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Abstract— The paper deals with the detection of abrupt
changes in autonomous systems. We consider this problem in
the presence of Gaussian noise and solve it in two steps. At
first, spatial adaptive estimation of nonparametric regression is
used to estimate the observable data. Then Filtered Derivative
Algorithm is used to detect abrupt changes in the obtained
data using an adaptive threshold. The estimation of this
adaptive threshold is presented. This approach is then applied
to demonstrate the slowdown detection of a small autonomous
vehicle.

I. INTRODUCTION

The problem of fault detection is to determine changes
in the characteristics of a dynamical system. It is assumed
that the fault takes place inside the system. The problem of
change point detection is similar to the fault detection, but
in this case both faults inside and outside of the system are
of interest.

The problem of abrupt changes detection is an important
one, since any abrupt changes could potentially indicate
that something goes wrong. This is highly important for
autonomous systems that operate without human supervision.
Numerous approaches exist that can be used to detect the
abrupt change [1]–[3]. Some of them imply the dependence
of the probability density function upon a scalar parame-
ter, while others imply multidimensional probability density
function. In this paper we consider only the first case.

We also assume that measurable data contains some Gaus-
sian noise. Usually it is a very natural assumption – for
example, for GPS/IMU systems. Furthermore, we assume
complete absence of the information about the system except
for the observable part. Under such conditions, the actual
readings of measurable variables appear to be the most
valuable information. Therefore, the first step is to filter
noise from the observable data. For this purpose we use the
spatial adaptive estimation of nonparametric regression [4]
[5]. The main idea behind this approach is to estimate the
input signal using Least Square Estimate within a sliding
window of adaptive width. Once we obtain the value of the
estimated signal, we can detect the abrupt changes. There
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are numerous ways of performing such estimation (see [2]).
We employ the Filtered Derivative Algorithm, that is widely
used in image processing for the discontinuity detection. This
method is based on the likelihood ratio test. The principle of
this approach lies in the calculation of the likelihood ratio
gradient change rate. The occurrence of an abrupt change
corresponds to the state when the value of the gradient
exceeds a given threshold value.

Since the initial observable data contains noise, we cannot
set the threshold to be an exact constant value. There is no
guarantee that the selected threshold would be valid for the
varying values of the input signal and the adaptive threshold
should be considered. It can be used to reduce the delays
associated with the constant threshold method [6] and for
more accurate estimation in the presence of noise [7].

The main proposition of this paper is to combine the Fil-
tered Derivative Algorithm with an idea of adaptive threshold
to achieve more accurate and efficient method for the abrupt
change detection. For example, if we set up a constant
threshold that is needed to be satisfied in ideal conditions,
then we can calculate an adaptive threshold for filtered data.
So the threshold is adaptive in terms that it depends on the
inputs and the initial constant threshold. We show in the
paper how it can be calculated.

In order to demonstrate the efficiency of this approach
in a real-world environment we performed a simulation
considering a small autonomous vehicle model, that detects
its own slowdown. The vehicle data system was based on
STM32F3-Discovery circuit containing the accelerometer
and gyroscope. The situation of steady motion along the road
with a smooth surface was simulated. Upon tripping over a
piece of the foam rubber a slowdown occurred, which was
detected by the system and followed by issuing a signal for
the engine shutdown.

The article is organized as follows. Section II presents the
problem statement. In sections III and IV an overview of
used methods is provided. The main result is presented in
Section V. The results of numerical experiments are given
in Section VI, followed by Conclusions and Future work
discussion.

II. PROBLEM STATEMENT

Consider now the dynamical system with the model of
observations: {

Xt+1 = FtXt +Wt,
Yt = ΦtXt + Vt

(1)

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8681-4/$31.00 ©2016 AACC 6839



where Xt ∈ Rn is known state vector, Yt ∈ Rm is known
measurement vector, that consists of the observable system
parameters, Ft ∈ Rn×n, Φt ∈ Rn×m are specified matrices,
Wt ∈ Rn, Vt ∈ Rm are unknown vectors of an input
disturbance.

