and main results are
presented. Simulation results are given in Section V. Section VI
contains conclusion remarks.

2. PROBLEM STATEMENT

Let’s consider a dynamic network system of n agents, which ex-
change information among themselves during tasks processing.
Tasks may come to different agents of the system in different
discrete time instants t = 1, . . .. Agents process incoming tasks
in parallel. Tasks can be redistributed among agents based on a
feedback.

Without loss of generality, agents in the system are numbered.
Assume N = {1, . . . ,n} denotes the set of agents in the network
system. Let i ∈ N be the number of an agent. The network
topology may switch over time. Let the dynamic network topol-
ogy be modeled by a sequence of digraphs {(N,Et)}t≥0, where
Et ⊂ E denotes the set of edges at time t of topology graph
(N,Et). The corresponding adjacency matrices are denoted as
At = [ai, j

t ], where ai, j
t > 0 if agent j is connected with agent i

and ai, j
t = 0 otherwise. Here and below, an upper index of agent

i is used as the corresponding number of an agent (not as an
exponent). Denote GAt as the corresponding graph.

To introduce some properties of the network topology, the fol-
lowing definitions from the graph theory will be used. Define
the weighted in-degree of node i as the sum of i-th row of
matrix A: indegi(A) =∑

n
j=1 ai, j; D(A) = diag{indegi(A)} is the

corresponding diagonal matrix; indegmax(A) is the maximum
in-degree of graph GA. Let L (A) =D(A)−A denote the Lapla-
cian of graph GA; ·T is a vector or matrix transpose operation;

||A|| is the Euclidian norm: ||A||=
√

∑i ∑ j(ai, j)2; Re(λ2(A)) is
the real part of the second eigenvalue of matrix A ordered by
the absolute magnitude; λmax(A) is the maximum eigenvalue of
matrix A.

It is said that digraph GB is a subgraph of a digraph GA if
bi, j ≤ ai, j for all i, j ∈ N.

Digraph GA is said to contain a spanning tree if there exists a
directed tree Gtr = (N,Etr) as a subgraph of GA which includes
all vertices of GA.

The behavior of agent i ∈ N is described by characteristics of
two types:

• lengths of queue of tasks at time instant t: qi
t ,

• productivity: pi.

Let random variable η j denote complexity (or a number of
computational operation needed to execute the task) of a task
which came to the system. Dynamics of the system can be
written in the following way:

∑
qi

t+1

η j = ∑
qi

t

η j′ − pi +∑
zi
t

η j′′ +∑
ui

t

η j′′′ ,

where ∑qi
t+1

η j is number of computational operations needed
to execute all tasks in the queue of agent i at time instant t +1,
pi is productivity of agent i or the number of computational
operations it can perform during one tact of the system (assume
it is constant), ∑zi

t
η j′′ is the complexity of tasks which came

to the system on agent i at time instant t and ∑ui
t
η j′′′ is

the complexity of tasks which already came to other agents
at previous time instants and were redistributed to agent i
according to control protocol.

Assume random variable η has mathematical expectation η̄ <
∞. Let’s take expectation of left and right parts of the equation
of system dynamics.

E

∑
qi

t+1

η j

= E

∑
qi

t

η j′ − pi +∑
zi
t

η j′′ +∑
ui

t

η j′′′


∑
qi

t+1

η̄ = ∑
qi

t

η̄− pi +∑
zi
t

η̄ +∑
ui

t

η̄

Left and right parts are now equal to number of tasks at agent i
multiplied by their average complexity.

η̄ ∑
qi

t+1

1 = η̄ ∑
qi

t

1− pi + η̄ ∑
zi
t

1+ η̄ ∑
ui

t

1

η̄qi
t+1 = η̄qi

t − pi + η̄zi
t + η̄ui

t

Divide both parts of the equation by constant value η̄ . We get
discrete model which allows as to analyze system dynamics
without information about complexities of each task in the
system (but with assumption their average value is bounded).
For all i ∈ N, t = 0,1, . . ., the dynamics of the network system
in a vector form is as follows

qi
t+1 = qi

t − p̃i + zi
t +ui

t , (1)