Our goal is to determine the fault in the observable
variables Yt. Each of the variables Y i = (y1, y2, ..., ym) has
the probability density function piθ depending only on single
scalar parameter θ ∈ R. Until the unknown moment of time
t0, the value of θ parameter is equal to θ0. The problem is
to detect a change of the parameter θ.

The solution of this problem includes two steps:
1) Filter a noise out of Yt.
2) Apply the Filtered Derivative Algorithm to the ob-

tained data.

III. SPATIAL ADAPTIVE ESTIMATION OF
NONPARAMETRIC REGRESSION

Let us consider the following problem. We want to restore
a signal function from noisy observations. Suppose there are
noisy observations y(x) of a signal function f(x) : [0, 1]→
R – along the regular grid Γn = {i/n, i = 0, . . . , n}:

y(x) = f(x) + ξ(x), (2)

where {ξ(x)}x∈Γn is a sequence of independent N (0, 1)
random variables defined on the underlying probability space
(Ω, A, P ).

In [4] the estimates by the least square method of f(x) at a
given point u ∈ [0, 1] are considered. Suppose that the degree
of estimate is 1. So we get the following approximation at
a given point x0:

f̂∆(x0) =
1

N∆

∑
x∈M∆

y(x), (3)

where ∆ ∈ [0, 1] is some segment [x0 − δ, x0 + δ] centered
at x0 and containing at least one observation point, M∆ is
the set of observation points in ∆, N∆ is the cardinality of
M∆.

The problem is to select the optimal window in absence of
a priori information on f(x). Let us introduce the following
estimation:

|f̂(x0)− f(x0)| ≤ ωf (x0, δ) +N
−1/2
∆ |ζ(∆)|, (4)

where ζ(∆) = 1
N∆

∑
x∈M∆

ξ(x), ωf (x, δ) = sup
x∈∆
|f(x) −

f(x0)|. The right part of (4) is comprised of two terms
– deterministic ωf (x, δ) and stochastic error N−1/2

∆ |ζ(∆)|.
Since ζ(∆) is N (0, 1), the stochastic error typically is of
order of (nδ)−1/2:

P{N−1/2
∆ |ζ(∆)| > κ(nδ)−1/2} ≤ exp{−cκ2}, (5)

with certain absolute constant c > 0. Now, there are no more
than n essentially different (resulting in different sets M∆)
choices of ∆. Let these choices be

∆1 ⊂ ∆2 ⊂ ... ⊂ ∆N ,

and let 2δ1, 2δ2, . . . , 2δN be the length of the windows
∆1,∆2, . . . ,∆N . We obtain

Ωκ = {ω ∈ Ω | N−1/2
∆i
|ζ(∆i)| ≤ κ(nδi)

−1/2, (6)

where i = 1, . . . , N}.

Assuming that ω ∈ Ωk, (4) can be strengthen as

|f̂∆i(x0)− f(x0)| ≤ ωf (x0, δi) + κ(nδi)
−1/2, (7)

Notice that as i grows, the first term in the right hand
side increases, and the second term decreases. Therefore,
a reasonable choice of the window to be used is the one
balancing the both terms, namely, the one related to the
largest i with ωf (x0, δi) ≤ κ(nδi)

−1/2.

IV. FILTERED DERIVATIVE ALGORITHM

This method is based on the likelihood ratio test (see [8]).
In a completely noiseless situation a change in the mean
level of a sequence of observations is locally characterized
by a great absolute value of the (discrete) derivative of the
sample observations. Since the derivative operator starts to
act in a very poor manner as soon as the noise appears,
a more realistic detector should use a filtering operation
before calculating the derivative. An simple way to increase
the robustness of this detector is to count the number
of threshold crossings within a fixed time interval before
deciding whether the change actually occurred.

Using the derivation of the finite moving average control
charts [9] we get

gk =

N−1∑
i=0

γi ln
pθ1(yk−i)

pθ0(yk−i)
, (8)

where the weights γi are again any weights for causal filters.
Suppose that we have already filtered noise out of the input
data. Therefore, let γi = 1 for all i = 0, . . . , N − 1. We
consider the discrete derivative of gk:

∇gk = gk − gk−1, (9)

and the following stopping rule:

ta = min{k :

N−1∑
i=0

I{|∇gk−i|≥h} ≥ η}, (10)

where I is an indicator function, h is a threshold for the
derivative, and η is a threshold for the number of crossings
of h.