where p̃i = pi/η̄ , zi
t the amount of new tasks, which came

to the system and were received by agent i at time instant
t; ui

t is control action (redistributed tasks to agent i at time
instant t), which is chosen based on some information about
queue lengths of neighbors q j

t , j ∈ Ni
t , where Ni

t is the set
{ j ∈ N : ai, j

t > 0}.
Denote

xi
t =

qi
t

p̃i (2)

the load of agent i∈N. Assume, that p̃i 6= 0, ∀i∈N. In Amelina
et al. (2015a) it was proven that from all possible options for
the redistribution of all tasks the minimum operation time of
the system is achieved when loads xi

t are equalized throughout
the network. Hence, it is important to consider the achievement
of the following goal.

It is required to maintain balanced (equal) loads across the
network under conditions of changing network topology.

At this setting we can consider the consensus problem for states
xi

t of agents, where xi
t is a state of agent i ∈ N. We use the

following definitions.
Definition 1. n agents of a network are said to reach a consen-
sus at time t if xi

t = x j
t ∀i, j ∈ N, i 6= j.

Definition 2. n agents are said to achieve asymptotic mean
square ε-consensus for ε > 0 when

limt→∞E‖xi
t − x j

t ‖2 ≤ ε.

To ensure balanced loads across the network (e.g., in order to
increase the overall throughput of the system and to reduce the
execution time), it is naturally to use a redistribution protocol
over time. We assume that to form the control (redistribution)
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strategy each agent i ∈ N has noisy observations about its
neighbors’ states

yi, j
t = x j

t +wi, j
t , j ∈ Ni

t , (3)

where wi, j
t is a noise occurring during transmission from node

j to node i.

3. CONTROL PROTOCOL

In Amelina et al. (2015a), properties of a control algorithm,
called local voting protocol, were studied for stochastic net-
works in the context of load balancing problem. For each agent
the control (amount of redistributed tasks) was determined by
the weighted sum of differences between the information about
the state of the agent and the information about its neighbors’
states. Let’s consider a protocol as follows. We define

ui
t = γ p̃i

t ∑
j∈N̄i

t

bi, j
t (yi, j

t − xi
t), (4)

where γ > 0 is a step-size of the control protocol and N̄i
t ⊂ Ni

t
is the neighbor set of agent i (note, that we could use not all
the available connections, but some subset of them), bi, j

t are
protocol coefficients.

Let Bt = [bi, j
t ] be the matrices of task redistribution protocol for

every time instant t. (We set bi, j
t = 0 when ai, j

t = 0 or j /∈ N̄i
t .)

The corresponding graph GBt may have the same topology as
graph GAt of matrix At or more poor.

The dynamics of the closed loop system with protocol (4) will
be as follows:

xi
t+1 = xi

t −1+ z̃i
t + γ ∑

j∈N̄i
t

bi, j
t (yi, j

t − xi
t) =

xi
t−1+ z̃i

t + γ

∑
j∈N̄i

t

bi, j
t x j

t

− γindegi(Bt)xi
t + γw̃i

t , i ∈ N, (5)

where w̃i
t = ∑ j∈N̄i

t
bi, j

t wi, j
t and z̃i

t = zi
t/ p̃i.

Let us rewrite Eq. (5) in a more compact form. Define the Rn-
valued vectors Xt = [xi

t ], 1n - vector with all elements equal to 1,
Zt = [z̃i

t ] and Wt = [∑ j∈N̄i
t
bi, j

t wi, j
t ]. The dynamics of the closed

loop system with protocol (4) may be represented as
Xt+1 = Xt + γ(Bt −D(Bt))Xt −1n +Zt + γWt . (6)

Due to the view of Laplacian matrices L (Bt) we can rewrite the
dynamics of the system in the following vector-matrix form:

Xt+1 = Xt − γL (Bt)Xt −1n +Zt + γWt . (7)

4. MAIN RESULTS

4.1 Assumptions

Let (Ω,F ,P) be the underlying probability space correspond-
ing to the sample space, the collection of all events, and the
probability measure respectively, and E be a mathematical ex-
pectation symbol.

Assume that the following conditions are satisfied:

• A1. a) For all i ∈ N, j ∈ Ni
t , observation noise wi, j

t are
zero-mean, independent identically distributed (i.i.d.) ran-
dom values with bounded variances: E(wi, j

t )2 ≤ σ2
w.

b) Graphs GBt , t = 1, . . . are i.i.d. (independent identi-
cally distributed), i.e. the random events of appearance of
of “time-varying” edge ( j, i) in graph GBt are independent
and identically distributed for the fixed pair ( j, i), i ∈
N, j∈Ni

max =∪t N̄i
t . For all i∈N, j∈Ni

t weights bi, j
t in the

control protocol are independent random variables with
mean values (mathematical expectations): Ebi, j

t = bi, j
av , and

bounded variances: E(bi, j
t − bi, j

av)
2 ≤ σ2

b . Let Bav be the
corresponding adjacency matrix.

c) For all i ∈ N, t = 1, . . . random values zi
t are indepen-

dent with expectations: Ezi
t = z̄ which do not depend on i,

and variances: E(zi
t − z̄)2 ≤ σ2

z .
Additionally, all mentioned in Assumption A1 indepen-

dent random variables and vectors are mutually indepen-
dent.

• A2. Graph GBav has a spanning tree (for the consensuses
to be achievable throughout the system Chebotarev and
Agaev (2009)).

• A3. For step-size γ of control protocol (4) the following
conditions are satisfied:

0 < γ <
1

indegmax(Bav)
, |δ (γ)|< 1, (8)

where δ (γ) = 1− γRe(λmax(L (Bav)))−
γ2λmax(L (Bav)

T L (Bav)).

4.2 Averaged Models

Let x?0, be the weighted average of the initial states

x?0 =
∑i gixi

0

∑i gi

where gT is the left eigenvector of matrix Bav Lewis et al.
(2014) (x?0 = 1

n ∑
n
i=1 xi

0 in the case of balanced topology graph
GBav ) and {x?t } is the trajectory of averaged systems

x?t+1 = x?t + z̄−1. (9)
where z̄ is expectation defined by Assumption A1.c.

4.3 Theoretical result

Consider vector X?
t ∈Rn, t = 0,1, . . . which consists of x?t at all

places.
Theorem 1. If Assumptions A1–A3 hold then for averaged
squared difference νt = E||Xt −X?

t ||2 of trajectories of closed-
loop systems (5) and (9) following inequalities are satisfied:

νt ≤
γ2H +S
1−δ (γ)

+(δ (γ))t
(

ν0−
γ2H +S
1−δ (γ)

)
, (10)

H = σ2
w||Bav||2, S = nσ2

z , i.e. if additionally ν0 < ∞, then the
asymptotic mean square ε-consensus in (5) is achieved with
ε = γ2H+S

1−δ (γ) .

Proof. The proof is a particular case of the proof in Amelina
et al. (2013).
Theorem 2. If Assumptions A1–A3 hold then optimal step-
size γ? of control protocol 3 can be calculated by formula:

γ
? =− S

H
∆+

√
S2

H2 ∆2 +
S
H

(11)

where ∆ = Re(λmax(L (Bav)))
λmax(L (Bav)T L (Bav))

.

Proof. The proof is similar to proof given in Amelina et al.
(2015b).
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4.4 Step-Size Adjustment

While step-size meets Assumption A3 the system will con-
verge to the weighted average value. But for the network
in different conditions the value of optimal step-size of con-
trol protocol is different. It is important to choose the step-
size according to conditions under which the network is
operating in order to optimize its productivity. Lets eval-
uate an efficiency of control protocol operation over pe-
riod of time T with functional F (γ) =

∫ T
0 F(γ,X0,w) ≈

1
N ∑

N
l=1 F̄(γ,X0,w), F̄(γ,X0,w) = 1

T ∑
T
t=1 ||Xt−X?

t ||2, where X0
is the vector of initial agents’ states, Xt is the vector of agents’
states at time instant t, X?

t is the average value of system load
at time instant t, w is the noise. F characterizes both rate of
convergence and level of convergence or average deviation of
agents’ states from the consensus value. Figures 1 and 2 show
graphs of dependence of F on γ . The form of the graphs,
particularly the presence of relatively clear minimum, suggests
that the value of step-size γ can be adjusted via SPSA-type
algorithm.