V. THE ESTIMATE OF A SIGNAL

In this section we introduce an adaptive threshold and
show its dependence on a constant threshold in the presence
of standard Gaussian noise. In order to do this we apply (7)
for the estimation f of the input signal (3). Then we employ
this estimation within the Filtered Derivative Algorithm.

Theorem 1 in [4] describes a way to estimate |f̂(x0) −
f(x0)|. Now we will reformulate this theorem for the case
of the degree of estimation being equal to 1 (i.e. (3)).
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At first, let us define the ideal window ∆∗k(x0) = [x0 −
δ∗k, x0 + δ∗k] for the new conditions - p = l = 1, θm = 1:

δ∗κ = max
{
δ ≤ δ0 :

κ√
2nδ
≥ 4

∫ x0+δ

x0−δ
|f(x)|dx

}
. (11)

One can check that coefficients α∆(x, u) (see 3.1 Con-
struction in [4]) will be equal to 1

N∆
. That means that the

index of the window ∆ defined as follows

r∆,u =
( ∑
x∈M∆

α2
∆(x, u)

)1/2

=
1√
N∆

. (12)

So Ξ will be defined as follows:

Ξ =
{
ω ∈ Ω :

1√
N
|
∑
x∈M∆

ξ(x)| ≤ κ
}
. (13)

In this case we get the following estimation using Theorem
1 in [4] with conditions (11), (12), (13):

|f̂(x0)− f(x0)| ≤ 6κ√
2nδ∗κ(x0)

, when ω ∈ Ξ. (14)

Now we want to set up an adaptive threshold to apply it
in Filtered Derivative Algorithm described above. Assuming
that f̂(x) has Gaussian distribution N (µ, σ), we can write
out new expression for gk:

gk =

N−1∑
i=0

ln
pθ1(yk−i)

pθ0(yk−i)
=

N−1∑
i=0

ln

1
σ
√

2π
exp

(yk−i−µ1)2

2σ2

1
σ
√

2π
exp

(yk−i−µ0)2

2σ2

=

N−1∑
i=0

(yk−i − µ1)2 − (yk−i − µ0)2

2σ2

=

N−1∑
i=0

2yk−i(µ0 − µ1) + µ2
1 − µ2

0

2σ2

=

N−1∑
i=0

yk−i(µ0 − µ1)

σ2
+N

µ2
1 − µ2

0

2σ2
.

where µ0 and µ1 are the mean values of the distribution
corresponding to probability density functions pθ0 and pθ1 .

Let us estimate the discrete derivative of gk using (14):

∇gk = gk − gk−1 = S(yk − yk−N ),

where S := µ0−µ1

σ2 . Suppose that f(xk) is the actual value
of yk, and f̂(xk) is the estimated value as in (14). Using
(14) we get |f̂(xk)− f(xk)| ≤ 6κ1√

2nδ∗κ(xk)
,

|f̂(xk−N )− f(xk−N )| ≤ 6κ2√
2nδ∗κ(xk−N )

.
(15)

Assume that |S(f(xk) − f(xk−N )| ≥ h, and κ =
max(κ1, κ2). Then we get

|S(f̂(xk)− f̂(xk−N ))| ≥

h− |S|
( 6κ√

2nδ∗κ(xk)
+

6κ√
2nδ∗κ(xk−N )

)
, (16)

or

|S(f̂(xk)− f̂(xk−N ))| ≥

h− 6κ|S|√
2n

( 1√
δ∗κ(xk)

+
1√

δ∗κ(xk−N )

)
. (17)

Or

|S(f̂(xk)− f̂(xk−N ))| ≥

h− 6κ|S|√
2n

( 1√
δ∗κ(xk)

+
1√

δ∗κ(xk−N )

)
. (18)

Now we can formulate the following theorem.
Theorem 1: Let yk be the set of observations of the

signal f(x), and gk, f̂ , κ, n, δκ, S be defined as above. Also
let ∇gk = S(f(xk) − f(xk−N )) and ∇ĝk = S(f̂(xk) −
f̂(xk−N )). Then if |∇gk| ≥ h we have:

|∇ĝk| ≥ h−
6κ|S|√

2n

( 1√
δ∗κ(xk)

+
1√

δ∗κ(xk−N )

)
. (19)

The main objective of this theorem is to show how an
adaptive threshold in the presence of Gaussian noise can be
obtained using the constant threshold. For instance, in case
of the slowdown detection described below, if we empirically
select some threshold on the smooth road, then the Theorem
1 provides an estimation of the adaptive threshold on ”the
real world road with arbitrary potholes and bumps”.

VI. TESTING

A. Description of the Test Track

We have designed a small autonomous vehicle model
(Fig.1), based on STM32F3-Discovery board containing the
accelerometer and the gyroscope. The board was connected
to a simple motor through the motor driver L293B. So we
were able to control the direction of the vehicle movement.
The power supply was provided by 4 × 1.2 V batteries or
the USB connector.

We have implemented several software libraries in C:
namely, the motor control, LED control, sensor, filter and
fault detection algorithm libraries. One can use them to verify
the algorithm his own 1. Also we have implemented a simple
program using this libraries to control the vehicle. Then
we used OS Embox 2 (high-modular operating system for
resource-constrained devices) to program the board.

One of the sufficient on practice properties of the proposed
approach is very low requirements. For example, the board
has only 48Kb RAM and ARM Cortex-M4 (with 3.40
CoreMark/MHz Performance Efficiency). And it follows that
the algorithm could be applied for low-power and low-cost
solutions.

We set the accelerometer to 1344 HZ and read the values
of the acceleration along x-axis in the polling mode. During
the movement we stored obtained values in the flash memory.
Then we restored this values from the flash memory on PC.

1https://github.com/embox/embox/tree/master/
platform/stm32f3_sensors

2https://github.com/embox/embox
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Once obtained, these values were used to test the change
detection algorithms. For this purpose a dedicated class
library was implemented in Python.

This car should be able to recognize its own slowdown
using the data obtained from the accelerometer. We made all
experiments indoors, so we decided to replace a sand with a
foam rubber (1 meter).

Fig. 1: Test track for the vehicle model. It begins with a
smooth road. The tiny piece of a foam rubber is a random
disturbance. The big piece of a foam rubber is a serious
obstacle.

When the vehicle model tripped over a foam rubber a
slowdown occurred, which we had to recognize. Also one
can see the tiny strip of a foam rubber. It served to create a
below threshold noise that should have been ignored by the
system.

Our goal was to detect a foam rubber in real time, shut
down the motor and turn on the red LED (Fig.2). This is
demonstrated in this video 3.

B. The Experiment

On the Fig.3 we denoted with a red color the part that we
intended to recognize. Also, one can see two areas marked by
the green rectangles. They correspond to the moments when
the front-wheel and the back-wheel of the vehicle tripped
over the tiny piece of a foam rubber, accordingly.

At first, we should filter the noise out of the acceleration
values. Let us suppose that the goal is to estimate the input

3https://www.youtube.com/watch?v=4rKXX11HOYE

Fig. 2: The system detected a fault - motor has been shut
down, the red LED has been turned on.

Fig. 3: Red rectangle denotes the moment when the fault
was detected. Green rectangles denote the moments when
the vehicle tripped over the tiny piece of a foam rubber that
should have been ignored by the system.

signal at a given point x0. We should use the spatial adaptive
estimation, described above. Assuming κ = 800, we can
calculate the ideal window ∆∗k for every moment of time.
Accordingly we use the method described in section “The
idea” from [4]. The risk value is defined as follows

ρi = κ(nδi)
−1/2.

And let us consider the following segments

Di = [f̂i(x0)− 2ρi, f̂i(x0) + 2ρi].

Since the dynamic term ωf (x0, δi) is dominated by the
“stochastic” term ρi, one obtains that Di, i ≤ i∗ (i∗ is
an index of ideal window) have a point in common with
f(x0). So we only need to construct Di iteratively while
they intersect each other.

Fig. 4: Spatial adaptive estimation of the accelerometer data.

On the Fig.5 one can see how the window size (δi) changes
during the time.