We use the following procedure for step-size adjustment. The
performance of control protocol is evaluated through time in-
terval k = 1,2, . . . of length T . The step-size value is adjusted
at the lapse of time interval k = 1,2, . . . or once in T time
instants. At odd time intervals k the value F0

k of functional F̄

is computed: F0
k = 1

T ∑
(2k−1)T
t=2(k−1)T+1 ||Xt −X?

t ||2. At the end of
the odd time interval step-size value is updated according to
formula γ̂k + β∆k. At even time intervals k the value F+

k of
functional F̄ is computed: F+

k = 1
T ∑

2kT
t=(2k−1)T+1 ||Xt−X?

t ||2. At
the end of even time interval the value of step-size is updated
according to the following formula.

γ̂k+1 = Pr[
0.001, 1

indegmaxBav
−0.001

]
(

γ̂k−α∆k
F+

k −F0
k

β

)
, (12)

where α and β are parameters of the algorithm which should
be chosen considerably small, γ̂k is the estimate of step-size
at k-th time interval, ∆ is a random value with Bernoulli dis-
tribution which takes values ±1. Computed value of step-size
is projected on interval

[
0.001, 1

indegmaxBav
−0.001

]
to fulfill

constraint (8).

5. SIMULATION RESULTS

Let’s consider network on n = 20 agents connected as a undi-
rected “double circle” i.e. agents are also connected with sec-
ond order neighbors in a circle (node i is connected with i−1,
i+1, i−2 and i+2). Amount of tasks coming to the system at
time instant t is a Poisson random variable and distributed with
parameter σz = 2. Complexity of task is a random variable with
uniform distribution on interval [8,12]. Agent productivities
pi, i= 1 · · ·n are constant and have values distributed uniformly
in interval [0.5,1.5]. Noise occurring during information ex-
change between agents wi, j

t is a random variable with uniform
distribution on interval [−0.1,0.1]. Let’s say at time instant t0
all agents have equal queue lengths with 100 tasks.

Let’s change step size of control protocol every 100 time
instants, i.e. T = 100. We take γ0 = 0.4, α = 1.5 ·10−5, β = 5 ·
10−3. Fig. 1 shows graph of dependence of F computed after
first time interval k = 1 on step size γ for system with agents
connected as “double circle”. The averaging is done on data

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

γ

F

Fig. 1. Dependence F on γ for ring-type topology.

0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

1200

γ

F

Fig. 2. Dependence F on γ for full-graph topology.

from N = 10 experiments with random initial loads X0 evenly
distributed in interval [50,100].

Compute optimal step size for described system according to
formula (11). In the system σ2

w = 0.0033, ||Bav||2 = 80, σ2
z =

1.72, Re(λmax(L (Bav))) = 6.2361, λmax(L (Bav)
T L (Bav)) =

38.8885. Substituting given values to formula (11) we get
0.1604.

At time instant t = 5000 system topology changes to full
graph that changes step size considerably. Agents now have
information about states of all nodes in the network and large
step size is not needed for optimal system performance. Fig. 2
shows averaged graph of dependence of F computed after
first time interval k = 1 on step size γ for system with full
graph topology. The averaging is done on data from N = 10
experiments with random initial loads X0 evenly distributed in
interval [50,100].

Compute optimal step size for described system according to
formula (11). For new topology ||Bav||2 = 380,
Re(λmax(L (Bav))) = 20, λmax(L (Bav)

T L (Bav)) = 400. Opti-
mal step size equals 0.05.

Fig. 3 shows the step size of control protocol chosen by stochas-
tic approximation procedure. On figure x-axis stands for num-
ber of step size adjustments or number of time instants T .
At first step-size converges to optimal value for system with
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T
adj

γ

Fig. 3. Step-size adjustment.
“double circle” topology and after topology changes it begins
to take values around new optimal value.

6. CONCLUSION

In this paper we showed a way to adjust step-size of local
voting protocol using stochastic approximation type algorithm.
The network model was assumed to have switched topology,
noise in measurements. We introduced a control strategy (a
modification of a local voting protocol) for load balancing
of network system and algorithm for choosing its step-size.
A simulation of the system operating by introduced control
strategy in changing conditions is provided. Optimal values of
step-sizes obtained analytically are given.
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