Now we need to detect a change in the mean value. It
is clearly visible from the graphic, though, that for the most
part the mean value is approximately equal to 0. Therefore, in
this case the Filtered Derivative Algorithm is not appropriate.

If we take the absolute values of the signal, we get the
following picture (Fig.7). One can see the abrupt change of
the the mean value around time = 1500.

After obtaining the appropriate data (with a change in the
mean value), we can apply the Filtered Derivative Algorithm
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Fig. 5: Adaptive window size.

Fig. 6: Red line denotes the mean value of the accelerometer
data (window size = 200).

to detect the change in the mean value. Let f(x) be the
real accelerometer data (without a noise), and f̂(x) – the
estimation of f(x) similar to the Theorem 1. Let N = 2p
and consider the p derivatives to be:


|∇gk−1| = |S(f(xk−1)− f(xk−p−1))| ≥ h1,
|∇gk−2| = |S(f(xk−2)− f(xk−p−2))| ≥ h2,
...
|∇gk−p| = |S(f(xk−p)− f(xk−2p))| ≥ hp.

Fig. 7: Red line denotes the mean value of accelerometer
data absolute values (window size = 200).

The same applies for f̂(x)
|∇ĝk−1| = |S(f̂(xk−1)− f̂(xk−p−1))| ≥ ĥ1,

|∇ĝk−2| = |S(f̂(xk−2)− f̂(xk−p−2))| ≥ ĥ2,
...

|∇ĝk−p| = |S(f̂(xk−p)− f̂(xk−2p))| ≥ ĥp.

Let us define Gk :=
∑p
i=1 |∇gk−i|, h :=

∑p
i=1 hi, the

alarm time ta := min{k : Gk ≥ h} and accordingly, in
case of for f̂(x): Ĝk :=

∑p
i=1 |∇ĝk−i|, ĥ :=

∑p
i=1 ĥi, and

the alarm time t̂a := min{k : Ĝk ≥ ĥ}. Our purpose is
to estimate ĥ using h. One can obtain this estimation by
applying (19) to each of gk and then sum the results up.

ĥ = h+
6κ|S|√

2n

p−1∑
i=0

(
1

δ∗k−i(xk−i)
+

1

δ∗k−i(xk−p−i)
).

Assuming the window size of N = 150 (p = 75), we
select the threshold h for the signal without noise. With
reference to the range of accelerometer values, we chose the
h value to be h = 2000. The calculated adaptive threshold
is presented below.

Fig. 8: Blue line is ∇gk, green line is an adaptive threshold.
The region where a fault occurred is depicted by red color.

One can see a moment when the fault occurred - inter-
section of the green and blue lines. Also, one should notice
that if we used the constant value h = 2000, the intersection
would have occurred in the wrong place.

We provide the results of the experiments with different
values of κ using 10 tracks of the accelerometer data for
the each value of κ. The best result was shown by κ =
800, 900, 1000, but it is difficult to calculate exactly which
value of κ should be preferred in the concrete situation, since
there is no way to obtain the signal-to-noise ratio except for
the empirical estimate. The results are presented in Table 1

VII. CONCLUSIONS AND ACKNOWLEDGMENTS

The problem of fault detection in autonomous systems is
considered and the new method of the adaptive threshold
estimation is offered. The experiment performed with the
small autonomous vehicle model demonstrates the increased
efficiency of the proposed technique with adaptive threshold,
compared to the conventional method using the constant
threshold.

For the further investigations the estimation of the κ
parameter in the conditions of the unknown value of the
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κ percent of fails
400 60%
600 40%
700 30%
800 10%
900 10%
1000 10%
1500 20%
1600 30%
2000 60%

TABLE 1: Fail counts according to the different values of κ.

signal-to-noise ratio seem to be of interest. Also, more
detailed description of a surface type could be useful. This
could possibly be performed by means of hypothesis testing,
with each of the hypotheses describing the specific surface
type.

Moreover, we want to consider the possible applications of
this method for the medical diagnosis of biological processes
in the human body.

The authors are grateful to Arkadi Nemirovski for the in-
teresting and helpful discussion regarding the noise filtering

with moving average using adaptive window size.
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